A Muscle Synergy-Inspired Adaptive Control Scheme for a Hybrid Walking Neuroprosthesis

Naji A Alibeji, Nicholas Andrew Kirsch, Nitin Sharma, Naji A Alibeji, Nicholas Andrew Kirsch, Nitin Sharma

Abstract

A hybrid neuroprosthesis that uses an electric motor-based wearable exoskeleton and functional electrical stimulation (FES) has a promising potential to restore walking in persons with paraplegia. A hybrid actuation structure introduces effector redundancy, making its automatic control a challenging task because multiple muscles and additional electric motor need to be coordinated. Inspired by the muscle synergy principle, we designed a low dimensional controller to control multiple effectors: FES of multiple muscles and electric motors. The resulting control system may be less complex and easier to control. To obtain the muscle synergy-inspired low dimensional control, a subject-specific gait model was optimized to compute optimal control signals for the multiple effectors. The optimal control signals were then dimensionally reduced by using principal component analysis to extract synergies. Then, an adaptive feedforward controller with an update law for the synergy activation was designed. In addition, feedback control was used to provide stability and robustness to the control design. The adaptive-feedforward and feedback control structure makes the low dimensional controller more robust to disturbances and variations in the model parameters and may help to compensate for other time-varying phenomena (e.g., muscle fatigue). This is proven by using a Lyapunov stability analysis, which yielded semi-global uniformly ultimately bounded tracking. Computer simulations were performed to test the new controller on a 4-degree of freedom gait model.

Keywords: adaptive control; functional electrical stimulation; hybrid neuroprosthesis; non-linear control; time-invariant synergies.

Figures

Figure 1
Figure 1
A four-link gait model based of a subject wearing a hybrid neuroprosthesis while using a walker. The model has 10 inputs, including FES of six muscles (antagonistic hip, knee, and ankle muscle pairs in the swing leg), three electric motors acting on each joint of swing leg (Th, Tk, Ta), and a walker moment acting on the stance leg (Mw). The step length is defined as the distance from stance toe to swing toe.
Figure 2
Figure 2
Optimal gait trajectories for a step size of 0.4 m in 0.75 s.
Figure 3
Figure 3
Optimal inputs to the walker moment, electric motors, and stimulation channels to reproduce the optimal gait trajectories.
Figure 4
Figure 4
This plot indicates how much of the data variability would be accounted for based on the number of synergies considered. Rule of thumb would indicate using three synergies, but since the controller is not solely dependent on the feedforward component less synergies can be used.
Figure 5
Figure 5
(A) Two synergies, w1 and w2. (B) The corresponding time-varying activation coefficients, c1 and c2, of synergies, w1 and w2.
Figure 6
Figure 6
Four cases for gait control using a hybrid neuroprosthesis. Case 1 only used the feedforward synergies, Case 2 used the adapted feedforward synergies, Case 3 considered both the adapted feedforward synergies and feedback control, and Case 4 used the full optimal inputs and feedback control. Note that the profile from the third and fourth cases almost perfectly overlaps the desired profiles.
Figure 7
Figure 7
Control inputs for Cases 1 and 2 of the simulations. Note that the control input profile shapes, after PCA decomposition, in Case 1 may not be similar to the optimal inputs in Figure 3.
Figure 8
Figure 8
Control inputs for Case 3 of the simulations. The feedback’s contribution was used only in the walker moment and motor torques.
Figure 9
Figure 9
Control inputs for Case 4 of the simulations. The feedback’s contribution was used only in the walker moment and motor torques.
Figure 10
Figure 10
The gait sequence for the four cases, a step length of 0.4 m with a step duration of 0.75 s was used. Since the errors for the third and fourth cases are so close their gait sequences look identical.

References

    1. Ackermann M., van den Bogert A. J. (2010). Optimality principles for model-based prediction of human gait. J. Biomech. 43, 1055–1060.10.1016/j.jbiomech.2009.12.012
    1. Ajoudani A., Godfrey S., Catalano M., Grioli G., Tsagarakis N. G., Bicchi A. (2013). “Teleimpedance control of a synergy-driven anthropomorphic hand,” in IEEE/RSJ IROS (Tokyo: IEEE; ), 1985–1991.
    1. An Q., Ishikawa Y., Nakagawa J., Oka H., Yamakawa H., Yamashita A., et al. (2013). “Muscle synergy analysis of human standing-up motion with different chair heights and different motion speeds,” in IEEE SMC (Manchester: IEEE; ), 3579–3584.
    1. Artemiadis P., Kyriakopoulos K. (2010). EMG-based control of a robot arm using low-dimensional embeddings. IEEE Trans. Rob. 26, 393–398.10.1109/TRO.2009.2039378
    1. Berniker M., Jarc A., Bizzi E., Tresch M. C. (2009). Simplified and effective motor control based on muscle synergies to exploit musculoskeletal dynamics. Proc. Natl. Acad. Sci. U.S.A. 106, 7601–7606.10.1073/pnas.0901512106
    1. Binder-Macleod S. A., Snyder-Mackler L. (1993). Muscle fatigue: clinical implications for fatigue assessment and neuromuscular electrical stimulation. Phys. Ther. 73, 902–910.
    1. Catalano M. G., Grioli G., Serio A., Farnioli E., Piazza C., Bicchi A. (2012). “Adaptive synergies for a humanoid robot hand,” in IEEE Humanoid Rob (Osaka: IEEE; ), 7–14.
    1. Cho K.-J., Rosmarin J., Asada H. (2007). “SBC hand: a lightweight robotic hand with an SMA actuator array implementing c-segmentation,” in ICRA (Saint Paul: IEEE; ), 921–926.
    1. de Rugy A., Loeb G. E., Carroll T. J. (2013). Are muscle synergies useful for neural control? Front. Comput. Neurosci. 7:19.10.3389/fncom.2013.00019
    1. del-Ama A. J., Gil-Agudo Á, Bravo-Esteban E., Pérez-Nombela S., Pons J. L., Moreno J. C. (2014a). Hybrid therapy of walking with kinesis overground robot for persons with incomplete spinal cord injury: a feasibility study. Rob. Auton. Syst. 10.1016/j.robot.2014.10.014
    1. del-Ama A. J., Gil-Agudo Á, Pons J. L., Moreno J. C. (2014b). Hybrid FES-robot cooperative control of ambulatory gait rehabilitation exoskeleton. J. Neuroeng. Rehabil. 11, 27.10.1186/1743-0003-11-27
    1. Dosen S., Popovic D. B. (2008). Accelerometers and force sensing resistors for optimal control of walking of a hemiplegic. IEEE Trans. Biomed. Eng. 55, 1973–1984.10.1109/TBME.2008.919715
    1. Dosen S., Popovic D. B. (2009). Moving-window dynamic optimization: design of stimulation profiles for walking. IEEE Trans. Biomed. Eng. 56, 1298–1309.10.1109/TBME.2009.2013935
    1. Esquenazi A., Talaty M., Packel A., Saulino M. (2012). The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. Am. J. Phys. Med. Rehabil. 91, 911–921.10.1097/PHM.0b013e318269d9a3
    1. Farris R., Quintero H., Goldfarb M. (2011). Preliminary evaluation of a powered lower limb orthosis to aid walking in paraplegic individuals. IEEE Trans. Neural Syst. Rehabil. Eng. 19, 652–659.10.1109/TNSRE.2011.2163083
    1. Geyer H., Herr H. (2010). A muscle-reflex model that encodes principles of legged mechanics produces human walking dynamics and muscle activities. IEEE Trans. Neural Syst. Rehabil. Eng. 18, 263–273.10.1109/TNSRE.2010.2047592
    1. Grillner S. (1985). Neurobiological bases of rhythmic motor acts in vertebrates. Science 228, 143–149.10.1126/science.3975635
    1. Grioli G., Catalano M., Silvestro E., Tono S., Bicchi A. (2012). “Adaptive synergies: an approach to the design of under-actuated robotic hands,” in IEEE/RSJ IROS (Vilamoura: IEEE; ), 1251–1256.
    1. Ha K. H., Murray S. A., Goldfarb M. (2015). An approach for the cooperative control of FES with a powered exoskeleton during level walking for persons with paraplegia. IEEE Trans. Neural Syst. Rehabil. Eng. 10.1109/TNSRE.2015.2421052
    1. Khalil H. K. (2002). Nonlinear Systems, 3rd Edn Upper Saddle River, NJ: Prentice Hall.
    1. Kirsch N., Alibeji N. A., Sharma N. (2013). “Optimized control of different actuation strategies for FES and orthosis aided gait,” in Proc. ASME DSCC, Palo Alto.
    1. Kobetic R., To C., Schnellenberger J., Audu M., Bulea T., Gaudio R., et al. (2009). Development of hybrid orthosis for standing, walking, and stair climbing after spinal cord injury. J. Rehabil. Res. Dev. 46, 447–462.10.1682/JRRD.2008.07.0087
    1. Kobetic R., Triolo R., Marsolais E. (1997). Muscle selection and walking performance of multichannel FES systems for ambulation in paraplegia. IEEE Trans. Rehabil. Eng. 5, 23–29.10.1109/86.559346
    1. Kralj A., Bajd T. (1989). Functional Electrical Stimulation: Standing and Walking After Spinal Cord Injury. Boca Raton, FL: CRC.
    1. Kuppuswamy N., Harris C. M. (2014). Do muscle synergies reduce the dimensionality of behaviour? Front. Comput. Neurosci. 8:63.10.3389/fncom.2014.00063
    1. Kuppuswamy N., Marques H. G., Hauser H. (2012). “Synthesising a motor-primitive inspired control architecture for redundant compliant robots,” in From Animals to Animals 12, eds Ziemke T., Balkenius C., Hallam J. (Berlin: Springer; ), 96–105.
    1. Lee W. A. (1984). Neuromotor synergies as a basis for coordinated intentional action. J. Mot. Behav. 16, 135–170.10.1080/00222895.1984.10735316
    1. Neuhaus P., Noorden J., Craig T., Torres T., Kirschbaum J., Pratt J. (2011). “Design and evaluation of mina: a robotic orthosis for paraplegics,” in IEEE ICORR (Zurich: IEEE; ), 1–8.
    1. Pandy M. G., Andriacchi T. P. (2010). Muscle and joint function in human locomotion. Annu. Rev. Biomed. Eng. 12, 401–433.10.1146/annurev-bioeng-070909-105259
    1. Peckham P. H. (1987). Functional electrical stimulation: current status and future prospects of applications to the neuromuscular system in spinal cord injury. Paraplegia 25, 279–288.10.1038/sc.1987.52
    1. Popović D., Stein R., Namik Oguztoreli M., Lebiedowska M., Jonic S. (1999). Optimal control of walking with functional electrical stimulation: a computer simulation study. IEEE Trans. Rehabil. Eng. 7, 69–79.10.1109/86.750554
    1. Popović D. B., Radulović M., Schwirtlich L., Jauković N. (2003). Automatic vs hand-controlled walking of paraplegics. Med. Eng. Phys. 25, 63–73.10.1016/S1350-4533(02)00188-1
    1. Popovic M., Popovic D. (2001). Cloning biological synergies improves control of elbow neuroprostheses. IEEE Eng. Med. Biol. Mag. 20, 74–81.10.1109/51.897830
    1. Quintero H. A., Farris R. J., Ha K., Goldfarb M. (2012). “Preliminary assessment of the efficacy of supplementing knee extension capability in a lower limb exoskeleton with FES,” in IEEE EMBC (San Diego, CA: IEEE; ), 3360–3363.
    1. Rosmarin J. B., Asada H. H. (2008). “Synergistic design of a humanoid hand with hybrid DC motor-SMA array actuators embedded in the palm,” in IEEE ICRA (Pasadena: IEEE; ), 773–778.
    1. Routson R. L., Clark D. J., Bowden M. G., Kautz S. A., Neptune R. R. (2013). The influence of locomotor rehabilitation on module quality and post-stroke hemiparetic walking performance. Gait Posture 38, 511–517.10.1016/j.gaitpost.2013.01.020
    1. Santello M., Flanders M., Soechting J. F. (1998). Postural hand synergies for tool use. J. Neurosci. 18, 10105–10115.
    1. Sharma N., Mushahwar V., Stein R. (2014). Dynamic optimization of FES and orthosis-based walking using simple models. IEEE Trans. Neural Syst. Rehabil. Eng. 22, 114–126.10.1109/TNSRE.2013.2280520
    1. Sharma N., Patre P. M., Gregory C., Dixon W. (2009). “Nonlinear control of NMES: incorporating fatigue and calcium dynamics,” in ASME Dynamic Systems and Control Conference, Hollywood, CA.
    1. Sherrington C. S. (1910). Flexion-reflex of the limb, crossed extension-reflex, and reflex stepping and standing. J. Physiol. 40, 28–121.10.1113/jphysiol.1910.sp001362
    1. Simkins M., Al-Refai A. H., Rosen J. (2014). Upper limb joint space modeling of stroke induced synergies using isolated and voluntary arm perturbations. IEEE Trans. Neural Syst. Rehabil. Eng. 22, 491–500.10.1109/TNSRE.2013.2273313
    1. Steele K. M., Tresch M. C., Perreault E. J. (2013). The number and choice of muscles impact the results of muscle synergy analyses. Front. Comput. Neurosci 7:105.10.3389/fncom.2013.00105
    1. The National SCI Statistical Center. (2014). Spinal Cord Injury (SCI) Facts and Figures at a Glance. Birmingham, AL: NSCISC.
    1. Ting L. H. (2007). Dimensional reduction in sensorimotor systems: a framework for understanding muscle coordination of posture. Prog. Brain. Res 165, 299–321.10.1016/S0079-6123(06)65019-X
    1. Todorov E., Li W., Pan X. (2005). From task parameters to motor synergies: a hierarchical framework for approximately optimal control of redundant manipulators. J. Rob. Syst. 22, 691–710.10.1002/rob.20093
    1. Tresch M. C., Saltiel P., d’Avella A., Bizzi E. (2002). Coordination and localization in spinal motor systems. Brain Res. Rev. 40, 66–79.10.1016/S0165-0173(02)00189-3
    1. Triolo R. J., Bieri C., Uhlir J., Kobetic R., Scheiner A., Marsolais E. B. (1996). Implanted functional neuromuscular stimulation systems for individuals with cervical spinal cord injuries: clinical case reports. Arch. Phys. Med. Rehabil. 77, 1119–1128.10.1016/S0003-9993(96)90133-1
    1. Vinjamuri R. K. (2008). Dimensionality Reduction in Control and Coordination of the Human Hand Ph.D. thesis, Swanson School of Engineering, University of Pittsburgh.
    1. Vinjamuri R. K., Sun M., Chang C.-C., Lee H.-N., Sclabassi R., Mao Z.-H. (2010). Dimensionality reduction in control and coordination of the human hand. IEEE Trans. Biomed. Eng. 57, 284–295.10.1109/TBME.2009.2032532
    1. Vinjamuri R. K., Weber D. J., Mao Z.-H., Collinger J. L., Degenhart A. D., Kelly J. W., et al. (2011). Toward synergy-based brain-machine interfaces. IEEE Trans. Inf. Technol. Biomed. 15, 726–736.10.1109/TITB.2011.2160272
    1. Wimbock T., Jahn B., Hirzinger G. (2011). “Synergy level impedance control for multifingered hands,” in IEEE/RSJ IROS (San Francisco, CA: IEEE; ), 973–979.
    1. Winter D. A. (2009). Biomechanics and Motor Control of Human Movement. Hoboken, NJ: Wiley.
    1. Wu F., Asada H. (2014). “Supernumerary robotic fingers: an alternative upper-limb prosthesis,” in Proc. ASME DSCC, San Antonio.

Source: PubMed

3
Abonneren