Fecal bacterial community changes associated with isoflavone metabolites in postmenopausal women after soy bar consumption

Cindy H Nakatsu, Arthur Armstrong, Andrea P Clavijo, Berdine R Martin, Stephen Barnes, Connie M Weaver, Cindy H Nakatsu, Arthur Armstrong, Andrea P Clavijo, Berdine R Martin, Stephen Barnes, Connie M Weaver

Abstract

Soy isoflavones and their metabolism by intestinal microbiota have gained attention because of potential health benefits, such as the alleviation of estrogen/hormone-related conditions in postmenopausal women, associated with some of these compounds. However, overall changes in gut bacterial community structure and composition in response to addition of soy isoflavones to diets and their association with excreted isoflavone metabolites in postmenopausal women has not been studied. The aim of this study was to determine fecal bacterial community changes in 17 postmenopausal women after a week of diet supplementation with soy bars containing isoflavones, and to determine correlations between microbial community changes and excreted isoflavone metabolites. Using DGGE profiles of PCR amplified 16S rRNA genes (V3 region) to compare microbial communities in fecal samples collected one week before and one week during soy supplementation revealed significant differences (ANOSIM p<0.03) before and after soy supplementation in all subjects. However, between subjects comparisons showed high inter-individual variation that resulted in clustering of profiles by subjects. Urinary excretion of isoflavone (daidzein) metabolites indicated four subjects were equol producers and all subjects produced O-desmethylangolensin (ODMA). Comparison of relative proportions of 16S rRNA genes from 454 pyrosequencing of the last fecal samples of each treatment session revealed significant increases in average proportions of Bifidobacterium after soy consumption, and Bifidobacterium and Eubacterium were significantly greater in equol vs non-S-(-)equol producers. This is the first in vivo study using pyrosequencing to characterize significant differences in fecal community structure and composition in postmenopausal women after a week of soy diet-supplementation, and relate these changes to differences in soy isoflavones and isoflavone metabolites.

Trial registration: Clinicaltrials.gov NCT00244907.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. UPGMA dendrograms of 16S rRNA…
Figure 1. UPGMA dendrograms of 16S rRNA gene PCR-DGGE profiles of fecal samples collected from postmenopausal women.
(A) Representative examples of within subject comparisons (subject 325). (B) Comparison between all subjects using the last samples from each treatment session. Each profile is labeled by subject number, collection day and soy treatment. Dendrograms were constructed using UPGMA of pairwise Dice similarities comparisons between samples. ‘No-soy’ samples represent the samples before the supplementation with soy and, ‘Soy’ samples refers to samples collected during the week of supplementation with soy.
Figure 2. Principal coordinate analysis (PCoA) of…
Figure 2. Principal coordinate analysis (PCoA) of weighted Unifrac distances of subjects (A) before soy consumption and (B) after soy consumption.
Non-S-(-)equol producers are represented by red dots, and blue dots represent S-(-)equol producers.
Figure 3. Canonical correspondence analysis of fecal…
Figure 3. Canonical correspondence analysis of fecal bacterial composition and alpha diversity measures and postmenopausal women metrics.
Non-S-(-)equol producers are represented by green dots, and red dots represent S-(-)equol producers. Arrows represent the direction of the host factors significantly corresponding to bacterial community composition. Host factors depicted are equol producers, non-S-(-)equol producers, with no soy in diet, after soy intervention, years post-menopause and alpha diversity (illustrated PD whole tree phylogenetic diversity but Chao1 and Shannon have the same trajectory). Variation explained in horizontal axis is 8.2% and the vertical axis is 6.9%.

References

    1. Atkinson C, Frankenfeld CL, Lampe JW (2005) Gut bacterial metabolism of the soy isoflavone daidzein: Exploring the relevance to human health. Exp Biol Med 230: 155–170.
    1. Behloul N, Wu GZ (2013) Genistein: A promising therapeutic agent for obesity and diabetes treatment. Eur J Pharmacol 698: 31–38.
    1. Cassidy A, Albertazzi P, Nielsen IL, Hall W, Williamson G, et al. (2006) Critical review of health effects of soyabean phyto-oestrogens in post-menopausal women. Proceed Nutri Soc 65: 76–92.
    1. Poulsen RC, Kruger MC (2008) Soy phytoestrogens: impact on postmenopausal bone loss and mechanisms of action. Nutr Rev 66: 359–374.
    1. Mueller SO, Simon S, Chae K, Metzler M, Korach KS (2004) Phytoestrogens and their human metabolites show distinct agonistic and antagonistic properties on estrogen receptor alpha (ER alpha) and ER beta in human cells. Toxicol Sci 80: 14–25.
    1. Setchell KDR, Clerici C, Lephart ED, Cole SJ, Heenan C, et al. (2005) S-Equol, a potent ligand for estrogen receptor beta, is the exclusive enantiomeric form of the soy isoflavone metabolite produced by human intestinal bacterial floral. Amer J Clin Nutr 81: 1072–1079.
    1. Setchell KDR, Clerici C (2010) Equol: history, chemistry, and formation. J Nutr 140: 1355S–1362S.
    1. Frankenfeld CL (2011) O-Desmethylangolensin: The importance of equol’s lesser known cousin to human health. Advances in Nutrition: An International Review Journal 2: 317–324.
    1. Bolca S, Possemiers S, Herregat A, Huybrechts I, Heyerick A, et al. (2007) Microbial and dietary factors are associated with the equol producer phenotype in healthy postmenopausal women. J Nutr 137: 2242–2246.
    1. Clavel T, Fallani M, Lepage P, Levenez F, Mathey J, et al. (2005) Isoflavones and functional foods alter the dominant intestinal microbiota in postmenopausal women. J Nutr 135: 2786–2792.
    1. Jin JS, Kitahara M, Sakamoto M, Hattori M, Benno Y (2010) Slackia equolifaciens sp nov., a human intestinal bacterium capable of producing equol. Internat J Syst Evol Microbiol 60: 1721–1724.
    1. Maruo T, Sakamoto M, Ito C, Toda T, Benno Y (2008) Adlercreutzia equolifaciens gen. nov., sp nov., an equol-producing bacterium isolated from human faeces, and emended description of the genus Eggerthella . Internat J Syst Evol Microbiol 58: 1221–1227.
    1. Yokoyama SI, Niwa T, Osawa T, Suzuki T (2010) Characterization of an O-desmethylangolensin-producing bacterium isolated from human feces. Arch Microbiol 192: 15–22.
    1. Decroos K, Vanhemmens S, Cattoir S, Boon N, Verstraete W (2005) Isolation and characterisation of an equol-producing mixed microbial culture from a human faecal sample and its activity under gastrointestinal conditions. Arch Microbiol 183: 45–55.
    1. Decroos K, Eeckhaut E, Possemiers S, Verstraete W (2006) Administration of equol-producing bacteria alters the equol production status in the simulator of the gastrointestinal microbial ecosystem (SHIME). J Nutr 136: 946–952.
    1. Weaver CM, Barnes S, Wyss JM, Kim H, Morre DM, et al. (2008) Botanicals for age-related diseases: from field to practice. Amer J Clin Nutr 87: 493S–497S.
    1. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen Y-Y, et al. (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334: 105–108.
    1. Weaver CM, Martin BR, Jackson GS, McCabe GP, Nolan JR, et al. (2006) Antiresorptive effects of phytoestrogen supplements compared with estradiol or risedronate in postmenopausal women using Ca-41 Methodology. J Clin Endocrin Met 94: 3798–3805.
    1. Barnes S, Coward L, Kirk MF, Sfakianos J (1998) HPLC-mass spectrometry analysis of isoflavones. Exp Biol Med: 254–262.
    1. Setchell KDR, Cole SJ (2006) Method of defining equol-producer status and its frequency among vegetarians. J Nutr 136: 2188–2193.
    1. Ariefdjohan M, Savaiano D, Nakatsu C (2010) Comparison of DNA extraction kits for PCR-DGGE analysis of human intestinal microbial communities from fecal specimens. Nutri J 9: 23.
    1. Lane DJ (1991) 16S/23S rRNA Sequencing. In: Stackebrandt E, Goodfellow M, editors. Nucleic Acid Techniques in Bacterial Systematics. New York: John Wiley & Sons. 115–175.
    1. Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59: 695–700.
    1. Claesson MJ, O’Sullivan O, Wang Q, Nikkilä J, Marchesi JR, et al. (2009) Comparative analysis of pyrosequencing and a phylogenetic microarray for exploring microbial community structures in the human distal intestine. PLoS ONE 4: e6669.
    1. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, et al. (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucl Acids Res 37: D141–145.
    1. Meyer F, Paarmann D, D’Souza M, Olson R, Glass EM, et al. (2008) The metagenomics RAST server - a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinfo 9.
    1. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, et al. (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Meth 7: 335–336.
    1. Reeder J, Knight R (2010) Rapidly denoising pyrosequencing amplicon reads by exploiting rank-abundance distributions. Nat Meth 7: 668–669.
    1. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26: 2460–2461.
    1. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73: 5261–5267.
    1. McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, et al. (2012) An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 6: 610–618.
    1. Hamady M, Lozupone C, Knight R (2010) Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J 4: 17–27.
    1. Clarke KR (1993) Nonparametric multivariate analyses of changes in community structure. Aust J Ecol 18: 117–143.
    1. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica. 9.
    1. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26: 32–46.
    1. Anderson MJ (2001) Permutation tests for univariate or multivariate analysis of variance and regression. Can J Fish Aquat Sci 58: 626–639.
    1. Ter Braak CJF (1986) Canonical correspondence analysis - A new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167–1179.
    1. Guo K, Zhang B, Chen C, Uchiyama S, Ueno T, et al. (2010) Daidzein-metabolising phenotypes in relation to serum lipids and uric acid in adults in Guangzhou, China. Brit J Nutr 104: 118–124.
    1. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, et al. (2013) Diet rapidly and reproducibly alters the human gut microbiome. Nature advance online publication.
    1. Biagi E, Nylund L, Candela M, Ostan R, Bucci L, et al. (2010) Through ageing, and beyond: Gut microbiota and inflammatory status in seniors and centenarians. PLoS ONE 5: e10667.
    1. Bahl MI, Bergström A, Licht TR (2012) Freezing fecal samples prior to DNA extraction affects the Firmicutes to Bacteroidetes ratio determined by downstream quantitative PCR analysis. FEMS Microbiol Lett 329: 193–197.
    1. Whisner CM, Martin BR, Nakatsu CH, McCabe GP, McCabe LD, et al. (2014) Soluble maize fibre affects short-term calcium absorption in adolescent boys and girls: a randomised controlled trial using dual stable isotopic tracers. Brit J Nutr 112: 446–456.
    1. Mariat D, Firmesse O, Levenez F, Guimaraes VD, Sokol H, et al. (2009) The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol 9: 123.

Source: PubMed

3
Abonneren