The Predictive Value of Head Circumference Growth during the First Year of Life on Early Child Traits

Caroline Dupont, Natalie Castellanos-Ryan, Jean R Séguin, Gina Muckle, Marie-Noëlle Simard, Gabriel D Shapiro, Catherine M Herba, William D Fraser, Sarah Lippé, Caroline Dupont, Natalie Castellanos-Ryan, Jean R Séguin, Gina Muckle, Marie-Noëlle Simard, Gabriel D Shapiro, Catherine M Herba, William D Fraser, Sarah Lippé

Abstract

Atypical head circumference (HC) growth has been associated with neurodevelopmental disorders. However, whether it is associated with specific aspects of development in early childhood in the general population is unknown. The objective of this study was to assess the predictive value of HC growth as an early biomarker of behavioral traits. We examined longitudinal associations between HC growth from 0 to 12 months and temperament, cognitive, and motor development at 24 months. A subsample of healthy children (N = 756) was drawn from the 3D (Design, Develop, Discover) cohort study. Early HC growth was modeled with latent growth curve analysis. Greater postnatal HC growth predicted lower temperamental effortful control and lower surgency/extraversion in boys. HC growth did not predict cognitive or fine motor scores, but did predict greater gross motor skills in boys. No significant effect of HC growth was found in girls. This study is the first to demonstrate an association between postnatal HC growth and specific aspects of child development in a healthy population. Results suggest HC growth overshadows brain mechanisms involved in behavioral traits in early infancy. Whether links are maintained throughout development and the mechanisms involved correspond to traits found in atypical populations remains to be studied.

Conflict of interest statement

The authors declare no competing interests.

Figures

Figure 1
Figure 1
Recruitment and Follow-up in the 3D Study and Creating the Head Circumference Subsample. Note: GA = Gestational age.
Figure 2
Figure 2
Growth in Head Circumference (HC) from Birth to 12 months.

References

    1. Nickl-Jockschat T, et al. Brain structure anomalies in autism spectrum disorder—a meta-analysis of VBM studies using anatomic likelihood estimation. Human Brain Mapping. 2012;33:1470–1489. doi: 10.1002/hbm.21299.
    1. Seidman LJ, Valera EM, Makris N. Structural brain imaging of attention-deficit/hyperactivity disorder. Biol. Psychiatry. 2005;57:1263–1272. doi: 10.1016/j.biopsych.2004.11.019.
    1. Baglio F, et al. Abnormal development of sensory-motor, visual temporal and parahippocampal cortex in children with learning disabilities and borderline intellectual functioning. Front. Hum. Neurosci. 2014;8:806. doi: 10.3389/fnhum.2014.00806.
    1. Fairchild G, et al. Brain Structure abnormalities in early-onset and adolescent-onset conduct disorder. American Journal of Psychiatry. 2011;168:624–633. doi: 10.1176/appi.ajp.2010.10081184.
    1. van Dyck LI, Morrow EM. Genetic control of postnatal human brain growth. Current Opinion in Neurology. 2017;30:114–124. doi: 10.1097/WCO.0000000000000405.
    1. Bird LM. Angelman syndrome: review of clinical and molecular aspects. Appl. Clin. Genet. 2014;7:93–104. doi: 10.2147/TACG.S57386.
    1. Chahrour M, Zoghbi HY. The story of Rett syndrome: from clinic to neurobiology. Neuron. 2007;56:422–437. doi: 10.1016/j.neuron.2007.10.001.
    1. McBride KL, et al. Confirmation study of PTEN mutations among individuals with autism or developmental delays/mental retardation and macrocephaly. Autism Res. 2010;3:137–141. doi: 10.1002/aur.132.
    1. Fidler DJ, Bailey JN, Smalley SL. Macrocephaly in autism and other pervasive developmental disorders. Dev. Med. Child Neurol. 2000;42:737–740. doi: 10.1017/S0012162200001365.
    1. Dinstein I, et al. No evidence of early head circumference enlargements in children later diagnosed with autism in Israel. Mol. Autism. 2017;8:15. doi: 10.1186/s13229-017-0129-9.
    1. Mraz KD, et al. Correlates of head circumference growth in infants later diagnosed with autism spectrum disorders. J. Child Neurol. 2007;22:700–713. doi: 10.1177/0883073807304005.
    1. Hazlett HC, et al. Magnetic resonance imaging and head circumference study of brain size in autism: birth through age 2 years. Arch. Gen. Psychiatry. 2005;62:1366–1376. doi: 10.1001/archpsyc.62.12.1366.
    1. Courchesne E, Pierce K. Brain overgrowth in autism during a critical time in development: implications for frontal pyramidal neuron and interneuron development and connectivity. Int. J. Dev. Neurosci. 2005;23:153–70. doi: 10.1016/j.ijdevneu.2005.01.003.
    1. Heinonen K, et al. Trajectories of growth and symptoms of attention-deficit/hyperactivity disorder in children: a longitudinal study. BMC Pediatrics. 2011;11:84. doi: 10.1186/1471-2431-11-84.
    1. Raghuram K, et al. Head growth trajectory and neurodevelopmental outcomes in preterm neonates. Pediatrics. 2017;140:20170216. doi: 10.1542/peds.2017-0216.
    1. Gurevitz M, et al. Early markers in infants and toddlers for development of ADHD. J. Atten. Disord. 2014;18:14–22. doi: 10.1177/1087054712447858.
    1. Ellegood J, et al. Clustering autism: using neuroanatomical differences in 26 mouse models to gain insight into the heterogeneity. Mol. Psychiatry. 2015;2015(20):118–125. doi: 10.1038/mp.2014.98.
    1. Sacco R, Gabriele S, Persico AM. Head circumference and brain size in autism spectrum disorder: a systematic review and meta-analysis. Psychiatry Res. 2015;234:239–51. doi: 10.1016/j.pscychresns.2015.08.016.
    1. Rothbart MK, Posner MI, Hershey KL. Temperament, attention, and developmental psychopathology. Dev. Psychopathol. 2006;2:465–501.
    1. Nigg JT. Temperament and developmental psychopathology. J. Child Psychol. Psychiatry. 2006;47:395–422. doi: 10.1111/j.1469-7610.2006.01612.x.
    1. Muris P, Ollendick TH. The role of temperament in the etiology of child psychopathology. Clin. Child Fam. Psychol. Rev. 2005;8:271–289. doi: 10.1007/s10567-005-8809-y.
    1. Peterson ER, et al. A cross-cultural analysis of the infant behavior questionnaire very short form: an item response theory analysis of infant temperament in New Zealand. J. Pers. Assess. 2017;99:574–584. doi: 10.1080/00223891.2017.1288128.
    1. DeThorne LS, et al. Volubility as a mediator in the associations between conversational language measures and child temperament. Int. J. Lang. Commun. Disord. 2011;46:700–713. doi: 10.1111/j.1460-6984.2011.00034.x.
    1. Auerbach JG, et al. Temperament at 7, 12, and 25 months in children at familial risk for ADHD. Infant Child Dev. 2008;17:321–338. doi: 10.1002/icd.579.
    1. Hankin BL, et al. Temperament factors and dimensional, latent bifactor models of child psychopathology: transdiagnostic and specific associations in two youth samples. Psychiatry Res. 2017;252:139–146. doi: 10.1016/j.psychres.2017.02.061.
    1. Martin NC, et al. An examination of the relationship between movement problems and four common developmental disorders. Hum. Mov. Sci. 2010;29:799–808. doi: 10.1016/j.humov.2009.09.005.
    1. Rapp, B. The handbook of cognitive neuropsychology: what deficits reveal about the human mind (Psychology Press, 2015).
    1. Corbett BA, et al. Examining executive functioning in children with autism spectrum disorder, attention deficit hyperactivity disorder and typical development. Psychiatry Res. 2009;166:210–222. doi: 10.1016/j.psychres.2008.02.005.
    1. Bull R, Espy KA, Wiebe SA. Short-term memory, working memory, and executive functioning in preschoolers: longitudinal predictors of mathematical achievement at age 7 years. Dev. Neuropsychol. 2008;33:205–228. doi: 10.1080/87565640801982312.
    1. Willoughby MT, et al. The measurement of executive function at age 5: psychometric properties and relationship to academic achievement. Psychol. Assess. 2012;24:226. doi: 10.1037/a0025361.
    1. Hughes C, Ensor R. Individual differences in growth in executive function across the transition to school predict externalizing and internalizing behaviors and self-perceived academic success at 6 years of age. J. Exp. Child Psychol. 2011;108:663–676. doi: 10.1016/j.jecp.2010.06.005.
    1. Alcock KJ, Krawczyk K. Individual differences in language development: relationship with motor skill at 21 months. Dev. Sci. 2010;13:677–691. doi: 10.1111/j.1467-7687.2009.00924.x.
    1. Kim H, et al. Relations among motor, social, and cognitive skills in pre-kindergarten children with developmental disabilities. Res. Dev. Disabil. 2016;53:43–60. doi: 10.1016/j.ridd.2016.01.016.
    1. Oberer N, Gashaj V, Roebers CM. Motor skills in kindergarten: internal structure, cognitive correlates and relationships to background variables. Hum. Mov. Sci. 2017;52:170–180. doi: 10.1016/j.humov.2017.02.002.
    1. WHO Multicentre Growth Reference Study Group. WHO Child Growth Standards: Head Circumference-for-Age, Arm Circumference-for-Age, Triceps Skinfold-for-Age and Subscapular Skinfold-for-Age: Methods and Development (World Health Organization 2007).
    1. Adams HHH, et al. Novel genetic loci underlying human intracranial volume identified through genome-wide association. Nat. Neurosci. 2016;19:1569–1582. doi: 10.1038/nn.4398.
    1. Fraser WD, et al. 3D Cohort Study: the integrated research network in perinatology of Quebec and Eastern Ontario. Paediatr. Perinat. Epidemiol. 2016;30:623–632. doi: 10.1111/ppe.12320.
    1. Putnam SP, Gartstein MA, Rothbart MK. Measurement of fine-grained aspects of toddler temperament: the Early Childhood Behavior Questionnaire. Infant Behav. Dev. 2006;29:386–401. doi: 10.1016/j.infbeh.2006.01.004.
    1. Putnam SP, Stifter CA. Reactivity and regulation: the impact of Mary Rothbart on the study of temperament. Infant Child Dev. 2008;17:311–320. doi: 10.1002/icd.583.
    1. Rothbart MK, et al. Investigations of temperament at three to seven years: The Children’s Behavior Questionnaire. Child Dev. 2001;72:1394–1408. doi: 10.1111/1467-8624.00355.
    1. Goldsmith HH, Buss KA, Lemery KS. Toddler and childhood temperament: expanded content, stronger genetic evidence, new evidence for the importance of environment. Dev. Psychol. 1997;33:891–905. doi: 10.1037/0012-1649.33.6.891.
    1. Kochanska G, et al. Maternal reports of conscience development and temperament in young children. Child Dev. 1994;65:852–868. doi: 10.2307/1131423.
    1. Bayley, N. Bayley scales of infant and toddler development: Bayley-III (Harcourt Assessment 2006).
    1. Robins DL, et al. The Modified Checklist for Autism in Toddlers: an initial study investigating the early detection of autism and pervasive developmental disorders. J. Autism Dev. Disord. 2001;31:131–144. doi: 10.1023/A:1010738829569.
    1. Villar J, et al. International standards for newborn weight, length, and head circumference by gestational age and sex: the Newborn Cross-Sectional Study of the INTERGROWTH-21st Project. Lancet. 2014;384:857–868. doi: 10.1016/S0140-6736(14)60932-6.
    1. Brito NH, Noble KG. Socioeconomic status and structural brain development. Front. Neurosci. 2014;8:276. doi: 10.3389/fnins.2014.00276.
    1. Letourneau NL, et al. Socioeconomic status and child development: A meta-analysis. J. Emot. Behav. Disord. 2013;21:211–224. doi: 10.1177/1063426611421007.
    1. Nesselroade, J. R., McArdle, J. J., Aggen, S. H. & Meyers, J. M. Dynamic factor analysis models for representing process in multivariate time-series in Multivariate applications book series. Modeling intraindividual variability with repeated measures data: Methods and applications (eds Moskowitz, D. S. & Hershberger, S. L.) 235–265 (Lawrence Erlbaum Associates Publishers, 2002).
    1. WHO Multicentre Growth Reference Study Group. Head circumference-for-age. WHO child growth standards. (2009)
    1. Goldsmith HH, et al. Roundtable: what is temperament? Four approaches. Child Dev. 1987;58:505–529. doi: 10.2307/1130527.
    1. Rothbart MK, Ahadi SA. Temperament and the development of personality. J. Abnorm. Psychol. 1994;103:55–66. doi: 10.1037/0021-843X.103.1.55.
    1. Muris P, Meesters C, Blijlevens P. Self-reported reactive and regulative temperament in early adolescence: relations to internalizing and externalizing problem behavior and “Big Three” personality factors. J. Adolesc. 2007;30:1035–1049. doi: 10.1016/j.adolescence.2007.03.003.
    1. Garon N, et al. Temperament and its relationship to autistic symptoms in a ihgh-risk infant sib cohort. J. Abnorm. Child Psychol. 2009;37:59–78. doi: 10.1007/s10802-008-9258-0.
    1. Zwaigenbaum L, et al. Behavioral manifestations of autism in the first year of life. Int. J. Dev. Neurosci. 2005;23:143–152. doi: 10.1016/j.ijdevneu.2004.05.001.
    1. Clifford SM, et al. Temperament in the first 2 years of life in infants at high-risk for autism spectrum disorders. J. Autism Dev. Disord. 2013;43:673–686. doi: 10.1007/s10803-012-1612-y.
    1. Macari SL, et al. Temperamental markers in toddlers with autism spectrum disorder. J. Child Psychol. Psychiatry. 2017;58:819–828. doi: 10.1111/jcpp.12710.
    1. Charman T, et al. Non‐ASD outcomes at 36 months in siblings at familial risk for autism spectrum disorder (ASD): A baby siblings research consortium (BSRC) study. Autism Res. 2017;10:169–178. doi: 10.1002/aur.1669.
    1. Neumann A, et al. Single nucleotide polymorphism heritability of a general psychopathology factor in children. J. Am. Acad. Child Adolesc. Psychiatry. 2016;2016(55):1038–1045. doi: 10.1016/j.jaac.2016.09.498.
    1. Einziger T, et al. Predicting ADHD symptoms in adolescence from early childhood temperament traits. J. Abnorm. Child Psychol. 2018;46:265–276. doi: 10.1007/s10802-017-0287-4.
    1. Parker, S. T. & McKinney, M. L. Origins of intelligence: The evolution of cognitive development in monkeys, apes, and humans (JHU Press, 2012).
    1. Sherwood CC, Subiaul F, Zawidzki TW. A natural history of the human mind: tracing evolutionary changes in brain and cognition. J. Anat. 2008;212:426–454. doi: 10.1111/j.1469-7580.2008.00868.x.
    1. Gogtay N, et al. Dynamic mapping of human cortical development during childhood through early adulthood. Proc. Natl. Acad. Sci. USA. 2004;101:8174–8179. doi: 10.1073/pnas.0402680101.
    1. Casey BJ, et al. Imaging the developing brain: what have we learned about cognitive development? Trends Cogn. Sci. 2005;9:104–110. doi: 10.1016/j.tics.2005.01.011.
    1. Rothbart MK, Sheese BE, Posner MI. Executive attention and effortful control: linking temperament, brain networks, and genes. Child Dev. Perspect. 2007;1:2–7. doi: 10.1111/j.1750-8606.2007.00002.x.
    1. Gerardi‐Caulton G. Sensitivity to spatial conflict and the development of self‐regulation in children 24–36 months of age. Dev. Sci. 2000;3:397–404. doi: 10.1111/1467-7687.00134.
    1. Holland D, et al. Structural growth trajectories and rates of change in the first 3 months of infant brain development. JAMA Neurol. 2014;71:1266–1274. doi: 10.1001/jamaneurol.2014.1638.
    1. Giedd JN, et al. Magnetic resonance imaging of male/female differences in human adolescent brain anatomy. Biol. Sex Diff. 2012;2012(3):19. doi: 10.1186/2042-6410-3-19.
    1. Gilmore JH, et al. Longitudinal development of cortical and subcortical gray matter from birth to 2 years. Cereb. Cortex. 2011;22:2478–2485. doi: 10.1093/cercor/bhr327.
    1. Hill, A. P., Zuckerman, K. & Fombonne, E. Epidemiology of autism spectrum disorders in Translational Approaches to Autism Spectrum Disorder (ed. Robinson-Agramonte, M.) 13–38 (Springer, 2015).
    1. Polanczyk G, et al. The worldwide prevalence of ADHD: a systematic review and metaregression analysis. Am. J. Psychiatry. 2007;164:942–948. doi: 10.1176/ajp.2007.164.6.942.
    1. Jacquemont S, et al. A higher mutational burden in females supports a “female protective model” in neurodevelopmental disorders. Am. J. Hum. Genet. 2014;94:415–425. doi: 10.1016/j.ajhg.2014.02.001.
    1. Polyak A, Rosenfeld JA, Girirajan S. An assessment of sex bias in neurodevelopmental disorders. Genome Med. 2015;7:94. doi: 10.1186/s13073-015-0216-5.
    1. Whittle S, et al. The neurobiological basis of temperament: Towards a better understanding of psychopathology. Neurosci. Biobehav. Rev. 2006;30:511–525. doi: 10.1016/j.neubiorev.2005.09.003.
    1. Liberzon I, et al. Extended amygdala and emotional salience: a PET activation study of positive and negative affect. Neuropsychopharmacology. 2003;28:726–733. doi: 10.1038/sj.npp.1300113.
    1. Willingham DB. The neural basis of motor-skill learning. Curr. Dir. Psychol. Sci. 1999;8:178–182. doi: 10.1111/1467-8721.00042.
    1. Gerván P, et al. Posterior–anterior brain maturation reflected in perceptual, motor and cognitive performance. Front. Psychol. 2017;8:674. doi: 10.3389/fpsyg.2017.00674.
    1. Cheong JL, et al. Head growth in preterm infants: correlation with magnetic resonance imaging and neurodevelopmental outcome. Pediatrics. 2008;121:1534–1540. doi: 10.1542/peds.2007-2671.

Source: PubMed

3
Abonneren