Role of inflammation and oxidative stress mediators in gliomas

Alfredo Conti, Carlo Gulì, Domenico La Torre, Chiara Tomasello, Filippo F Angileri, M'hammed Aguennouz, Alfredo Conti, Carlo Gulì, Domenico La Torre, Chiara Tomasello, Filippo F Angileri, M'hammed Aguennouz

Abstract

Gliomas are the most common primary brain tumors of the central nervous system. Despite relevant progress in conventional treatments, the prognosis of such tumors remains almost invariably dismal. The genesis of gliomas is a complex, multistep process that includes cellular neoplastic transformation, resistance to apoptosis, loss of control of the cell cycle, angiogenesis, and the acquisition of invasive properties. Among a number of different biomolecular events, the existence of molecular connections between inflammation and oxidative stress pathways and the development of this cancer has been demonstrated. In particular, the tumor microenvironment, which is largely orchestrated by inflammatory molecules, is an indispensable participant in the neoplastic process, promoting proliferation, survival and migration of such tumors. Proinflammatory cytokines, such as tumor necrosis factor-alpha, interleukin-1beta, and interferon-gamma, as well as chemokines and prostaglandins, are synthesized by resident brain cells and lymphocytes invading the affected brain tissue. Key mediators of cancer progression include nuclear factor-kappaB, reactive oxygen and nitrogen species, and specific microRNAs. The collective activity of these mediators is largely responsible for a pro-tumorigenic response through changes in cell proliferation, cell death, cellular senescence, DNA mutation rates, DNA methylation and angiogenesis. We provide a general overview of the connection between specific inflammation and oxidative stress pathway molecules and gliomas. The elucidation of specific effects and interactions of these factors may provide the opportunity for the identification of new target molecules leading to improved diagnosis and treatment.

Figures

Figure 1
Figure 1
NF-κB DNA-binding activity studied in normal brain tissue and human gliomas with different grade of malignancy. Representative electromobility shift assay autoradiographs showing NF-κB DNA-binding activity studied in normal brain tissue and human gliomas with different grade of malignancy and demonstrating an increased activity in tumor samples that is remarkable in high grade tumors. NBT: normal brain tissue; LGA: low-grade glioma; AA: anaplastic astrocytoma; GBM: glioblastoma multiform; PC: positive control.
Figure 2
Figure 2
Schematic drawing showing the TNF-driven survival and apoptosis balance. TNF signaling induces controlled cell death through the caspase activation cascade. This is counteracted by a survival pathway acting through a TRAF2-driven and NF-kB-mediated transcription of antiapoptotic proteins including members of the c-IAP family (c-IAP1 and 2 and Survivin) acting on the effector caspases 3 and 7 or members of the Bcl-2 family acting on the mitochondrial apoptotic pathway by blocking the release of cytochrome c. TNFR = tumor necrosis factor receptor; TRADD = TNFR associated death domain; FADD = FAS associating protein with death domain.
Figure 3
Figure 3
Possible IL-6-mediated paracrine activation of glioma cells. Schematic drawing describing the hypothesis that inflammatory cells, such as activated macrophage/microglial cells, synthesize IL-6 through NF-κB. As a consequence, glioma cells, particularly tumor stem cells, are activated by IL-6 via paracrine stimulation. Chemokines, including IL-6 and TNFα, activate the transcription factors STAT3 and NF-κB that, in turn, initiate specific pathways for tumor progression such as angiogenesis, migration, and apoptosis inhibition.
Figure 4
Figure 4
Cytokines-related activation of intracellular processes in glioma cells. Glioma specimens were hybridized in a GeneChip microarrays panel of the whole human genome containing approximately 44000 genes. The scheme presented results from statistical analysis as displayed by Gene Spring GX 7.3 software (personal, unpublished data).
Figure 5
Figure 5
Schematic representation of the conversion of arachidonic acid to prostaglandins and other prostanoids.
Figure 6
Figure 6
A possible interaction between environmental and genetic factors in gliomagenesis. Mediators of inflammation and oxidative stress pathways interacts with oncogenes and tumor suppressor genes influencing the evolution toward neoplastic phenotype by unbalancing the DNA repair/damage equilibrium.

References

    1. Ashby L.S., Ryken T.C. Management of malignant glioma: steady progress with multimodal approaches. Neurosurg. Focus. 2006;20:E3. doi: 10.3171/foc.2006.20.4.3.
    1. Hanahan D., Weinberg R.A. The hallmarks of cancer. Cell. 2000;100:57–70.
    1. Philip M., Rowley D.A., Schreiber H. Inflammation as a tumor promoter in cancer induction. Semin. Cancer Biol. 2004;14:433–439. doi: 10.1016/j.semcancer.2004.06.006.
    1. Alavanja M.C., Brownson R.C., Boice J.D., Jr., Hock E. Preexisting lung disease and lung cancer among nonsmoking women. Am. J. Epidemiol. 1992;136:623–632.
    1. Coussens L.M., Werb Z. Inflammation and cancer. Nature. 2002;420:860–867. doi: 10.1038/nature01322.
    1. Macarthur M., Hold G.L., El-Omar E.M. Inflammation and Cancer II. Role of chronic inflammation and cytokine gene polymorphisms in the pathogenesis of gastrointestinal malignancy. Am. J. Physiol. Gastrointest. Liver Physiol. 2004;286:G515–520. doi: 10.1152/ajpgi.00475.2003.
    1. Block T.M., Mehta A.S., Fimmel C.J., Jordan R. Molecular viral oncology of hepatocellular carcinoma. Oncogene. 2003;22:5093–5107. doi: 10.1038/sj.onc.1206557.
    1. Minelli A., Bellezza I., Conte C., Culig Z. Oxidative stress-related aging: A role for prostate cancer? Biochim. Biophys. Acta. 2009;1795:83–91.
    1. Rossi M.L., Cruz-Sanchez F., Hughes J.T., Esiri M.M., Coakham H.B., Moss T.H. Mononuclear cell infiltrate and HLA-DR expression in low grade astrocytomas. An immunohistological study of 23 cases. Acta Neuropathol. 1988;76:281–286. doi: 10.1007/BF00687776.
    1. Rossi M.L., Hughes J.T., Esiri M.M., Coakham H.B., Brownell D.B. Immunohistological study of mononuclear cell infiltrate in malignant gliomas. Acta Neuropathol. 1987;74:269–277. doi: 10.1007/BF00688191.
    1. Morimura T., Neuchrist C., Kitz K., Budka H., Scheiner O., Kraft D., Lassmann H. Monocyte subpopulations in human gliomas: expression of Fc and complement receptors and correlation with tumor proliferation. Acta Neuropathol. 1990;80:287–294. doi: 10.1007/BF00294647.
    1. Roggendorf W., Strupp S., Paulus W. Distribution and characterization of microglia/macrophages in human brain tumors. Acta Neuropathol. 1996;92:288–293. doi: 10.1007/s004010050520.
    1. Graeber M.B., Bise K., Mehraein P. CR3/43, a marker for activated human microglia: application to diagnostic neuropathology. Neuropathol. Appl. Neurobiol. 1994;20:406–408. doi: 10.1111/j.1365-2990.1994.tb00987.x.
    1. Flugel A., Labeur M.S., Grasbon-Frodl E.M., Kreutzberg G.W., Graeber M.B. Microglia only weakly present glioma antigen to cytotoxic T cells. Int. J. Dev. Neurosci. 1999;17:547–556. doi: 10.1016/S0736-5748(99)00020-9.
    1. Constam D.B., Philipp J., Malipiero U.V., ten Dijke P., Schachner M., Fontana A. Differential expression of transforming growth factor-beta 1, -beta 2, and -beta 3 by glioblastoma cells, astrocytes, and microglia. J. Immunol. 1992;148:1404–1410.
    1. Platten M., Wick W., Weller M. Malignant glioma biology: role for TGF-beta in growth, motility, angiogenesis, and immune escape. Microsc. Res. Tech. 2001;52:401–410. doi: 10.1002/1097-0029(20010215)52:4<401::AID-JEMT1025>;2-C.
    1. Wojtowicz-Praga S. Reversal of tumor-induced immunosuppression: a new approach to cancer therapy. J. Immunother. 1997;20:165–177. doi: 10.1097/00002371-199705000-00001.
    1. Huettner C., Czub S., Kerkau S., Roggendorf W., Tonn J.C. Interleukin 10 is expressed in human gliomas in vivo and increases glioma cell proliferation and motility in vitro. Anticancer Res. 1997;17:3217–3224.
    1. Hishii M., Nitta T., Ishida H., Ebato M., Kurosu A., Yagita H., Sato K., Okumura K. Human glioma-derived interleukin-10 inhibits antitumor immune responses in vitro. Neurosurgery. 1995;37:1160-1166; discussion 1166–1167.
    1. Conti A., Cardali S., Genovese T., Di Paola R., La Rosa G. Role of inflammation in the secondary injury following experimental spinal cord trauma. J. Neurosurg. Sci. 2003;47:89–94.
    1. Conti A., Miscusi M., Cardali S., Germano A., Suzuki H., Cuzzocrea S., Tomasello F. Nitric oxide in the injured spinal cord: synthases cross-talk, oxidative stress and inflammation. Brain. Res. Rev. 2007;54:205–218. doi: 10.1016/j.brainresrev.2007.01.013.
    1. Messina S., Altavilla D., Aguennouz M., Seminara P., Minutoli L., Monici M.C., Bitto A., Mazzeo A., Marini H., Squadrito F., Vita G. Lipid peroxidation inhibition blunts nuclear factor-kappaB activation, reduces skeletal muscle degeneration, and enhances muscle function in mdx mice. Am. J. Pathol. 2006;168:918–926. doi: 10.2353/ajpath.2006.050673.
    1. Monici M.C., Aguennouz M., Mazzeo A., Messina C., Vita G. Activation of nuclear factor-kappaB in inflammatory myopathies and Duchenne muscular dystrophy. Neurology. 2003;60:993–997. doi: 10.1212/01.WNL.0000049913.27181.51.
    1. Gilmore T.D. The Re1/NF-kappa B/I kappa B signal transduction pathway and cancer. Cancer Treat. Res. 2003;115:241–265. doi: 10.1007/0-306-48158-8_10.
    1. Karin M. NF-kappaB as a critical link between inflammation and cancer. Cold Spring Harbor Perspect. Biol. 2009;1:a000141. doi: 10.1101/cshperspect.a000141.
    1. Nagai S., Washiyama K., Kurimoto M., Takaku A., Endo S., Kumanishi T. Aberrant nuclear factor-kappaB activity and its participation in the growth of human malignant astrocytoma. J. Neurosurg. 2002;96:909–917. doi: 10.3171/jns.2002.96.5.0909.
    1. Gill J.S., Zhu X., Moore M.J., Lu L., Yaszemski M.J., Windebank A.J. Effects of NFkappaB decoy oligonucleotides released from biodegradable polymer microparticles on a glioblastoma cell line. Biomaterials. 2002;23:2773–2781. doi: 10.1016/S0142-9612(02)00013-3.
    1. Weaver K.D., Yeyeodu S., Cusack J.C., Jr., Baldwin A.S., Jr., Ewend M.G. Potentiation of chemotherapeutic agents following antagonism of nuclear factor kappa B in human gliomas. J. Neurooncol. 2003;61:187–196. doi: 10.1023/A:1022554824129.
    1. Conti A., Ageunnouz M., La Torre D., Cardali S., Angileri F.F., Buemi C., Tomasello C., Iacopino D.G., D'Avella D., Vita G., Tomasello F. Expression of the tumor necrosis factor receptor-associated factors 1 and 2 and regulation of the nuclear factor-kappaB antiapoptotic activity in human gliomas. J. Neurosurg. 2005;103:873–881. doi: 10.3171/jns.2005.103.5.0873.
    1. Beg A.A., Baltimore D. An essential role for NF-kappaB in preventing TNF-alpha-induced cell death. Science. 1996;274:782–784. doi: 10.1126/science.274.5288.782.
    1. Liu Z.G., Hsu H., Goeddel D.V., Karin M. Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-kappaB activation prevents cell death. Cell. 1996;87:565–576. doi: 10.1016/S0092-8674(00)81375-6.
    1. Van Antwerp D.J., Martin S.J., Kafri T., Green D.R., Verma I.M. Suppression of TNF-alpha-induced apoptosis by NF-kappaB. Science. 1996;274:787–789. doi: 10.1126/science.274.5288.787.
    1. Wang C.Y., Mayo M.W., Korneluk R.G., Goeddel D.V., Baldwin A.S., Jr. NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science. 1998;281:1680–1683. doi: 10.1126/science.281.5383.1680.
    1. Cheng G., Baltimore D. TANK, a co-inducer with TRAF2 of TNF- and CD 40L-mediated NF-kappaB activation. Genes Dev. 1996;10:963–973. doi: 10.1101/gad.10.8.963.
    1. Rothe M., Sarma V., Dixit V.M., Goeddel D.V. TRAF2-mediated activation of NF-kappa B by TNF receptor 2 and CD40. Science. 1995;269:1424–1427. doi: 10.1126/science.7544915.
    1. Angileri F.F., Aguennouz M., Conti A., La Torre D., Cardali S., Crupi R., Tomasello C., Germano A., Vita G., Tomasello F. Nuclear factor-kappaB activation and differential expression of survivin and Bcl-2 in human grade 2-4 astrocytomas. Cancer. 2008;112:2258–2266.
    1. Wang H., Lathia J.D., Wu Q., Wang J., Li Z., Heddleston J.M., Eyler C.E., Elderbroom J., Gallagher J., Schuschu J., MacSwords J., Cao Y., McLendon R.E., Wang X.F., Hjelmeland A.B., Rich J.N. Targeting interleukin 6 signaling suppresses glioma stem cell survival and tumor growth. Stem Cells. 2009;27:2393–2404. doi: 10.1002/stem.188.
    1. Brat D.J., Bellail A.C., Van Meir E.G. The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro Oncol. 2005;7:122–133. doi: 10.1215/S1152851704001061.
    1. Li A., Dubey S., Varney M.L., Dave B.J., Singh R.K. IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J. Immunol. 2003;170:3369–3376.
    1. Shono T., Ono M., Izumi H., Jimi S.I., Matsushima K., Okamoto T., Kohno K., Kuwano M. Involvement of the transcription factor NF-kappaB in tubular morphogenesis of human microvascular endothelial cells by oxidative stress. Mol. Cell Biol. 1996;16:4231–4239.
    1. Hussain S.P., Hofseth L.J., Harris C.C. Radical causes of cancer. Nat. Rev. Cancer. 2003;3:276–285. doi: 10.1038/nrc1046.
    1. La Rosa G., Cardali S., Genovese T., Conti A., Di Paola R., La Torre D., Cacciola F., Cuzzocrea S. Inhibition of the nuclear factor-kappaB activation with pyrrolidine dithiocarbamate attenuating inflammation and oxidative stress after experimental spinal cord trauma in rats. J. Neurosurg. Spine. 2004;1:311–321. doi: 10.3171/spi.2004.1.3.0311.
    1. Genovese T., Mazzon E., Mariotto S., Menegazzi M., Cardali S., Conti A., Suzuki H., Bramanti P., Cuzzocrea S. Modulation of nitric oxide homeostasis in a mouse model of spinal cord injury. J. Neurosurg. Spine. 2006;4:145–153. doi: 10.3171/spi.2006.4.2.145.
    1. Pryor W.A., Squadrito G.L. The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. Am. J. Physiol. 1995;268:L699–722.
    1. Crow J.P., Beckman J.S. Reactions between nitric oxide, superoxide, and peroxynitrite: footprints of peroxynitrite in vivo. Adv. Pharmacol. 1995;34:17–43. doi: 10.1016/S1054-3589(08)61079-0.
    1. Ghosh A., Mukherjee J., Bhattacharjee M., Sarkar P., Acharya S., Chaudhuri S. The other side of the coin: beneficiary effect of 'oxidative burst' upsurge with T11TS facilitates the elimination of glioma cells. Cell Mol. Biol. (Noisy-le-grand) 2007;53:53–62.
    1. Hofseth L.J. Nitric oxide as a target of complementary and alternative medicines to prevent and treat inflammation and cancer. Cancer Lett. 2008;268:10–30. doi: 10.1016/j.canlet.2008.03.024.
    1. Visconti R., Grieco D. New insights on oxidative stress in cancer. Curr. Opin. Drug Discov. Devel. 2009;12:240–245.
    1. Towner R.A., Smith N., Doblas S., Garteiser P., Watanabe Y., He T., Saunders D., Herlea O., Silasi-Mansat R., Lupu F. In vivo detection of inducible nitric oxide synthase in rodent gliomas. Free Radic. Biol. Med. :2009.
    1. Cobbs C.S., Brenman J.E., Aldape K.D., Bredt D.S., Israel M.A. Expression of nitric oxide synthase in human central nervous system tumors. Cancer Res. 1995;55:727–730.
    1. Bakshi A., Nag T.C., Wadhwa S., Mahapatra A.K., Sarkar C. The expression of nitric oxide synthases in human brain tumours and peritumoral areas. J. Neurol. Sci. 1998;155:196–203. doi: 10.1016/S0022-510X(97)00315-8.
    1. Garbossa D., Fontanella M., Pagni C.A., Vercelli A. Nitric oxide synthase and cytochrome c oxidase changes in the tumoural and peritumoural cerebral cortex. Acta Neurochir. (Wien) 2001;143:897–908. doi: 10.1007/s007010170020.
    1. Broholm H., Rubin I., Kruse A., Braendstrup O., Schmidt K., Skriver E.B., Lauritzen M. Nitric oxide synthase expression and enzymatic activity in human brain tumors. Clin. Neuropathol. 2003;22:273–281.
    1. Cobbs C.S., Whisenhunt T.R., Wesemann D.R., Harkins L.E., Van Meir E.G., Samanta M. Inactivation of wild-type p53 protein function by reactive oxygen and nitrogen species in malignant glioma cells. Cancer Res. 2003;63:8670–8673.
    1. van der Vliet A., Hristova M., Cross C.E., Eiserich J.P., Goldkorn T. Peroxynitrite induces covalent dimerization of epidermal growth factor receptors in A431 epidermoid carcinoma cells. J. Biol. Chem. 1998;273:31860–31866.
    1. Li X., De Sarno P., Song L., Beckman J.S., Jope R.S. Peroxynitrite modulates tyrosine phosphorylation and phosphoinositide signalling in human neuroblastoma SH-SY5Y cells: attenuated effects in human 1321N1 astrocytoma cells. Biochem. J. 1998;331 (Pt 2):599–606.
    1. Zhang P., Wang Y.Z., Kagan E., Bonner J.C. Peroxynitrite targets the epidermal growth factor receptor, Raf-1, and MEK independently to activate MAPK. J. Biol. Chem. 2000;275:22479–22486. doi: 10.1074/jbc.M910425199.
    1. Kundu J.K., Surh Y.J. Inflammation: gearing the journey to cancer. Mutat. Res. 2008;659:15–30. doi: 10.1016/j.mrrev.2008.03.002.
    1. Thiele G.M., Duryee M.J., Willis M.S., Sorrell M.F., Freeman T.L., Tuma D.J., Klassen L.W. Malondialdehyde-acetaldehyde (MAA) modified proteins induce pro-inflammatory and pro-fibrotic responses by liver endothelial cells. Comp. Hepatol. 2004;3(Suppl. 1):S25.
    1. Ying L., Hofseth A.B., Browning D.D., Nagarkatti M., Nagarkatti P.S., Hofseth L.J. Nitric oxide inactivates the retinoblastoma pathway in chronic inflammation. Cancer Res. 2007;67:9286–9293.
    1. Suh Y.A., Arnold R.S., Lassegue B., Shi J., Xu X., Sorescu D., Chung A.B., Griendling K.K., Lambeth J.D. Cell transformation by the superoxide-generating oxidase Mox1. Nature. 1999;401:79–82. doi: 10.1038/43459.
    1. Lu H., Ouyang W., Huang C. Inflammation, a key event in cancer development. Mol. Cancer Res. 2006;4:221–233. doi: 10.1158/1541-7786.MCR-05-0261.
    1. Chandrasekharan N.V., Dai H., Roos K.L., Evanson N.K., Tomsik J., Elton T.S., Simmons D.L. COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: cloning, structure, and expression. Proc. Natl. Acad. Sci. USA. 2002;99:13926–13931.
    1. Smith W.L., Garavito R.M., DeWitt D.L. Prostaglandin endoperoxide H synthases (cyclooxygenases)-1 and -2. J. Biol. Chem. 1996;271:33157–33160.
    1. Harris R.E. Cyclooxygenase-2 (cox-2) blockade in the chemoprevention of cancers of the colon, breast, prostate, and lung. Inflammopharmacology. 2009;17:55–67. doi: 10.1007/s10787-009-8049-8.
    1. Shono T., Tofilon P.J., Bruner J.M., Owolabi O., Lang F.F. Cyclooxygenase-2 expression in human gliomas: prognostic significance and molecular correlations. Cancer Res. 2001;61:4375–4381.
    1. Deininger M.H., Weller M., Streffer J., Mittelbronn M., Meyermann R. Patterns of cyclooxygenase-1 and -2 expression in human gliomas in vivo. Acta Neuropathol. 1999;98:240–244. doi: 10.1007/s004010051075.
    1. Joki T., Heese O., Nikas D.C., Bello L., Zhang J., Kraeft S.K., Seyfried N.T., Abe T., Chen L.B., Carroll R.S., Black P.M. Expression of cyclooxygenase 2 (COX-2) in human glioma and in vitro inhibition by a specific COX-2 inhibitor, NS-398. Cancer Res. 2000;60:4926–4931.
    1. Tsujii M., Kawano S., Tsuji S., Sawaoka H., Hori M., DuBois R.N. Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell. 1998;93:705–716. doi: 10.1016/S0092-8674(00)81433-6.
    1. Kang K.B., Wang T.T., Woon C.T., Cheah E.S., Moore X.L., Zhu C., Wong M.C. Enhancement of glioblastoma radioresponse by a selective COX-2 inhibitor celecoxib: inhibition of tumor angiogenesis with extensive tumor necrosis. Int. J. Radiat. Oncol. Biol. Phys. 2007;67:888–896. doi: 10.1016/j.ijrobp.2006.09.055.
    1. Bijnsdorp I.V., van den Berg J., Kuipers G.K., Wedekind L.E., Slotman B.J., van Rijn J., Lafleur M.V., Sminia P. Radiosensitizing potential of the selective cyclooygenase-2 (COX-2) inhibitor meloxicam on human glioma cells. J. Neurooncol. 2007;85:25–31. doi: 10.1007/s11060-007-9385-4.
    1. Masferrer J.L., Leahy K.M., Koki A.T., Zweifel B.S., Settle S.L., Woerner B.M., Edwards D.A., Flickinger A.G., Moore R.J., Seibert K. Antiangiogenic and antitumor activities of cyclooxygenase-2 inhibitors. Cancer Res. 2000;60:1306–1311.
    1. Wagemakers M., van der Wal G.E., Cuberes R., Alvarez I., Andres E.M., Buxens J., Vela J.M., Moorlag H., Mooij J.J., Molema G. COX-2 Inhibition Combined with Radiation Reduces Orthotopic Glioma Outgrowth by Targeting the Tumor Vasculature. Transl. Oncol. 2009;2:1–7. doi: 10.1007/s12178-009-9043-x.
    1. Annabi B., Laflamme C., Sina A., Lachambre M.P., Beliveau R. A MT1-MMP/NF-kappaB signaling axis as a checkpoint controller of COX-2 expression in CD133+ U87 glioblastoma cells. J. Neuroinflammation. 2009;6:8. doi: 10.1186/1742-2094-6-8.
    1. Liu G., Yuan X., Zeng Z., Tunici P., Ng H., Abdulkadir I.R., Lu L., Irvin D., Black K.L., Yu J.S. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol. Cancer. 2006;5:67. doi: 10.1186/1476-4598-5-67.
    1. Gu J., Liu Y., Kyritsis A.P., Bondy M.L. Molecular epidemiology of primary brain tumors. Neurotherapeutics. 2009;6:427–435. doi: 10.1016/j.nurt.2009.05.001.
    1. Brenner A.V., Butler M.A., Wang S.S., Ruder A.M., Rothman N., Schulte P.A., Chanock S.J., Fine H.A., Linet M.S., Inskip P.D. Single-nucleotide polymorphisms in selected cytokine genes and risk of adult glioma. Carcinogenesis. 2007;28:2543–2547.
    1. Wiemels J.L., Wilson D., Patil C., Patoka J., McCoy L., Rice T., Schwartzbaum J., Heimberger A., Sampson J.H., Chang S., Prados M., Wiencke J.K., Wrensch M. IgE, allergy, and risk of glioma: update from the San Francisco Bay Area Adult Glioma Study in the temozolomide era. Int. J. Cancer. 2009;125:680–687.
    1. Schwartzbaum J.A., Fisher J.L., Aldape K.D., Wrensch M. Epidemiology and molecular pathology of glioma. Nat. Clin. Pract. Neurol. 2006;2:494–503; quiz 491 p following 516.
    1. Schwartzbaum J., Jonsson F., Ahlbom A., Preston-Martin S., Malmer B., Lonn S., Soderberg K., Feychting M. Prior hospitalization for epilepsy, diabetes, and stroke and subsequent glioma and meningioma risk. Cancer Epidemiol. Biomarkers Prev. 2005;14:643–650. doi: 10.1158/1055-9965.EPI-04-0119.
    1. Linos E., Raine T., Alonso A., Michaud D. Atopy and risk of brain tumors: a meta-analysis. J. Natl. Cancer Inst. 2007;99:1544–1550. doi: 10.1093/jnci/djm170.
    1. de Moor C.H., Meijer H., Lissenden S. Mechanisms of translational control by the 3' UTR in development and differentiation. Semin. Cell Dev. Biol. 2005;16:49–58. doi: 10.1016/j.semcdb.2004.11.007.
    1. Lai E.C. Micro RNAs are complementary to 3' UTR sequence motifs that mediate negative post-transcriptional regulation. Nat. Genet. 2002;30:363–364. doi: 10.1038/ng865.
    1. Robins H., Press W.H. Human microRNAs target a functionally distinct population of genes with AT-rich 3' UTRs. Proc. Natl. Acad. Sci. USA. 2005;102:15557–15562. doi: 10.1073/pnas.0507443102.
    1. Stark A., Brennecke J., Bushati N., Russell R.B., Cohen S.M. Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3'UTR evolution. Cell. 2005;123:1133–1146. doi: 10.1016/j.cell.2005.11.023.
    1. Sun M., Hurst L.D., Carmichael G.G., Chen J. Evidence for a preferential targeting of 3'-UTRs by cis-encoded natural antisense transcripts. Nucleic Acids Res. 2005;33:5533–5543. doi: 10.1093/nar/gki852.
    1. Meltzer P.S. Cancer genomics: small RNAs with big impacts. Nature. 2005;435:745–746. doi: 10.1038/435745a.
    1. Calin G.A., Croce C.M. MicroRNA signatures in human cancers. Nat. Rev. Cancer. 2006;6:857–866. doi: 10.1038/nrc1997.
    1. Cimmino A., Calin G.A., Fabbri M., Iorio M.V., Ferracin M., Shimizu M., Wojcik S.E., Aqeilan R.I., Zupo S., Dono M., Rassenti L., Alder H., Volinia S., Liu C.G., Kipps T.J., Negrini M., Croce C.M. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl. Acad. Sci. USA. 2005;102:13944–13949. doi: 10.1073/pnas.0506654102.
    1. Nicoloso M.S., Calin G.A. MicroRNA involvement in brain tumors: from bench to bedside. Brain Pathol. 2008;18:122–129. doi: 10.1111/j.1750-3639.2007.00119.x.
    1. Conti A., Aguennouz M., La Torre D., Tomasello C., Cardali S., Angileri F.F., Maio F., Cama A., Germano A., Vita G., Tomasello F. miR-21 and 221 upregulation and miR-181b downregulation in human grade II-IV astrocytic tumors. J. Neurooncol. 2009;93:325–332. doi: 10.1007/s11060-009-9797-4.
    1. Wu F., Zikusoka M., Trindade A., Dassopoulos T., Harris M.L., Bayless T.M., Brant S.R., Chakravarti S., Kwon J.H. MicroRNAs are differentially expressed in ulcerative colitis and alter expression of macrophage inflammatory peptide-2 alpha. Gastroenterology. 2008;135:1624–1635.e24. doi: 10.1053/j.gastro.2008.07.068.
    1. Krichevsky A.M., Gabriely G. miR-21: a small multi-faceted RNA. J. Cell Mol. Med. 2009;13:39–53. doi: 10.1111/j.1582-4934.2008.00556.x.
    1. Frankel L.B., Christoffersen N.R., Jacobsen A., Lindow M., Krogh A., Lund A.H. Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J. Biol. Chem. 2008;283:1026–1033.
    1. Zhu S., Si M.L., Wu H., Mo Y.Y. MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1) J. Biol. Chem. 2007;282:14328–14336.
    1. Meng F., Henson R., Wehbe-Janek H., Ghoshal K., Jacob S.T., Patel T. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology. 2007;133:647–658. doi: 10.1053/j.gastro.2007.05.022.
    1. Liu M., Wu H., Liu T., Li Y., Wang F., Wan H., Li X., Tang H. Regulation of the cell cycle gene, BTG2, by miR-21 in human laryngeal carcinoma. Cell Res. 2009;19:828–837. doi: 10.1038/cr.2009.72.
    1. Si M.L., Zhu S., Wu H., Lu Z., Wu F., Mo Y.Y. miR-21-mediated tumor growth. Oncogene. 2007;26:2799–2803. doi: 10.1038/sj.onc.1210083.
    1. Loffler D., Brocke-Heidrich K., Pfeifer G., Stocsits C., Hackermuller J., Kretzschmar A.K., Burger R., Gramatzki M., Blumert C., Bauer K., Cvijic H., Ullmann A.K., Stadler P.F., Horn F. Interleukin-6 dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer. Blood. 2007;110:1330–1333. doi: 10.1182/blood-2007-03-081133.
    1. Seike M., Goto A., Okano T., Bowman E.D., Schetter A.J., Horikawa I., Mathe E.A., Jen J., Yang P., Sugimura H., Gemma A., Kudoh S., Croce C.M., Harris C.C. MiR-21 is an EGFR-regulated anti-apoptotic factor in lung cancer in never-smokers. Proc. Natl. Acad. Sci. USA. 2009;106:12085–12090. doi: 10.1073/pnas.0905234106.
    1. Lu T.X., Munitz A., Rothenberg M.E. MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression. J. Immunol. 2009;182:4994–5002. doi: 10.4049/jimmunol.0803560.

Source: PubMed

3
Abonneren