Secreted monocytic miR-150 enhances targeted endothelial cell migration

Yujing Zhang, Danqing Liu, Xi Chen, Jing Li, Limin Li, Zhen Bian, Fei Sun, Jiuwei Lu, Yuan Yin, Xing Cai, Qi Sun, Kehui Wang, Yi Ba, Qiang Wang, Dongjin Wang, Junwei Yang, Pingsheng Liu, Tao Xu, Qiao Yan, Junfeng Zhang, Ke Zen, Chen-Yu Zhang, Yujing Zhang, Danqing Liu, Xi Chen, Jing Li, Limin Li, Zhen Bian, Fei Sun, Jiuwei Lu, Yuan Yin, Xing Cai, Qi Sun, Kehui Wang, Yi Ba, Qiang Wang, Dongjin Wang, Junwei Yang, Pingsheng Liu, Tao Xu, Qiao Yan, Junfeng Zhang, Ke Zen, Chen-Yu Zhang

Abstract

MicroRNAs (miRNAs) are a class of noncoding RNAs that regulate target gene expression at the posttranscriptional level. Here, we report that secreted miRNAs can serve as signaling molecules mediating intercellular communication. In human blood cells and cultured THP-1 cells, miR-150 was selectively packaged into microvesicles (MVs) and actively secreted. THP-1-derived MVs can enter and deliver miR-150 into human HMEC-1 cells, and elevated exogenous miR-150 effectively reduced c-Myb expression and enhanced cell migration in HMEC-1 cells. In vivo studies confirmed that intravenous injection of THP-1 MVs significantly increased the level of miR-150 in mouse blood vessels. MVs isolated from the plasma of patients with atherosclerosis contained higher levels of miR-150, and they more effectively promoted HMEC-1 cell migration than MVs from healthy donors. These results demonstrate that cells can secrete miRNAs and deliver them into recipient cells where the exogenous miRNAs can regulate target gene expression and recipient cell function.

2010 Elsevier Inc. All rights reserved.

Source: PubMed

3
Abonneren