Vildagliptin has the same safety profile as a sulfonylurea on bone metabolism and bone mineral density in post-menopausal women with type 2 diabetes: a randomized controlled trial

Andre Gustavo Daher Vianna, Claudio Silva de Lacerda, Luciana Muniz Pechmann, Michelle Garcia Polesel, Emerson Cestari Marino, Victoria Zeghbi Cochenski Borba, Fellype de Carvalho Barreto, Andre Gustavo Daher Vianna, Claudio Silva de Lacerda, Luciana Muniz Pechmann, Michelle Garcia Polesel, Emerson Cestari Marino, Victoria Zeghbi Cochenski Borba, Fellype de Carvalho Barreto

Abstract

Background: Several antidiabetic therapies affect bone metabolism. Sulfonylureas have the lowest impact on bone among oral antidiabetics. The objective of this study is to compare the effects of vildagliptin and gliclazide modified release (MR) on bone turnover markers (BTMs) and bone mineral density (BMD) in postmenopausal women with uncontrolled type 2 diabetes (T2D).

Methods: Forty-two postmenopausal women with uncontrolled T2D were randomly allocated into vildagliptin or gliclazide MR (control) groups. The primary endpoint was the change in the BTMs in months 6 and 12 compared with the baseline. The secondary endpoint was the variation in the BMD, which was assessed via dual-energy X-ray absorptiometry at the lumbar spine, femoral neck and total hip at baseline and month 12.

Results: After a 12-month treatment, the BTM serum carboxy-terminal telopeptide of type 1 collagen increased 0.001 ± 0.153 ng/mL in the vildagliptin group versus 0.008 ± 0.060 ng/mL in the gliclazide MR group (p = 0.858). The serum osteocalcin, serum amino-terminal propeptide of procollagen type I and urinary amino-terminal telopeptide of type 1 collagen remained stable in both groups, and there was no statistically significant difference between the effect of vildagliptin and gliclazide MR on these variables. The lumbar spine BMD did not change in the vildagliptin or gliclazide MR groups after a 12-month treatment (0.000 ± 0.025 g/cm2 versus -0.008 ± 0.036, respectively, p = 0.434). Furthermore, there was a similar lack of change in the femoral neck and total hip BMD values in both treatments.

Conclusions: Bone turnover markers and BMD remained unchanged after a 12-month treatment in both groups, which suggests that vildagliptin has the same safety profile as gliclazide MR on bone metabolism. Trial Registration ClinicalTrials.gov number NCT01679899.

Keywords: Bone mineral density; Bone turnover markers; Gliclazide MR; Postmenopausal; Type 2 diabetes; Vildagliptin.

Figures

Fig. 1
Fig. 1
Patient flow chart. ICF informed consent form, AE adverse event, AMI acute myocardial infarction
Fig. 2
Fig. 2
Progression of osteocalcin (a) and CTX (b) serum levels during the 12-month period (p values calculated for differences between means in months 6 and 12 versus baseline)

References

    1. Farr JN, Drake MT, Amin S, Ill JM, McCready LK, Khosla S. In vivo assessment of bone quality in postmenopausal women with type 2 diabetes. J Bone Miner Res. 2014;29:787–795. doi: 10.1002/jbmr.2106.
    1. Lecka-Czernik B. Safety of anti-diabetic therapies on boné. Clin Rev Bone Miner Metab. 2013;11:49–58. doi: 10.1007/s12018-012-9129-7.
    1. Moreira CA, Barreto FC, Dempster DW. New insights on diabetes and bone metabolism. J Bras Nefrol. 2015;37:490–495. doi: 10.5935/0101-2800.20150077.
    1. Dicembrini I, Mannucci E, Rotella CM. Bone: incretin hormones perceiver or receiver? Exp Diabetes Res. 2012
    1. Clowes JA, Khosla S, Eastell R. Potential role of pancreatic and enteric hormones in regulating bone turnover. J Bone Miner Res. 2005;20:1497–1506. doi: 10.1359/JBMR.050524.
    1. Tsukiyama K, Yamada Y, Yamada C, Harada N, Kawasaki Y, Ogura M, Bessho K, Li M, Amizuka N, Sato M, Udagawa N, Takahashi N, Tanaka K, Oiso Y, Seino Y. Gastric inhibitory polypeptide as an endogenous factor promoting new bone formation after food ingestion. Mol Endocrinol. 2006;20:1644–1651. doi: 10.1210/me.2005-0187.
    1. Zhong Q, Itokawa T, Sridhar S, Ding KH, Xie D, Kang B, Bollag WB, Bollag RJ, Hamrick M, Insogna K, Isales CM. Effects of glucose-dependent insulinotropic peptide on osteoclast function. Am J Physiol Endocrinol Metab. 2007;292:E543–E548. doi: 10.1152/ajpendo.00364.2006.
    1. Xie D, Cheng H, Hamrick M, Zhong Q, Ding KH, Correa D, Williams S, Mulloy A, Bollag W, Bollag RJ, Runner RR, McPherson JC, Insogna K, Isales CM. Glucose-dependent insulinotropic polypeptide receptor knockout mice have altered bone turnover. Bone. 2005;37:759–769. doi: 10.1016/j.bone.2005.06.021.
    1. Drucker DJ, Shi Q, Crivici A, Sumner-Smith M, Tavares W, Hill M, DeForest L, Cooper S, Brubaker PL. Regulation of the biological activity of glucagon-like peptide 2 in vivo by dipeptidyl peptidase IV. Nat Biotechnol. 1997;15:673–677. doi: 10.1038/nbt0797-673.
    1. Henriksen DB, Alexandersen P, Bjarnason NH, Vilsbøll T, Hartmann B, Henriksen EE, Byrjalsen I, Krarup T, Holst JJ, Christiansen C. Role of gastrointestinal hormones in postprandial reduction of bone resorption. J Bone Miner Res. 2003;18:2180–2189. doi: 10.1359/jbmr.2003.18.12.2180.
    1. Kyle KA, Willett TL, Baggio LL, Drucker DJ, Grynpas MD. Differential effects of PPAR-gamma activation versus chemical or genetic reduction of DPP-4 activity on bone quality in mice. Endocrinology. 2011;152:457–467. doi: 10.1210/en.2010-1098.
    1. Monami M, Dicembrini I, Antenore A, Mannucci E. Dipeptidyl peptidase-4 inhibitors and bone fractures: a meta-analysis of randomized clinical trials. Diabetes Care. 2011;34:2474–2476. doi: 10.2337/dc11-1099.
    1. Al Sifri S, Basiounny A, Echtay A, Al Omari M, Harman-Boehm I, Kaddaha G, Al Tayeb K, Mahfouz AS, Al Elq A, Radican L, Ozesen C, Katzeff HL, Musser BJ, Suryawanshi S, Girman CJ, Davies MJ, Engel SS, 2010 Ramadan Study Group The incidence of hypoglycaemia in Muslim patients with type 2 diabetes treated with sitagliptin or a sulphonylurea during Ramadan: a randomised trial. Int J Clin Pract. 2011;65(11):1132–1140. doi: 10.1111/j.1742-1241.2011.02797.x.
    1. ADVANCE Collaborative Group. Patel A, MacMahon S, Chalmers J, Neal B, Billot L, Woodward M, Marre M, Cooper M, Glasziou P, Grobbee D, Hamet P, Harrap S, Heller S, Liu L, Mancia G, Mogensen CE, Pan C, Poulter N, Rodgers A, Williams B, Bompoint S, de Galan BE, Joshi R, Travert F. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358(24):2560–2572. doi: 10.1056/NEJMoa0802987.
    1. Urbaniak GC, Plous S. Research Randomizer (Version 4.0). 2013. . Accessed 22 Jun 2013.
    1. Rejnmark KL. Bone effects of glitazones and other anti-diabetic drugs. Curr Drug Saf. 2008;3(3):194–198. doi: 10.2174/157488608785699478.
    1. Dormuth CR, Carney G, Carleton B, Bassett K, Wright JM. Thiazolidinediones and fractures in men and women. Arch Intern Med. 2009;169(15):1395–1402. doi: 10.1001/archinternmed.2009.214.
    1. Grey A. Skeletal consequences of thiazolidinedione therapy. Osteoporos Int. 2008;19(2):129–137. doi: 10.1007/s00198-007-0477-y.
    1. Kahn SE, Haffner SM, Heise MA, Herman WH, Holman RR, Jones NP, Kravitz BG, Lachin JM, O’Neill MC, Zinman B, Viberti G, ADOPT Study Group Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med. 2006;355(23):2427–2443. doi: 10.1056/NEJMoa066224.
    1. Grey A, Bolland M, Gamble G, Wattie D, Horne A, Davidson J, Reid IR. The peroxisome proliferator-activated receptor-gamma agonist rosiglitazone decreases bone formation and bone mineral density in healthy postmenopausal women: a randomized, controlled trial. J Clin Endocrinol Metab. 2007;92(4):1305–1310. doi: 10.1210/jc.2006-2646.
    1. Thrailkill KM, Clay Bunn R, Nyman JS, Rettiganti MR, Cockrell GE, Wahl EC, Uppuganti S, Lumpkin CK, Jr, Fowlkes JL. SGLT2 inhibitor therapy improves blood glucose but does not prevent diabetic bone disease in diabetic DBA/2J male mice. Bone. 2016;82:101–107. doi: 10.1016/j.bone.2015.07.025.
    1. Bilezikian JP, Watts NB, Usiskin K, Polidori D, Fung A, Sullivan D, Rosenthal N. Evaluation of bone mineral density and bone biomarkers in patients with type 2 diabetes treated with canagliflozin. J Clin Endocrinol Metab. 2016;101(1):44–51. doi: 10.1210/jc.2015-1860.
    1. Zinman B, Haffner SM, Herman WH, Holman RR, Lachin JM, Kravitz BG, Paul G, Jones NP, Aftring RP, Viberti G, Kahn SE, ADOPT Study Group Effect of rosiglitazone, metformin, and glyburide on bone biomarkers in patients with type 2 diabetes. J Clin Endocrinol Metab. 2010;95(1):134–142. doi: 10.1210/jc.2009-0572.
    1. Gilbert MP, Marre M, Holst JJ, Garber A, Baeres FM, Thomsen H, Pratley RE. Comparison of the long-term effects of liraglutide and glimepiride monotherapy on bone mineral density in patients with type 2 diabetes. Endocr Pract. 2016;22(4):406–411. doi: 10.4158/EP15758.OR.
    1. Cusick T, Mu J, Pennypacker BL, Li Z, Scott KR, Shen X, Fisher JE, Langdon RB, Kimmel DB, Zhang BB, Glantschnig H. Bone loss in the oestrogen-depleted rat is not exacerbated by sitagliptin, either alone or in combination with a thiazolidinedione. Diabetes Obes Metab. 2013;15(10):954–957. doi: 10.1111/dom.12109.
    1. Driessen JH, van Onzenoort HA, Henry RM, Lalmohamed A, van den Bergh JP, Neef C, Leufkens HG, de Vries F. Use of dipeptidyl peptidase-4 inhibitors for type 2 diabetes mellitus and risk of fracture. Bone. 2014;68:124–130. doi: 10.1016/j.bone.2014.07.030.
    1. Majumdar SR, Josse RG, Lin M, Eurich DT. Does sitagliptin affect the rate of osteoporotic fractures in type 2 diabetes? Population-based cohort study. J Clin Endocrinol Metab. 2016;101(5):1963–1969. doi: 10.1210/jc.2015-4180.
    1. Bunck MC, Poelma M, Eekhoff EM, Schweizer A, Heine RJ, Nijpels G, Foley JE, Diamant M. Effects of vildagliptin on postprandial markers of bone resorption and calcium homeostasis in recently diagnosed, well-controlled type 2 diabetes patients. J Diabetes. 2012;4(2):181–185. doi: 10.1111/j.1753-0407.2011.00168.x.
    1. Fu J, Zhu J, Hao Y, Guo C, Zhou Z. Dipeptidyl peptidase-4 inhibitors and fracture risk: an updated meta-analysis of randomized clinical trials. Sci Rep. 2016;6:29104. doi: 10.1038/srep29104.
    1. Kanazawa I, Yamaguchi T, Yamamoto M, Yamauchi M, Kurioka S, Yano S, Sugimoto T. Serum osteocalcin level is associated with glucose metabolism and atherosclerosis parameters in type 2 diabetes mellitus. J Clin Endocrinol Metab. 2009;94:45–49. doi: 10.1210/jc.2008-1455.
    1. Watts NB, Bilezikian JP, Usiskin K, Edwards R, Desai M, Law G, Meininger G. Effects of canagliflozin on fracture risk in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2016;101(1):157–166. doi: 10.1210/jc.2015-3167.

Source: PubMed

3
Abonneren