Pancreatic ductal bicarbonate secretion: challenge of the acinar Acid load

Péter Hegyi, József Maléth, Viktória Venglovecz, Zoltán Rakonczay Jr, Péter Hegyi, József Maléth, Viktória Venglovecz, Zoltán Rakonczay Jr

Abstract

Acinar and ductal cells of the exocrine pancreas form a close functional unit. Although most studies contain data either on acinar or ductal cells, an increasing number of evidence highlights the importance of the pancreatic acinar-ductal functional unit. One of the best examples for this functional unit is the regulation of luminal pH by both cell types. Protons co-released during exocytosis from acini cause significant acidosis, whereas, bicarbonate secreted by ductal cells cause alkalization in the lumen. This suggests that the first and probably one of the most important role of bicarbonate secretion by pancreatic ductal cells is not only to neutralize the acid chyme entering into the duodenum from the stomach, but to neutralize acidic content secreted by acinar cells. To accomplish this role, it is more than likely that ductal cells have physiological sensing mechanisms which would allow them to regulate luminal pH. To date, four different classes of acid-sensing ion channels have been identified in the gastrointestinal tract (transient receptor potential ion channels, two-pore domain potassium channel, ionotropic purinoceptor and acid-sensing ion channel), however, none of these have been studied in pancreatic ductal cells. In this mini-review, we summarize our current knowledge of these channels and urge scientists to characterize ductal acid-sensing mechanisms and also to investigate the challenge of the acinar acid load on ductal cells.

Keywords: bicarbonate; pancreatic duct.

Figures

Figure 1
Figure 1
Changes of luminal pH in the exocrine pancreas during secretion. Under physiological conditions acinar cells secrete digestive enzymes and protons, the latter of which acidify the acinar lumen. In contrast, ductal cells secrete bicarbonate which will elevate the intraluminal pH. Our hypothesis is that protons may stimulate the ductal bicarbonate secretion via acid sensing receptors (ASR), which can elevate the pH in the ductal lumen setting the luminal pH to 8.0. (N, nucleus).

References

    1. Argent B. (2006). “Cell physiology of pancreatic ducts,” in Physiology of the Gastrointestinal Tract, 4th Edn, Vol. 2, ed. Johnson L. R. (San Diego: Elsevier; ), 1376–1396
    1. Behrendorff N., Floetenmeyer M., Schwiening C., Thorn P. (2010). Protons released during pancreatic acinar cell secretion acidify the lumen and contribute to pancreatitis in mice. Gastroenterology 139, 1711–172010.1053/j.gastro.2010.07.051
    1. Bhoomagoud M., Jung T., Atladottir J., Kolodecik T. R., Shugrue C., Chaudhuri A., Thrower E. C., Gorelick F. S. (2009). Reducing extracellular pH sensitizes the acinar cell to secretagogue-induced pancreatitis responses in rats. Gastroenterology 137, 1083–109210.1053/j.gastro.2009.05.041
    1. Clapham D. E. (2003). TRP channels as cellular sensors. Nature 426, 517–52410.1038/nature02196
    1. Dong X., Ko K. H., Chow J., Tuo B., Barrett K. E., Dong H. (2011). Expression of acid-sensing ion channels in intestinal epithelial cells and their role in the regulation of duodenal mucosal bicarbonate secretion. Acta Physiol. 201, 97–10710.1111/j.1748-1716.2010.02207.x
    1. Dunn P. M., Zhong Y., Burnstock G. (2001). P2X receptors in peripheral neurons. Prog. Neurobiol. 65, 107–13410.1016/S0301-0082(01)00005-3
    1. Freedman S. D., Kern H. F., Scheele G. A. (2001). Pancreatic acinar cell dysfunction in CFTR−/− mice is associated with impairments in luminal pH and endocytosis. Gastroenterology 121, 950–95710.1053/gast.2001.27217
    1. Haanes K. A., Novak I. (2010). ATP storage and uptake by isolated pancreatic zymogen granules. Biochem. J. 429, 303–31110.1042/BJ20091337
    1. Hegyi P., Pandol S., Venglovecz V., Rakonczay Z., Jr. (2011). The acinar-ductal tango in the pathogenesis of acute pancreatitis. Gut 60, 544–55210.1136/gut.2010.218461
    1. Hegyi P., Rakonczay Z. (2010). Insufficiency of electrolyte and fluid secretion by pancreatic ductal cells leads to increased patient risk for pancreatitis. Am. J. Gastroenterol. 105, 2119–212010.1038/ajg.2010.176
    1. Holzer P. (2003). Acid-sensitive ion channels in gastrointestinal function. Curr. Opin. Pharmacol. 3, 618–62510.1016/j.coph.2003.06.008
    1. Holzer P. (2004). TRPV1 and the gut: from a tasty receptor for a painful vanilloid to a key player in hyperalgesia. Eur. J. Pharmacol. 500, 231–24110.1016/j.ejphar.2004.07.028
    1. Holzer P. (2007). Taste receptors in the gastrointestinal tract. V. Acid sensing in the gastrointestinal tract. Am. J. Physiol. Gastroint. Liver Phys. 292, G699–G70510.1152/ajpgi.00517.2006
    1. Ishiguro H., Naruse S., Kitagawa M., Mabuchi T., Kondo T., Hayakawa T., Case R. M., Steward M. C. (2002). Chloride transport in microperfused interlobular ducts isolated from guinea-pig pancreas. J. Physiol. (Lond.) 539, 175–18910.1113/jphysiol.2001.012490
    1. Kishnani P. S., Van Hove J. L., Shoffner J. S., Kaufman A., Bossen E. H., Kahler S. G. (1996). Acute pancreatitis in an infant with lactic acidosis and a mutation at nucleotide 3243 in the mitochondrial DNA tRNALeu(UUR) gene. Eur. J. Pediatr. 155, 898–90310.1007/BF02282842
    1. Lee M., Muallem S. (2008). “Physiology of duct cell secretion,” in The Pancreas, 2nd Edn, eds Beger H., Buchler M., Kozarek R., Lerch M. M., Neoptolemos J., Warshaw A., Whitcomb D., Shiratori K. (Massachusetts: Blackwell Publishing; ), 78–91
    1. Maléth J., Venglovecz V., Rázga Z., Tiszlavicz L., Rakonczay Z., Jr., Hegyi P. (2011). Non-conjugated chenodeoxycholate induces severe mitochondrial damage and inhibits bicarbonate transport in pancreatic duct cells. Gut 60, 136–13810.1136/gut.2011.239301.290
    1. Nair S., Yadav D., Pitchumoni C. S. (2000). Association of diabetic ketoacidosis and acute pancreatitis: observations in 100 consecutive episodes of DKA. Am. J. Gastroenterol. 95, 2795–280010.1111/j.1572-0241.2000.03188.x
    1. Noble M. D., Romac J., Vigna S. R., Liddle R. A. (2008). A pH-sensitive, neurogenic pathway mediates disease severity in a model of post-ERCP pancreatitis. Gut 57, 1566–157110.1136/gut.2008.148551
    1. North R. A. (2002). Molecular physiology of P2X receptors. Physiol. Rev. 82, 1013–1067
    1. Patel V., Hedayati S. S. (2006). Lactic acidosis in an HIV-infected patient receiving highly active antiretroviral therapy. Nat. Clin. Pract. Nephrol. 2, 109–11410.1038/ncpendmet0096
    1. Reber H. A., Karanjia N. D., Alvarez C., Widdison A. L., Leung F. W., Ashley S. W., Lutrin F. J. (1992). Pancreatic blood flow in cats with chronic pancreatitis. Gastroenterology 103, 652–659
    1. Venglovecz V., Rakonczay Z., Jr., ózsvári B., Takács T., Lonovics J., Varró A., Gray M. A., Argent B. E., Hegyi P. (2008). Effects of bile acids on pancreatic ductal bicarbonate secretion in guinea pig. Gut 57, 1102–111210.1136/gut.2007.134361
    1. Yamamoto A., Ishiguro H., Ko S. B. H., Suzuki A., Wang Y. X., Hamada H., Mizuno N., Kitagawa M., Hayakawa T., Naruse S. (2003). Ethanol induces fluid hypersecretion from guinea-pig pancreatic duct cells. J. Physiol. (Lond.) 551, 917–92610.1113/jphysiol.2003.048827

Source: PubMed

3
Abonneren