Multi-Wavelength Fluorescence in Image-Guided Surgery, Clinical Feasibility and Future Perspectives

Florian van Beurden, Danny M van Willigen, Borivoj Vojnovic, Matthias N van Oosterom, Oscar R Brouwer, Henk G van der Poel, Hisataka Kobayashi, Fijs W B van Leeuwen, Tessa Buckle, Florian van Beurden, Danny M van Willigen, Borivoj Vojnovic, Matthias N van Oosterom, Oscar R Brouwer, Henk G van der Poel, Hisataka Kobayashi, Fijs W B van Leeuwen, Tessa Buckle

Abstract

With the rise of fluorescence-guided surgery, it has become evident that different types of fluorescence signals can provide value in the surgical setting. Hereby a different range of targets have been pursued in a great variety of surgical indications. One of the future challenges lies in combining complementary fluorescent readouts during one and the same surgical procedure, so-called multi-wavelength fluorescence guidance. In this review we summarize the current clinical state-of-the-art in multi-wavelength fluorescence guidance, basic technical concepts, possible future extensions of existing clinical indications and impact that the technology can bring to clinical care.

Keywords: fluorescence-guided surgery; image-guided surgery; multicolor fluorescence imaging; multiplexing.

Conflict of interest statement

Declaration of Conflicting Interests: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Figures

Figure 1.
Figure 1.
Multi-wavelength imaging in neurosurgery. (A-i) White light image of the surgical field through a microscope showing a left MCA bifurcation aneurysm (asterisk) with corresponding (ii) Fluorescein-based vascular angiography (FL-VA), and (iii) ICG-based vascular angiography (ICG-VA) (Adapted form Lane et al). Intraoperative visualization of a left-frontal distant recurrence of a gliosarcoma via large field imaging with (B-i) a BLUE 400 filter (PpIX ALA in pink) and (ii) a YB 475 filter (Fluorescein in yellow) (Adapted from Suero Molina et al.).
Figure 2.
Figure 2.
Multiparameter fluorescence imaging of bladder cancer. Representative cytoscopic imaging in 5 patients showing white-light (WL) images and enhanced vascular contrast (EVC), PDD, protoporphyrin IX fluorescence (PpIX-F), and autofluorescence (AF) characteristics. An overlay of all detected features is provided as a multiparametric image (MP) in real-time (adapted from Kriegmair et al.).
Figure 3.
Figure 3.
Multi-wavelength imaging of hepatic lesions. A, (i) Widefield imaging of the surgical field (liver) in white light indicating liver metastases (white arrow). Fluorescence images of incised lesion after illumination of (ii) ICG and (iii) PpIX5ALA (adapted from Kaibori et al). B, (i) Widefield imaging in white-light image of a metastasis located in the omentum with corresponding (ii) NIR I and (iii) NIR II fluorescence images (adapted from Hu et al).
Figure 4.
Figure 4.
Parathyroid autofluorescence and ICG imaging. (A) Widefield white-light image of parathyroid glands (R = recurrent laryngeal nerve). (B) NIR-based autofluorescence signal of the parathyroid gland in blue and (C) NIR ICG fluorescence imaging showing the lack of vascularization of the parathyroid gland (ICG in blue; adapted from Ladurner et al.).
Figure 5.
Figure 5.
Multi-wavelength imaging of lymph nodes and lymphatic duct. Lymphatic co-localization (yellow arrow heads) of (A) MB and (B) ICG following uterine and cervical injection, respectively, in a patient with endometrial cancer (adapted from Laios et al). (C-i) Unprocessed multi-wavelength image of lymphatic ducts in a porcine model (Fluorescein; yellow arrow) and 2 (ICG-nanocolloid; pink arrow). Digitally separated images of the 2 signals: (ii) ICG and (iii) Fluorescein (adapted from Meershoek et al.).
Figure 6.
Figure 6.
Multiwavelength fluorescence as a means to provide depth assessment. Traffic light analogue for depth estimation using a marker seed filled with a mixture of ICG, TRITC and FITC. Depending on the number of colors used, an estimation of depth can be made based on the tissue penetration of each dye (top illustration). A camera system is required to detect the ICG signal and can aid in visualizing the TRITC and FITC signals (here depicted using (reversed) Rainbow color table; bottom illustration) (Chin et al.).

References

    1. van den Berg NS, Miwa M, KleinJan GH, et al. (Near-Infrared) fluorescence-guided surgery under ambient light conditions: a next step to embedment of the technology in clinical routine. Ann Surg Oncol. 2016;23(8):2586–2595. doi:10.1245/s10434-016-5186-3
    1. Zhang XF, Zhang J, Liu L. Fluorescence properties of twenty fluorescein derivatives: lifetime, quantum yield, absorption and emission spectra. J Fluoresc. 2014;24(3):819–826. doi:10.1007/s10895-014-1356-5
    1. van Willigen DM, van den Berg NS, Buckle T, et al. Multispectral fluorescence guided surgery; a feasibility study in a phantom using a clinical-grade laparoscopic camera system. Am J Nucl Med Mol Imaging. 2017;7(3):138–147.
    1. Wada H, Hyun H, Vargas C, et al. Sentinel lymph node mapping of liver. Ann Surg Oncol. 2015;22(Suppl 3):S1147–1155. doi:10.1245/s10434-015-4601-5
    1. Flynn BP, DSouza AV, Kanick SC, Davis SC, Pogue BW. White light-informed optical properties improve ultrasound-guided fluorescence tomography of photoactive protoporphyrin IX. J Biomed Opt. 2013;18(4):046008 doi:10.1117/1.Jbo.18.4.046008
    1. Lozovaya GI, Masinovsky Z, Sivash AA. Protoporphyrin ix as a possible ancient photosensitizer: spectral and photochemical studies. Orig Life Evol Biosph. 1990;20:321–330. doi:10.1007/BF01808114
    1. Montcel B, Mahieu-Williame L, Armoiry X, Meyronet D, Guyotat J. Two-peaked 5-ALA-induced PpIX fluorescence emission spectrum distinguishes glioblastomas from low grade gliomas and infiltrative component of glioblastomas. Biomed Opt Express. 2013;4(4):548–558. doi:10.1364/boe.4.000548
    1. Burggraaf J, Kamerling IM, Gordon PB, et al. Detection of colorectal polyps in humans using an intravenously administered fluorescent peptide targeted against c-Met. Nat Med. 2015;21(8):955–961. doi:10.1038/nm.3641
    1. Mujumdar RB, Ernst LA, Mujumdar SR, Lewis CJ, Waggoner AS. Cyanine dye labeling reagents: sulfoindocyanine succinimidyl esters. Bioconjug Chem. 1993;4(2):105–111.
    1. Unkart JT, Chen SL, Wapnir IL, González JE, Harootunian A, Wallace AM. Intraoperative tumor detection using a ratiometric activatable fluorescent peptide: a first-in-human phase 1 study. Ann Surg Oncol. 2017;24(11):3167–3173. doi:10.1245/s10434-017-5991-3
    1. Klehs K, Spahn C, Endesfelder U, Lee SF, Fürstenberg A, Heilemann M. Increasing the brightness of cyanine fluorophores for single-molecule and superresolution imaging. Chemphyschem. 2014;15(4):637–641. doi:10.1002/cphc.201300874
    1. de Boer E, Warram JM, Tucker MD, et al. In vivo fluorescence immunohistochemistry: localization of fluorescently labeled cetuximab in squamous cell carcinomas. Sci Rep. 2015;5:10169 doi:10.1038/srep10169
    1. Mahalingam SM, Kularatne SA, Myers CH, et al. Evaluation of novel tumor-targeted near-infrared probe for fluorescence-guided surgery of cancer. J Med Chem. 2018;61(21):9637–9646. doi:10.1021/acs.jmedchem.8b01115
    1. Hoogstins CE, Tummers QR, Gaarenstroom KN, et al. A novel tumor-specific agent for intraoperative near-infrared fluorescence imaging: a translational study in healthy volunteers and patients with ovarian cancer. Clin Cancer Res. 2016;22(12):2929–2938. doi:10.1158/1078-0432.Ccr-15-2640
    1. Photoimmunotherapy (PIT) Study in Recurrent Head/Neck Cancer for Patients Who Have Failed at Least Two Lines of Therapy. 2018 ed National Library of Medicine (US); 2018. . Accessed March/April, 2020.
    1. Lavis LD, Raines RT. Bright ideas for chemical biology. ACS Chem Biol. 2008;3(3):142–155. doi:10.1021/cb700248m
    1. Performance of SGM-101 for the Delineation of Primary and Recurrent Tumor and Metastases in Patients Undergoing Surgery for Colorectal Cancer. 2018 ed National Library of Medicine (US); 2018. . Accessed March/April, 2020.
    1. Gutowski M, Framery B, Boonstra MC, et al. SGM-101: an innovative near-infrared dye-antibody conjugate that targets CEA for fluorescence-guided surgery. Surg Oncol. 2017;26(2):153–162. doi:10.1016/j.suronc.2017.03.002
    1. Fluorescence-guided Surgery Using cRGD-ZW800-1 in Oral Cancer 09/12/2019 ed. National Library of Medicine (US); 2019. . Accessed March/April, 2020.
    1. van den Berg NS, Buckle T, KleinJan GH, van der Poel HG, van Leeuwen FWB. Multispectral fluorescence imaging during robot-assisted laparoscopic sentinel node biopsy: a first step towards a fluorescence-based anatomic roadmap. Eur Urol. 2017;72(1):110–117. doi:10.1016/j.eururo.2016.06.012
    1. Jorzik JJ, Bindewald A, Dithmar S, Holz FG. Digital simultaneous fluorescein and indocyanine green angiography, autofluorescence, and red-free imaging with a solid-state laser-based confocal scanning laser ophthalmoscope. Retina. 2005;25(4):405–416. doi:10.1097/00006982-200506000-00003
    1. Hensbergen AW, Buckle T, van Willigen DM, et al. Hybrid tracers based on cyanine backbones targeting prostate-specific membrane antigen: tuning pharmacokinetic properties and exploring dye-protein interaction. J Nucl Med. 2020;61(2):234–241. doi:10.2967/jnumed.119.233064
    1. Hachamovitch R. Clinical application of rest thallium-201/Stress technetium-99 m sestamibi dual isotope myocardial perfusion single-photon emission computed tomography. Cardiol Rev. 1999;7(2):83–91. doi:10.1097/00045415-199903000-00011
    1. Schulz RB, Semmler W. Fundamentals of optical imaging. Handb Exp Pharmacol. 2008;(185 pt 1):3–22. doi:10.1007/978-3-540-72718-7_1
    1. Levenson RM, Lynch DT, Kobayashi H, Backer JM, Backer MV. Multiplexing with multispectral imaging: from mice to microscopy. Ilar J. 2008;49(1):78–88. doi:10.1093/ilar.49.1.78
    1. Gobel W, Brucker D, Kienast Y, et al. Optical needle endoscope for safe and precise stereotactically guided biopsy sampling in neurosurgery. Opt Express. 2012;20(24):26117–26126. doi:10.1364/oe.20.026117
    1. Meershoek P, KleinJan GH, van Oosterom MN, et al. Multispectral-fluorescence imaging as a tool to separate healthy from disease-related lymphatic anatomy during robot-assisted laparoscopy. J Nucl Med. 2018;59(11):1757–1760. doi:10.2967/jnumed.118.211888
    1. Kobayashi H, Hama Y, Koyama Y, et al. Simultaneous multicolor imaging of five different lymphatic basins using quantum dots. Nano Lett. 2007;7(6):1711–1716. doi:10.1021/nl0707003
    1. Dickinson ME, Bearman G, Tille S, Lansford R, Fraser SE. Multi-spectral imaging and linear unmixing add a whole new dimension to laser scanning fluorescence microscopy. Biotechniques. 2001;31(6):1272, 1274–1276, 1278. doi:10.2144/01316bt01
    1. Zimmermann T, Marrison J, Hogg K, O’Toole P. Clearing up the signal: spectral imaging and linear unmixing in fluorescence microscopy. Methods Mol Biol. 2014;1075:129–148. doi:10.1007/978-1-60761-847-8_5
    1. Sexton KJ, Zhao Y, Davis SC, Jiang S, Pogue BW. Optimization of fluorescent imaging in the operating room through pulsed acquisition and gating to ambient background cycling. Biomed Opt Express. 2017;8(5):2635–2648. doi:10.1364/boe.8.002635
    1. van den Bos J, Wieringa FP, Bouvy ND, Stassen LPS. Optimizing the image of fluorescence cholangiography using ICG: a systematic review and ex vivo experiments. Surg Endosc. 2018;32(12):4820–4832. doi:10.1007/s00464-018-6233-x
    1. Chin PT, Welling MM, Meskers SC, Olmos RAV, Tanke H, van Leeuwen FWB. Optical imaging as an expansion of nuclear medicine: Cerenkov-based luminescence vs fluorescence-based luminescence. Eur J Nucl Med Mol Imaging. 2013;40(8):1283–1291. doi:10.1007/s00259-013-2408-9
    1. Kosaka N, Ogawa M, Sato N, Choyke PL, Kobayashi H. In vivo real-time, multicolor, quantum dot lymphatic imaging. J Invest Dermatol. 2009;129(12):2818–2822. doi:10.1038/jid.2009.161
    1. Urano Y, Sakabe M, Kosaka N, et al. Rapid cancer detection by topically spraying a gamma-glutamyltranspeptidase-activated fluorescent probe. Sci Transl Med. 2011;3(110):110ra119 doi:10.1126/scitranslmed.3002823
    1. Kosaka N, Ogawa M, Choyke PL, Kobayashi H. Clinical implications of near-infrared fluorescence imaging in cancer. Future Oncol. 2009;5(9):1501–1511. doi:10.2217/fon.09.109
    1. Carr JA, Franke D, Caram JR, et al. Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green. Proc Natl Acad Sci U S A. 2018;115(17):4465–4470. doi:10.1073/pnas.1718917115
    1. Vahrmeijer AL, Hutteman M, van der Vorst JR, van de Velde CJH, Frangioni JV. Image-guided cancer surgery using near-infrared fluorescence. Nat Rev Clin Oncol. 2013;10(9):507–518. doi:10.1038/nrclinonc.2013.123
    1. van Leeuwen FW, Hardwick JC, van Erkel AR. Luminescence-based imaging approaches in the field of interventional molecular imaging. Radiology. 2015;276(1):12–29. doi:10.1148/radiol.2015132698
    1. Hu Z, Fang C, Li B, et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-I/II windows. Nat Biomed Eng. 2020;4(3):259–271. doi:10.1038/s41551-019-0494-0
    1. Deal J, Mayes S, Browning C, et al. Identifying molecular contributors to autofluorescence of neoplastic and normal colon sections using excitation-scanning hyperspectral imaging. J Biomed Opt. 2018;24(2):1–11. doi:10.1117/1.Jbo.24.2.021207
    1. Rich RM, Mummert M, Gryczynski Z, et al. Elimination of autofluorescence in fluorescence correlation spectroscopy using the AzaDiOxaTriAngulenium (ADOTA) fluorophore in combination with time-correlated single-photon counting (TCSPC). Anal Bioanal Chem. 2013;405(14):4887–4894. doi:10.1007/s00216-013-6879-0
    1. Kim SW, Lee HS, Lee KD. Intraoperative real-time localization of parathyroid gland with near infrared fluorescence imaging. Gland Surg. 2017;6(5):516–524. doi:10.21037/gs.2017.05.08
    1. McWade MA, Paras C, White LM, Phay JE, Mahadevan-Jansen A, Broome JT. A novel optical approach to intraoperative detection of parathyroid glands. Surgery. 2013;154(6):1371–1377; discussion 1377 doi:10.1016/j.surg.2013.06.046
    1. Ewelt C, Nemes A, Senner V, et al. Fluorescence in neurosurgery: its diagnostic and therapeutic use. Review of the literature. J Photochem Photobiol B. 2015;148:302–309. doi:10.1016/j.jphotobiol.2015.05.002
    1. Maugeri R, Villa A, Pino M, et al. With a little help from my friends: the role of intraoperative fluorescent dyes in the surgical management of high-grade gliomas. Brain Sci. 2018;8(2):31 doi:10.3390/brainsci8020031
    1. Acerbi F, Restelli F, Broggi M, Schiariti M, Ferroli P. Feasibility of simultaneous sodium fluorescein and indocyanine green injection in neurosurgical procedures. Clin Neurol Neurosurg. 2016;146:123–129. doi:10.1016/j.clineuro.2016.05.003
    1. Lane B, Bohnstedt BN, Cohen-Gadol AA. A prospective comparative study of microscope-integrated intraoperative fluorescein and indocyanine videoangiography for clip ligation of complex cerebral aneurysms. J Neurosurg. 2015;122(3):618–626. doi:10.3171/2014.10.Jns132766
    1. Francaviglia N, Iacopino DG, Costantino G, et al. Fluorescein for resection of high-grade gliomas: a safety study control in a single center and review of the literature. Surg Neurol Int. 2017;8:145 doi:10.4103/sni.sni_89_17
    1. Della Puppa A, Munari M, Gardiman MP, Volpin F. Combined fluorescence using 5-aminolevulinic acid and fluorescein sodium at glioblastoma border: intraoperative findings and histopathologic data about 3 newly diagnosed consecutive cases. World Neurosurg. 2019;122:e856–e863. doi:10.1016/j.wneu.2018.10.163
    1. Yano H, Nakayama N, Ohe N, Miwa K, Shinoda J, Iwama T. Pathological analysis of the surgical margins of resected glioblastomas excised using photodynamic visualization with both 5-aminolevulinic acid and fluorescein sodium. J Neurooncol. 2017;133(2):389–397. doi:10.1007/s11060-017-2445-5
    1. Schwake M, Stummer W, Suero Molina EJ, Wölfer J. Simultaneous fluorescein sodium and 5-ALA in fluorescence-guided glioma surgery. Acta Neurochir (Wien). 2015;157(5):877–879. doi:10.1007/s00701-015-2401-0
    1. Suero Molina E, Ewelt C, Warneke N, et al. Dual labeling with 5-aminolevulinic acid and fluorescein in high-grade glioma surgery with a prototype filter system built into a neurosurgical microscope: technical note. J Neurosurg. 2019:1–7. doi:10.3171/2018.12.Jns182422
    1. Suero Molina E, Stummer W. Where and when to cut? Fluorescein guidance for brain stem and spinal cord tumor surgery-technical note. Oper Neurosurg (Hagerstown). 2018;15(3):325–331. doi:10.1093/ons/opx269
    1. Eyupoglu IY, Hore N, Fan Z, et al. Intraoperative vascular DIVA surgery reveals angiogenic hotspots in tumor zones of malignant gliomas. Sci Rep. 2015;5:7958 doi:10.1038/srep07958
    1. Marien A, Rock A, Maadarani KE, et al. Urothelial tumors and dual-band imaging: a new concept in confocal laser endomicroscopy. J Endourol. 2017;31(5):538–544. doi:10.1089/end.2016.0892
    1. Kriegmair MC, Rother J, Grychtol B, et al. Multiparametric cystoscopy for detection of bladder cancer using real-time multispectral imaging. Eur Urol. 2020;77(2):251–259. doi:10.1016/j.eururo.2019.08.024
    1. Kaibori M, Matsui K, Ishizaki M, et al. Intraoperative detection of superficial liver tumors by fluorescence imaging using indocyanine green and 5-aminolevulinic acid. Anticancer Res. 2016;36(4):1841–1849.
    1. Kahramangil B, Berber E. Comparison of indocyanine green fluorescence and parathyroid autofluorescence imaging in the identification of parathyroid glands during thyroidectomy. Gland Surg. 2017;6(6):644–648. doi:10.21037/gs.2017.09.04
    1. Alesina PF, Meier B, Hinrichs J, Mohmand W, Walz MK. Enhanced visualization of parathyroid glands during video-assisted neck surgery. Langenbecks Arch Surg. 2018;403(3):395–401. doi:10.1007/s00423-018-1665-2
    1. Lerchenberger M, Al Arabi N, Gallwas JKS, Stepp H, Hallfeldt KKJ, Ladurner R. Intraoperative near-infrared autofluorescence and indocyanine green imaging to identify parathyroid glands: a comparison. Int J Endocrinol. 2019;2019:4687951 doi:10.1155/2019/4687951
    1. Ladurner R, Lerchenberger M, Al Arabi N, Gallwas JKS, Stepp H, Hallfeldt KKJ. Parathyroid autofluorescence—how does it affect parathyroid and thyroid surgery? A 5 year experience. Molecules (Basel, Switzerland). 2019;24(14):2560 doi:10.3390/molecules24142560
    1. Laios A, Volpi D, Tullis ID, et al. A prospective pilot study of detection of sentinel lymph nodes in gynaecological cancers using a novel near infrared fluorescence imaging system. BMC Res Notes. 2015;8:608 doi:10.1186/s13104-015-1576-z
    1. Phillips BT, Lanier ST, Conkling N, et al. Intraoperative perfusion techniques can accurately predict mastectomy skin flap necrosis in breast reconstruction: results of a prospective trial. Plast Reconstr Surg. 2012;129(5):778e–788e. doi:10.1097/PRS.0b013e31824a2ae8
    1. Zhao X, Belykh E, Cavallo C, et al. Application of fluorescein fluorescence in vascular neurosurgery. Front Surg. 2019;6:52 doi:10.3389/fsurg.2019.00052
    1. Stummer W, Pichlmeier U, Meinel T, et al. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol. 2006;7(5):392–401. doi:10.1016/s1470-2045(06)70665-9
    1. Hadjipanayis CG, Stummer W, Sheehan JP. 5-ALA fluorescence-guided surgery of CNS tumors. J Neurooncol. 2019;141(3):477–478. doi:10.1007/s11060-019-03109-y
    1. Senders JT, Muskens IS, Schnoor R, et al. Agents for fluorescence-guided glioma surgery: a systematic review of preclinical and clinical results. Acta Neurochir (Wien). 2017;159(1):151–167. doi:10.1007/s00701-016-3028-5
    1. O’Brien T, Ray E, Chatterton K, Khan MS, Chandra A, Thomas K. Prospective randomized trial of hexylaminolevulinate photodynamic-assisted transurethral resection of bladder tumour (TURBT) plus single-shot intravesical mitomycin C vs conventional white-light TURBT plus mitomycin C in newly presenting non-muscle-invasive bladder cancer. BJU Int. 2013;112(8):1096–1104. doi:10.1111/bju.12355
    1. Burger M, Grossman HB, Droller M, et al. Photodynamic diagnosis of non-muscle-invasive bladder cancer with hexaminolevulinate cystoscopy: a meta-analysis of detection and recurrence based on raw data. Eur Urol. 2013;64(5):846–854. doi:10.1016/j.eururo.2013.03.059
    1. Mariappan P, Rai B, El-Mokadem I, et al. Real-life experience: early recurrence with Hexvix photodynamic diagnosis-assisted transurethral resection of bladder tumour vs good-quality white light TURBT in new non-muscle-invasive bladder cancer. Urology. 2015;86(2):327–331. doi:10.1016/j.urology.2015.04.015
    1. Saint F, Elalouf V, Spie R, et al. Prospective monocentric evaluation of bladder tumor targeting by Hexvix(R) fluorescence: preliminary results [in French]. Prog Urol. 2010;20(9):644–650. doi:10.1016/j.purol.2010.04.007
    1. Villa L, Cloutier J, Cote JF, Salonia A, Montorsi F, Traxer O. Confocal laser endomicroscopy in the management of endoscopically treated upper urinary tract transitional cell carcinoma: preliminary data. J Endourol. 2016;30(2):237–242. doi:10.1089/end.2015.0644
    1. Pan Y, Volkmer JP, Mach KE, et al. Endoscopic molecular imaging of human bladder cancer using a CD47 antibody. Sci Transl Med. 2014;6(260):260ra148 doi:10.1126/scitranslmed.3009457
    1. Kiss B, van den Berg NS, Ertsey R, et al. CD47-targeted near-infrared photoimmunotherapy for human bladder cancer. Clin Cancer Res. 2019;25(12):3561–3571. doi:10.1158/1078-0432.Ccr-18-3267
    1. Ishizawa T, Fukushima N, Shibahara J, et al. Real-time identification of liver cancers by using indocyanine green fluorescent imaging. Cancer. 2009;115(11):2491–2504. doi:10.1002/cncr.24291
    1. Inoue Y, Tanaka R, Komeda K, Hirokawa F, Hayashi M, Uchiyama K. Fluorescence detection of malignant liver tumors using 5-aminolevulinic acid-mediated photodynamic diagnosis: principles, technique, and clinical experience. World J Surg. 2014;38(7):1786–1794. doi:10.1007/s00268-014-2463-9
    1. Schneider C, Johnson SP, Gurusamy K, et al. Identification of liver metastases with probe-based confocal laser endomicroscopy at two excitation wavelengths. Lasers Surg Med. 2017;49(3):280–292. doi:10.1002/lsm.22617
    1. Nakaseko Y, Ishizawa T, Saiura A. Fluorescence-guided surgery for liver tumors. J Surg Oncol. 2018;118(2):324–331. doi:10.1002/jso.25128.
    1. Ashitate Y, Stockdale A, Choi HS, Laurence RG, Frangioni JV. Real-time simultaneous near-infrared fluorescence imaging of bile duct and arterial anatomy. J Surg Res. 2012;176(1):7–13. doi:10.1016/j.jss.2011.06.027
    1. Bhavane R, Starosolski Z, Stupin I, Ghaghada KB, Annapragada A. NIR-II fluorescence imaging using indocyanine green nanoparticles. Sci Rep. 2018;8(1):14455 doi:10.1038/s41598-018-32754-y
    1. Framery B, Gutowski M, Dumas K, et al. Toxicity and pharmacokinetic profile of SGM-101, a fluorescent anti-CEA chimeric antibody for fluorescence imaging of tumors in patients. Toxicol Rep. 2019;6:409–415. doi:10.1016/j.toxrep.2019.04.011
    1. Fanaropoulou NM, Chorti A, Markakis M, Papaioannou M, Michalopoulos A, Papavramidis T. The use of indocyanine green in endocrine surgery of the neck: a systematic review. Medicine (Baltimore). 2019;98(10):e14765 doi:10.1097/md.0000000000014765
    1. Rudin AV, Berber E. Impact of fluorescence and autofluorescence on surgical strategy in benign and malignant neck endocrine diseases. Best Pract Res Clin Endocrinol Metab. 2019;33(4):101311 doi:10.1016/j.beem.2019.101311
    1. Solorzano CC, Thomas G, Baregamian N, Mahadevan-Jansen A. Detecting the near infrared autofluorescence of the human parathyroid: hype or opportunity [published online December 2, 2019]? Ann Surg. 2019. doi:10.1097/sla.0000000000003700
    1. Spartalis E, Ntokos G, Georgiou K, et al. Intraoperative Indocyanine Green (ICG) angiography for the identification of the parathyroid glands: current evidence and future perspectives. In Vivo. 2020;34(1):23–32. doi:10.21873/invivo.11741
    1. Abbaci M, De Leeuw F, Breuskin I, et al. Parathyroid gland management using optical technologies during thyroidectomy or parathyroidectomy: a systematic review. Oral Oncol. 2018;87:186–196.doi:10.1016/j.oraloncology.2018.11.011
    1. Ackroyd R, Brown N, Vernon D, et al. 5-Aminolevulinic acid photosensitization of dysplastic Barrett’s esophagus: a pharmacokinetic study. Photochem Photobiol. 1999;70:656–662.
    1. Ginimuge PR, Jyothi SD. Methylene blue: revisited. J Anaesthesiol Clin Pharmacol. 2010;26(4):517–520.
    1. Herman MA, Webber J, Fromm D, Kessel D. Hemodynamic effects of 5-aminolevulinic acid in humans. J Photochem Photobiol B. 1998;43(1):61–65. doi:10.1016/s1011-1344(98)00086-4
    1. Hyun H, Park MH, Owens EA, et al. Structure-inherent targeting of near-infrared fluorophores for parathyroid and thyroid gland imaging. Nat Med. 2015;21(2):192–197. doi:10.1038/nm.3728
    1. Crane LM, Themelis G, Pleijhuis RG, et al. Intraoperative multispectral fluorescence imaging for the detection of the sentinel lymph node in cervical cancer: a novel concept. Mol Imaging Biol. 2011;13(5):1043–1049. doi:10.1007/s11307-010-0425-7
    1. He K, Chi C, Kou D, et al. Comparison between the indocyanine green fluorescence and blue dye methods for sentinel lymph node biopsy using novel fluorescence image-guided resection equipment in different types of hospitals. Transl Res. 2016;178:74–80. doi:10.1016/j.trsl.2016.07.010
    1. Hama Y, Koyama Y, Urano Y, Choyke PL, Kobayashi H. Two-color lymphatic mapping using Ig-conjugated near infrared optical probes. J Invest Dermatol. 2007;127(10):2351–2356. doi:10.1038/sj.jid.5700892
    1. Kobayashi H, Longmire MR, Ogawa M, Choyke PL, Kawamoto S. Multiplexed imaging in cancer diagnosis: applications and future advances. Lancet Oncol. 2010;11(6):589–595. doi:10.1016/s1470-2045(10)70009-7
    1. Gravier J, Navarro FP, Delmas T, et al. Lipidots: competitive organic alternative to quantum dots for in vivo fluorescence imaging. J Biomed Opt. 2011;16(9):096013 doi:10.1117/1.3625405
    1. Erogbogbo F, Yong KT, Roy I, Xu G, Prasad PN, Swihart MT. Biocompatible luminescent silicon quantum dots for imaging of cancer cells. ACS Nano. 2008;2(5):873–878. doi:10.1021/nn700319z
    1. Kosaka N, Mitsunaga M, Bhattacharyya S, Miller SC, Choyke PL, Kobayashi H. Self-illuminating in vivo lymphatic imaging using a bioluminescence resonance energy transfer quantum dot nano-particle. Contrast Media Mol Imaging. 2011;6(1):55–59. doi:10.1002/cmmi.395
    1. Cheng L, Yang K, Zhang S, Shao M, Lee S, Liu Z. Highly-sensitive multiplexed in vivo imaging using PEGylated upconversion nanoparticles. Nano Res. 2010;3:722–732. doi:10.1007/s12274-010-0036-2
    1. Chen F, Madajewski B, Ma K, et al. Molecular phenotyping and image-guided surgical treatment of melanoma using spectrally distinct ultrasmall core-shell silica nanoparticles. Sci Adv. 2019;5:eaax5208 doi:10.1126/sciadv.aax5208
    1. Briganti A, Chun FK, Salonia A, et al. Complications and other surgical outcomes associated with extended pelvic lymphadenectomy in men with localized prostate cancer. Eur Urol. 2006;50(5):1006–1013. doi:10.1016/j.eururo.2006.08.015
    1. Alstrup T, Christensen BO, Damsgaard TE. ICG angiography in immediate and delayed autologous breast reconstructions: peroperative evaluation and postoperative outcomes. J Plast Surg Hand Surg. 2018;52(5):307–311. doi:10.1080/2000656x.2018.1486320
    1. Jakubietz RG, Schmidt K, Bernuth S, Meffert RH, Jakubietz MG. Evaluation of the intraoperative blood flow of pedicled perforator flaps using indocyanine green-fluorescence angiography. Plast Reconstr Surg Glob Open. 2019;7(9):e2462 doi:10.1097/gox.0000000000002462
    1. Dehghani H, Pogue BW, Poplack SP, Paulsen KD. Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results. Appl Opt. 2003;42(1):135–145. doi:10.1364/ao.42.000135
    1. McBride TO, Pogue BW, Poplack S, et al. Multispectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast. J Biomed Opt. 2002;7(1):72–79. doi:10.1117/1.1428290
    1. Srinivasan S, Pogue BW, Carpenter C, et al. Developments in quantitative oxygen-saturation imaging of breast tissue in vivo using multispectral near-infrared tomography. Antioxid Redox Signal. 2007;9(8):1143–1156. doi:10.1089/ars.2007.1643
    1. Wang J, Pogue BW, Jiang S, Paulsen KD. Near-infrared tomography of breast cancer hemoglobin, water, lipid, and scattering using combined frequency domain and cw measurement. Opt Lett. 2010;35(1):82–84. doi:10.1364/ol.35.000082
    1. Mochida A, Ogata F, Nagaya T, Choyke PL, Kobayashi H. Activatable fluorescent probes in fluorescence-guided surgery: practical considerations. Bioorg Med Chem. 2018;26(4):925–930. doi:10.1016/j.bmc.2017.12.002
    1. Buckle T, van der Wal S, van Willigen DM, Aalderink G, KleinJan GH, van Leeuwen FWB. Fluorescence background quenching as a means to increase signal to background ratio’s—a proof of concept during nerve imaging. Theranostics. 2020;10(21):9890–9898. doi:10.7150/thno.46806
    1. Gibbs-Strauss SL, Nasr KA, Fish KM, et al. Nerve-highlighting fluorescent contrast agents for image-guided surgery. Mol Imaging. 2011;10(2):91–101.
    1. Hingorani DV, Whitney MA, Friedman B, et al. Nerve-targeted probes for fluorescence-guided intraoperative imaging. Theranostics. 2018;8(15):4226–4237. doi:10.7150/thno.23084
    1. Hussain T, Mastrodimos MB, Raju SC, et al. Fluorescently labeled peptide increases identification of degenerated facial nerve branches during surgery and improves functional outcome. PLoS One. 2015;10(3):e0119600 doi:10.1371/journal.pone.0119600
    1. Walsh EM, Cole D, Tipirneni KE, et al. Fluorescence imaging of nerves during surgery. Ann Surg. 2019;270(1):69–76.doi:10.1097/sla.0000000000003130
    1. Chin PT, Beekman CA, Buckle T, Josephson L, van Leeuwen FW. Multispectral visualization of surgical safety-margins using fluorescent marker seeds. Am J Nucl Med Mol Imaging. 2012;2(2):151–162.
    1. Leblond F, Ovanesyan Z, Davis SC, et al. Analytic expression of fluorescence ratio detection correlates with depth in multi-spectral sub-surface imaging. Phys Med Biol. 2011;56(21):6823–6837. doi:10.1088/0031-9155/56/21/005
    1. Miller SJ, Lee CM, Joshi BP, Gaustad A, Seibel EJ, Wang TD. Targeted detection of murine colonic dysplasia in vivo with flexible multispectral scanning fiber endoscopy. J Biomed Opt. 2012;17(2):021103 doi:10.1117/1.Jbo.17.2.021103
    1. Buckle T, Chin PT, van den Berg NS, et al. Tumor bracketing and safety margin estimation using multimodal marker seeds: a proof of concept. J Biomed Opt. 2010;15(5):056021 doi:10.1117/1.3503955
    1. Chin PT, Buckle T, Aguirre de Miguel A, Meskers SCJ, Janssen RAJ, van Leeuwen FWB. Dual-emissive quantum dots for multispectral intraoperative fluorescence imaging. Biomaterials. 2010;31(26):6823–6832. doi:10.1016/j.biomaterials.2010.05.030
    1. Hyun H, Owens EA, Wada H, et al. Cartilage-specific near-infrared fluorophores for biomedical imaging. Angew Chem Int Ed Engl. 2015;54(30):8648–8652. doi:10.1002/anie.201502287
    1. Nakayama H, Kawase T, Okuda K, Wolff LF, Yoshie H. In-vivo near-infrared optical imaging of growing osteosarcoma cell lesions xenografted in mice: dual-channel quantitative evaluation of volume and mineralization. Acta Radiol. 2011;52(9):978–988. doi:10.1258/ar.2011.110131
    1. Yoshimatsu H, Steinbacher J, Meng S, et al. Feasibility of bone perfusion evaluation in cadavers using indocyanine green fluorescence angiography. Plast Reconstr Surg Glob Open. 2017;5(11):e1570 doi:10.1097/gox.0000000000001570
    1. Ashitate Y, Vooght CS, Hutteman M, Oketokoun R, Choi HS, Frangioni JV. Simultaneous assessment of luminal integrity and vascular perfusion of the gastrointestinal tract using dual-channel near-infrared fluorescence. Mol Imaging. 2012;11(4):301–308.
    1. Bae SM, Bae DJ, Do EJ, et al. Multi-spectral fluorescence imaging of colon dysplasia invivo using a multi-spectral endoscopy system. Transl Oncol. 2019;12(2):226–235. doi:10.1016/j.tranon.2018.10.006
    1. Qiu Z, Khondee S, Duan X, et al. Vertical cross-sectional imaging of colonic dysplasia in vivo with multi-spectral dual axes confocal endomicroscopy. Gastroenterology. 2014;146(3):615–617. doi:10.1053/j.gastro.2014.01.016
    1. Abdelsattar ZM, Blackmon SH. Using novel technology to augment complex video-assisted thoracoscopic single basilar segmentectomy. J Thorac Dis. 2018;10(Suppl 10):S1168–s1178. doi:10.21037/jtd.2018.02.22
    1. Kijanka MM, van Brussel AS, van der Wall E, et al. Optical imaging of pre-invasive breast cancer with a combination of VHHs targeting CAIX and HER2 increases contrast and facilitates tumour characterization. EJNMMI Res. 2016;6(1):14 doi:10.1186/s13550-016-0166-y
    1. Koyama Y, Barrett T, Hama Y, Ravizzini G, Choyke PL, Kobayashi H. In vivo molecular imaging to diagnose and subtype tumors through receptor-targeted optically labeled monoclonal antibodies. Neoplasia. 2007;9(12):1021–1029. doi:10.1593/neo.07787
    1. Sano K, Mitsunaga M, Nakajima T, Choyke PL, Kobayashi H. In vivo breast cancer characterization imaging using two monoclonal antibodies activatably labeled with near infrared fluorophores. Breast Cancer Res. 2012;14(2):R61 doi:10.1186/bcr3167
    1. Meershoek P, van den Berg NS, Brouwer OR, et al. Three-dimensional tumor margin demarcation using the hybrid tracer indocyanine green-(99m)Tc-Nanocolloid: a proof-of-concept study in tongue cancer patients scheduled for sentinel node biopsy. J Nucl Med. 2019;60(6):764–769. doi:10.2967/jnumed.118.220202
    1. Thong PS, Olivo M, Kho KW, et al. Laser confocal endomicroscopy as a novel technique for fluorescence diagnostic imaging of the oral cavity. J Biomed Opt. 2007;12(1):014007 doi:10.1117/1.2710193
    1. Wang YW, Kang S, Khan A, Bao PQ, Liu JTC. In vivo multiplexed molecular imaging of esophageal cancer via spectral endoscopy of topically applied SERS nanoparticles. Biomed Opt Express. 2015;6(10):3714–3723. doi:10.1364/boe.6.003714
    1. Longmire M, Kosaka N, Ogawa M, et al. Multicolor in vivo targeted imaging to guide real-time surgery of HER2-positive micrometastases in a two-tumor coincident model of ovarian cancer. Cancer Sci. 2009;100(6):1099–1104. doi:10.1111/j.1349-7006.2009.01133.x
    1. Grivas N, van der Roest RC, de Korne CM, et al. The value of periprostatic fascia thickness and fascia preservation as prognostic factors of erectile function after nerve-sparing robot-assisted radical prostatectomy. World J Urol. 2019;37(2):309–315. doi:10.1007/s00345-018-2387-3
    1. Tanaka E, Chen FY, Flaumenhaft R, et al. Real-time assessment of cardiac perfusion, coronary angiography, and acute intravascular thrombi using dual-channel near-infrared fluorescence imaging. J Thorac Cardiovasc Surg. 2009;138(1):133–140. doi:10.1016/j.jtcvs.2008.09.082
    1. Palo K, Brand L, Eggeling C, Jäger S, Kask P, Gall K. Fluorescence intensity and lifetime distribution analysis: toward higher accuracy in fluorescence fluctuation spectroscopy. Biophys J. 2002;83(2):605–618. doi:10.1016/s0006-3495(02)75195-3
    1. Hartl BA, Ma HSW, Sridharan S, et al. Label-free fluorescence lifetime spectroscopy detects radiation-induced necrotic changes in live brain in real-time. Biomed Opt Express. 2018;9(8):3559–3580. doi:10.1364/boe.9.003559
    1. Sun Y, Periasamy A. Additional correction for energy transfer efficiency calculation in filter-based Forster resonance energy transfer microscopy for more accurate results. J Biomed Opt. 2010;15:020513 doi:10.1117/1.3407655
    1. Boeriu A, Boeriu C, Drasovean S, et al. Narrow-band imaging with magnifying endoscopy for the evaluation of gastrointestinal lesions. World J Gastrointest Endosc. 2015;7(2):110–120. doi:10.4253/wjge.v7.i2.110
    1. Rostron P, Gerber D. Raman spectroscopy, a review. Int J Eng Tech Res. 2016;6(1):50–64.
    1. Bondu M, Marques MJ, Moselund PM, Lall G, Bradua A, Podoleanua A. Multispectral photoacoustic microscopy and optical coherence tomography using a single supercontinuum source. Photoacoustics. 2018;9:21–30. doi:10.1016/j.pacs.2017.11.002

Source: PubMed

3
Abonneren