Impact of Two Forms of Daily Preventive Zinc or Therapeutic Zinc Supplementation for Diarrhea on Hair Cortisol Concentrations Among Rural Laotian Children: A Randomized Controlled Trial

Guy-Marino Hinnouho, Robin M Bernstein, Maxwell A Barffour, Charles D Arnold, K Ryan Wessells, Kethmany Ratsavong, Bangone Bounheuang, Sengchanh Kounnavong, Sonja Y Hess, Guy-Marino Hinnouho, Robin M Bernstein, Maxwell A Barffour, Charles D Arnold, K Ryan Wessells, Kethmany Ratsavong, Bangone Bounheuang, Sengchanh Kounnavong, Sonja Y Hess

Abstract

Zinc supplementation has been shown to reduce the morbidity burden among young children, and may reduce chronic stress. Hair cortisol has been promoted as an indicator of chronic stress. We assessed the impact of different strategies for delivering supplementary zinc on hair cortisol concentrations (HCC) in young Laotian children and examined risk factors associated with HCC. In a randomized double-blind controlled trial (NCT02428647), children aged 6⁻23 mo were randomized to one of four intervention groups and followed for ~36 weeks: daily preventive zinc (PZ) tablets (7 mg/day), daily multiple micronutrient powder (MNP) sachets (containing 10 mg zinc and 14 other micronutrients), therapeutic zinc (TZ) supplements for diarrhea treatment (20 mg/day for 10 days) or daily placebo powder. HCC of 512 children was assessed at baseline and endline. ANCOVA and linear regression models were used to assess group differences in HCC and to examine the risk factors associated with HCC, respectively. At enrollment, mean HCC was 28.8 ± 43.9 pg/mg. In models adjusted for age at enrollment, health district, and baseline HCC there was no overall effect of the interventions on endline HCC and change in HCC. When controlling for additional predetermined covariates, there was a marginally significant effect on change in HCC (p = 0.075) with a slightly lower reduction of HCC in TZ compared to PZ (mean change (95% CI): -4.6 (-7.0; -2.3) vs. -9.4 (-11.7; -7.0) pg/mg; p = 0.053). At baseline, consumption of iron rich foods was negatively associated with HCC, whereas AGP (α1-acid glycoprotein) levels, elevated AGP and C-reactive protein and high soluble transferrin receptor were positively associated with HCC. In young Laotian children, MNP, PZ and TZ had no impact on HCC. The marginal difference in change in HCC between the PZ and TZ groups was too small to be considered of health significance.

Keywords: Lao PDR; MNP; chronic stress; hair cortisol; micronutrient powder; young children; zinc supplementation.

Conflict of interest statement

The spouse of S.Y.H. works for the Bill & Melinda Gates Foundation.

Figures

Figure 1
Figure 1
Lao Zinc study flow diagram for hair collection. MNP = Micronutrient powder; PZ = preventive zinc; TZ = Therapeutic zinc.

References

    1. Timmermans M., van Lier P.A., Koot H.M. The role of stressful events in the development of behavioural and emotional problems from early childhood to late adolescence. Psychol. Med. 2010;40:1659–1668. doi: 10.1017/S0033291709992091.
    1. Shonkoff J.P., Boyce W.T., McEwen B.S. Neuroscience, molecular biology, and the childhood roots of health disparities: Building a new framework for health promotion and disease prevention. JAMA. 2009;301:2252–2259. doi: 10.1001/jama.2009.754.
    1. Danese A., McEwen B.S. Adverse childhood experiences, allostasis, allostatic load, and age-related disease. Physiol. Behav. 2012;106:29–39. doi: 10.1016/j.physbeh.2011.08.019.
    1. Gunnar M., Quevedo K. The neurobiology of stress and development. Annu. Rev. Psychol. 2007;58:145–173. doi: 10.1146/annurev.psych.58.110405.085605.
    1. Doom J.R., Gunnar M.R. Stress physiology and developmental psychopathology: Past, present, and future. Dev. Psychopathol. 2013;25:1359–1373. doi: 10.1017/S0954579413000667.
    1. Vanaelst B., De Vriendt T., Huybrechts I., Rinaldi S., De Henauw S. Epidemiological approaches to measure childhood stress. Paediatr. Perinat. Epidemiol. 2012;26:280–297. doi: 10.1111/j.1365-3016.2012.01258.x.
    1. Ouellet-Morin I., Laurin M., Robitaille M.P., Brendgen M., Lupien S.J., Boivin M., Vitaro F. Validation of an adapted procedure to collect hair for cortisol determination in adolescents. Psychoneuroendocrinology. 2016;70:58–62. doi: 10.1016/j.psyneuen.2016.05.002.
    1. Russell E., Koren G., Rieder M., Van Uum S. Hair cortisol as a biological marker of chronic stress: Current status, future directions and unanswered questions. Psychoneuroendocrinology. 2012;37:589–601. doi: 10.1016/j.psyneuen.2011.09.009.
    1. Hanrahan K., McCarthy A.M., Kleiber C., Lutgendorf S., Tsalikian E. Strategies for salivary cortisol collection and analysis in research with children. Appl. Nurs. Res. 2006;19:95–101. doi: 10.1016/j.apnr.2006.02.001.
    1. Kidd S., Midgley P., Lone N., Wallace A.M., Nicol M., Smith J., McIntosh N. A re-investigation of saliva collection procedures that highlights the risk of potential positive interference in cortisol immunoassay. Steroids. 2009;74:666–668. doi: 10.1016/j.steroids.2009.02.009.
    1. Remer T., Maser-Gluth C., Wudy S.A. Glucocorticoid measurements in health and disease--metabolic implications and the potential of 24-h urine analyses. Mini Rev. Med. Chem. 2008;8:153–170. doi: 10.2174/138955708783498096.
    1. D’Anna-Hernandez K.L., Ross R.G., Natvig C.L., Laudenslager M.L. Hair cortisol levels as a retrospective marker of hypothalamic-pituitary axis activity throughout pregnancy: Comparison to salivary cortisol. Physiol. Behav. 2011;104:348–353. doi: 10.1016/j.physbeh.2011.02.041.
    1. Kirschbaum C., Tietze A., Skoluda N., Dettenborn L. Hair as a retrospective calendar of cortisol production-increased cortisol incorporation into hair in the third trimester of pregnancy. Psychoneuroendocrinology. 2009;34:32–37. doi: 10.1016/j.psyneuen.2008.08.024.
    1. Stalder T., Steudte S., Miller R., Skoluda N., Dettenborn L., Kirschbaum C. Intraindividual stability of hair cortisol concentrations. Psychoneuroendocrinology. 2012;37:602–610. doi: 10.1016/j.psyneuen.2011.08.007.
    1. Short S.J., Stalder T., Marceau K., Entringer S., Moog N.K., Shirtcliff E.A., Wadhwa P.D., Buss C. Correspondence between hair cortisol concentrations and 30-day integrated daily salivary and weekly urinary cortisol measures. Psychoneuroendocrinology. 2016;71:12–18. doi: 10.1016/j.psyneuen.2016.05.007.
    1. Grass J., Kirschbaum C., Miller R., Gao W., Steudte-Schmiedgen S., Stalder T. Sweat-inducing physiological challenges do not result in acute changes in hair cortisol concentrations. Psychoneuroendocrinology. 2015;53:108–116. doi: 10.1016/j.psyneuen.2014.12.023.
    1. Sauve B., Koren G., Walsh G., Tokmakejian S., Van Uum S.H. Measurement of cortisol in human hair as a biomarker of systemic exposure. Clin. Investig. Med. 2007;30:E183–E191. doi: 10.25011/cim.v30i5.2894.
    1. Stalder T., Kirschbaum C. Analysis of cortisol in hair--state of the art and future directions. Brain Behav. Immun. 2012;26:1019–1029. doi: 10.1016/j.bbi.2012.02.002.
    1. Vanaelst B., Huybrechts I., Bammann K., Michels N., de Vriendt T., Vyncke K., Sioen I., Iacoviello L., Gunther K., Molnar D., et al. Intercorrelations between serum, salivary, and hair cortisol and child-reported estimates of stress in elementary school girls. Psychophysiology. 2012;49:1072–1081.
    1. Bates R., Salsberry P., Ford J. Measuring stress in young children using hair cortisol: The state of the science. Biol. Res. Nurs. 2017;19:499–510. doi: 10.1177/1099800417711583.
    1. King J.C.R. Zinc. In: Shils M.E., Shike M., Ross A.C., Caballero B., Cousins R.J., editors. Modern Nutrition in Health and Disease. 11th ed. Lippincott Williams & Wilkins; Philadelphia, PA, USA: 2014. pp. 189–205.
    1. Brown K.H., Peerson J.M., Baker S.K., Hess S.Y. Preventive zinc supplementation among infants, preschoolers, and older prepubertal children. Food Nutr. Bull. 2009;30:S12–S40. doi: 10.1177/15648265090301S103.
    1. Mayo-Wilson E., Junior J.A., Imdad A., Dean S., Chan X.H., Chan E.S., Jaswal A., Bhutta Z.A. Zinc supplementation for preventing mortality, morbidity, and growth failure in children aged 6 months to 12 years of age. Cochrane Database Syst. Rev. 2014:CD009384. doi: 10.1002/14651858.CD009384.pub2.
    1. Aggarwal R., Sentz J., Miller M.A. Role of zinc administration in prevention of childhood diarrhea and respiratory illnesses: A meta-analysis. Pediatrics. 2007;119:1120–1130. doi: 10.1542/peds.2006-3481.
    1. Yakoob M.Y., Theodoratou E., Jabeen A., Imdad A., Eisele T.P., Ferguson J., Jhass A., Rudan I., Campbell H., Black R.E., et al. Preventive zinc supplementation in developing countries: Impact on mortality and morbidity due to diarrhea, pneumonia and malaria. BMC Public Health. 2011;11(Suppl. 3):S23. doi: 10.1186/1471-2458-11-S3-S23.
    1. De-Regil L.M., Suchdev P.S., Vist G.E., Walleser S., Pena-Rosas J.P. Home fortification of foods with multiple micronutrient powders for health and nutrition in children under two years of age. Cochrane Database Syst. Rev. 2011:CD008959. doi: 10.1002/14651858.CD008959.pub2.
    1. Salam R.A., MacPhail C., Das J.K., Bhutta Z.A. Effectiveness of micronutrient powders (mnp) in women and children. BMC Public Health. 2013;13(Suppl. 3):S22.
    1. World Health Organization . Clinical Management of Acute Diarrhoea. Who/Unicef Joint Statement. Report No.: Who/fch/cah/04.7. WHO; Geneva, Switzerland: 2004.
    1. Lazzerini M., Ronfani L. Oral zinc for treating diarrhoea in children. Cochrane Database Syst. Rev. 2013:CD005436. doi: 10.1002/14651858.CD005436.pub3.
    1. Vaghri Z., Guhn M., Weinberg J., Grunau R.E., Yu W., Hertzman C. Hair cortisol reflects socio-economic factors and hair zinc in preschoolers. Psychoneuroendocrinology. 2013;38:331–340. doi: 10.1016/j.psyneuen.2012.06.009.
    1. Wessells K.R., Brown K.H., Kounnavong S., Barffour M.A., Hinnouho G., Sayasone S., Stephensen C.B., Ratsavong R., Larson C.P., Arnold C.D., et al. Comparison of two forms of daily preventive zinc supplementation versus therapeutic zinc supplementation for diarrhea on young children’s physical growth and risk of infection: Study design and rationale for a randomized controlled trial. BMC Nutr. 2018;4:39. doi: 10.1186/s40795-018-0247-6.
    1. WHO Multicentre Growth Reference Study Group . Who Child Growth Standards: Length/height-For-Age, Weight-For-Age, Weight-For-Length, Weight-For-Height and Body Mass Index-For-Age: Methods and Development. World Health Organization; Geneva, Switzerland: 2006.
    1. Adu-Afarwuah S., Lartey A., Brown K.H., Zlotkin S., Briend A., Dewey K.G. Home fortification of complementary foods with micronutrient supplements is well accepted and has positive effects on infant iron status in ghana. Am. J. Clin. Nutr. 2008;87:929–938. doi: 10.1093/ajcn/87.4.929.
    1. Cogill B. Anthropometric Indicators Measurement Guide. Food and Nutrition Technical Assistance; Washington, DC, USA: 2003.
    1. Erhardt J.G., Estes J.E., Pfeiffer C.M., Biesalski H.K., Craft N.E. Combined measurement of ferritin, soluble transferrin receptor, retinol binding protein, and c-reactive protein by an inexpensive, sensitive, and simple sandwich enzyme-linked immunosorbent assay technique. J. Nutr. 2004;134:3127–3132. doi: 10.1093/jn/134.11.3127.
    1. Hess S., Barffour M., Hinnouho G. Open Science Framework; [(accessed on 6 April 2018)]. Lao Zinc Study. Available online: .
    1. Vyas S., Kumaranayake L. Constructing socio-economic status indices: How to use principal components analysis. Health Policy Plan. 2006;21:459–468. doi: 10.1093/heapol/czl029.
    1. Coates J. Anne Swindale and Paula Bilinsky. Household Food Insecurity Access Scale (Hfias) for Measurement of Household food Access: Indicator Guide (V. 3) FHI 360/FANTA; Washington, DC, USA: 2007.
    1. World Health Organization . Indicators for Assessing Infant and Young Child Feeding Practices. Part. I: Definition. World Health Organization; Geneva, Switzerland: 2008.
    1. World Health Organization . Indicators for Assessing Infant and Young Child Feeding Practices. Part. II: Measurement. World Health Organization; Geneva, Switzerland: 2010.
    1. Barffour M.A., Hinnouho G.M., Kounnavong S., Wessells K.R., Ratsavong K., Bounheuang B., Chanhthavong B., Sitthideth D., Sengnam K., Arnold C.D., et al. Effects of daily preventive zinc supplementation, daily supplementation with a high-zinc, low-iron containing multiple micronutrient powder or therapeutic zinc supplementation for diarrhea, on physical growth, anemia and zinc and iron status in rural Laotian children: A randomized controlled trial. J. Pediatr. 2018 doi: 10.1016/j.jpeds.2018.11.022.
    1. Barffour M.A., Hinnouho G.M., Kounnavong S., Wessells K.R., Ratsavong K., Bounheuang B., Chanhthavong B., Sitthideth D., Khanpaseuth S., Arnold C.D., et al. Effects of two forms of daily preventive zinc and therapeutic zinc supplementation for diarrhea on diarrhea and acute respiratory tract infections in laotian children. Curr. Dev. Nutr. 2018 in press.
    1. Hess S.Y., Wessells K.R., Hinnouho G.M., Barffour M.A., Sanchaisuriya K., Arnold C.D., Ratsavong K., Brown K.H., Larson C.P., Fucharoen S., et al. Associations of genetic hemoglobin disorders and iron status with linear growth and morbidity among young lao children receiving micronutrient powders. Curr. Dev. Nutr. 2018 in press.
    1. Ramakrishnan U., Nguyen P., Martorell R. Effects of micronutrients on growth of children under 5 y of age: Meta-analyses of single and multiple nutrient interventions. Am. J. Clin. Nutr. 2009;89:191–203. doi: 10.3945/ajcn.2008.26862.
    1. Brown K.H., Peerson J.M., Rivera J., Allen L.H. Effect of supplemental zinc on the growth and serum zinc concentrations of prepubertal children: A meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2002;75:1062–1071. doi: 10.1093/ajcn/75.6.1062.
    1. Flom M., St John A.M., Meyer J.S., Tarullo A.R. Infant hair cortisol: Associations with salivary cortisol and environmental context. Dev. Psychobiol. 2017;59:26–38. doi: 10.1002/dev.21449.
    1. Noppe G., Van Rossum E.F., Koper J.W., Manenschijn L., Bruining G.J., de Rijke Y.B., van den Akker E.L. Validation and reference ranges of hair cortisol measurement in healthy children. Horm. Res. Paediatr. 2014;82:97–102. doi: 10.1159/000362519.
    1. Dettenborn L., Tietze A., Kirschbaum C., Stalder T. The assessment of cortisol in human hair: Associations with sociodemographic variables and potential confounders. Stress. 2012;15:578–588. doi: 10.3109/10253890.2012.654479.
    1. Helfrecht C., Hagen E.H., DeAvila D., Bernstein R.M., Dira S.J., Meehan C.L. Dheas patterning across childhood in three sub-saharan populations: Associations with age, sex, ethnicity, and cortisol. Am. J. Hum. Biol. 2018;30:e23090. doi: 10.1002/ajhb.23090.
    1. Gerber M., Brand S., Lindwall M., Elliot C., Kalak N., Herrmann C., Puhse U., Jonsdottir I.H. Concerns regarding hair cortisol as a biomarker of chronic stress in exercise and sport science. J. Sports Sci. Med. 2012;11:571–581.
    1. Dowlati Y., Herrmann N., Swardfager W., Thomson S., Oh P.I., Van Uum S., Koren G., Lanctot K.L. Relationship between hair cortisol concentrations and depressive symptoms in patients with coronary artery disease. Neuropsychiatr. Dis. Treat. 2010;6:393–400.
    1. Skoluda N., Dettenborn L., Stalder T., Kirschbaum C. Elevated hair cortisol concentrations in endurance athletes. Psychoneuroendocrinology. 2012;37:611–617. doi: 10.1016/j.psyneuen.2011.09.001.
    1. Vliegenthart J., Noppe G., van Rossum E.F., Koper J.W., Raat H., van den Akker E.L. Socioeconomic status in children is associated with hair cortisol levels as a biological measure of chronic stress. Psychoneuroendocrinology. 2016;65:9–14. doi: 10.1016/j.psyneuen.2015.11.022.
    1. Rippe R.C., Noppe G., Windhorst D.A., Tiemeier H., van Rossum E.F., Jaddoe V.W., Verhulst F.C., Bakermans-Kranenburg M.J., van I.M.H., van den Akker E.L. Splitting hair for cortisol? Associations of socio-economic status, ethnicity, hair color, gender and other child characteristics with hair cortisol and cortisone. Psychoneuroendocrinology. 2016;66:56–64. doi: 10.1016/j.psyneuen.2015.12.016.
    1. Palmer F.B., Anand K.J., Graff J.C., Murphy L.E., Qu Y., Volgyi E., Rovnaghi C.R., Moore A., Tran Q.T., Tylavsky F.A. Early adversity, socioemotional development, and stress in urban 1-year-old children. J. Pediatr. 2013;163:1733–1739. doi: 10.1016/j.jpeds.2013.08.030.
    1. Karlen J., Frostell A., Theodorsson E., Faresjo T., Ludvigsson J. Maternal influence on child hpa axis: A prospective study of cortisol levels in hair. Pediatrics. 2013;132:e1333–e1340. doi: 10.1542/peds.2013-1178.
    1. Karlen J., Ludvigsson J., Hedmark M., Faresjo A., Theodorsson E., Faresjo T. Early psychosocial exposures, hair cortisol levels, and disease risk. Pediatrics. 2015;135:e1450–e1457. doi: 10.1542/peds.2014-2561.
    1. Larsen S.C., Fahrenkrug J., Olsen N.J., Heitmann B.L. Association between hair cortisol concentration and adiposity measures among children and parents from the “healthy start” study. PLoS ONE. 2016;11:e0163639. doi: 10.1371/journal.pone.0163639.
    1. Wester V.L., van Rossum E.F. Clinical applications of cortisol measurements in hair. Eur. J. Endocrinol. 2015;173:M1–M10. doi: 10.1530/EJE-15-0313.
    1. Cooper G.A., Kronstrand R., Kintz P. Society of hair testing guidelines for drug testing in hair. Forensic Sci. Int. 2012;218:20–24. doi: 10.1016/j.forsciint.2011.10.024.
    1. Li J., Xie Q., Gao W., Xu Y., Wang S., Deng H., Lu Z. Time course of cortisol loss in hair segments under immersion in hot water. Clin. Chim. Acta. 2012;413:434–440. doi: 10.1016/j.cca.2011.10.024.
    1. Gow R., Thomson S., Rieder M., Van Uum S., Koren G. An assessment of cortisol analysis in hair and its clinical applications. Forensic Sci. Int. 2010;196:32–37. doi: 10.1016/j.forsciint.2009.12.040.
    1. Manenschijn L., Koper J.W., Lamberts S.W., van Rossum E.F. Evaluation of a method to measure long term cortisol levels. Steroids. 2011;76:1032–1036. doi: 10.1016/j.steroids.2011.04.005.
    1. Abbeddou S., Hess S.Y., Yakes Jimenez E., Some J.W., Vosti S.A., Guissou R.M., Ouedraogo J.B., Brown K.H. Comparison of methods to assess adherence to small-quantity lipid-based nutrient supplements (sq-lns) and dispersible tablets among young burkinabe children participating in a community-based intervention trial. Matern. Child. Nutr. 2015;11(Suppl. 4):90–104. doi: 10.1111/mcn.12162.

Source: PubMed

3
Abonneren