Proteomic signatures in plasma during early acute renal allograft rejection

Gabriela V Cohen Freue, Mayu Sasaki, Anna Meredith, Oliver P Günther, Axel Bergman, Mandeep Takhar, Alice Mui, Robert F Balshaw, Raymond T Ng, Nina Opushneva, Zsuzsanna Hollander, Guiyun Li, Christoph H Borchers, Janet Wilson-McManus, Bruce M McManus, Paul A Keown, W Robert McMaster, Genome Canada Biomarkers in Transplantation Group, Gabriela V Cohen Freue, Mayu Sasaki, Anna Meredith, Oliver P Günther, Axel Bergman, Mandeep Takhar, Alice Mui, Robert F Balshaw, Raymond T Ng, Nina Opushneva, Zsuzsanna Hollander, Guiyun Li, Christoph H Borchers, Janet Wilson-McManus, Bruce M McManus, Paul A Keown, W Robert McMaster, Genome Canada Biomarkers in Transplantation Group

Abstract

Acute graft rejection is an important clinical problem in renal transplantation and an adverse predictor for long term graft survival. Plasma biomarkers may offer an important option for post-transplant monitoring and permit timely and effective therapeutic intervention to minimize graft damage. This case-control discovery study (n = 32) used isobaric tagging for relative and absolute protein quantification (iTRAQ) technology to quantitate plasma protein relative concentrations in precise cohorts of patients with and without biopsy-confirmed acute rejection (BCAR). Plasma samples were depleted of the 14 most abundant plasma proteins to enhance detection sensitivity. A total of 18 plasma proteins that encompassed processes related to inflammation, complement activation, blood coagulation, and wound repair exhibited significantly different relative concentrations between patient cohorts with and without BCAR (p value <0.05). Twelve proteins with a fold-change >or=1.15 were selected for diagnostic purposes: seven were increased (titin, lipopolysaccharide-binding protein, peptidase inhibitor 16, complement factor D, mannose-binding lectin, protein Z-dependent protease and beta(2)-microglobulin) and five were decreased (kininogen-1, afamin, serine protease inhibitor, phosphatidylcholine-sterol acyltransferase, and sex hormone-binding globulin) in patients with BCAR. The first three principal components of these proteins showed clear separation of cohorts with and without BCAR. Performance improved with the inclusion of sequential proteins, reaching a primary asymptote after the first three (titin, kininogen-1, and lipopolysaccharide-binding protein). Longitudinal monitoring over the first 3 months post-transplant based on ratios of these three proteins showed clear discrimination between the two patient cohorts at time of rejection. The score then declined to baseline following treatment and resolution of the rejection episode and remained comparable between cases and controls throughout the period of quiescent follow-up. Results were validated using ELISA where possible, and initial cross-validation estimated a sensitivity of 80% and specificity of 90% for classification of BCAR based on a four-protein ELISA classifier. This study provides evidence that protein concentrations in plasma may provide a relevant measure for the occurrence of BCAR and offers a potential tool for immunologic monitoring.

Figures

Fig. 1.
Fig. 1.
Differential concentration of PGCs between subjects with and without BCAR detected by iTRAQ. A, points in gray indicate the 144 PGCs identified in at least two-thirds of the samples from patients with and without BCAR, whereas those in black indicate the 18 PGCs that differed significantly (p value <0.05) between subjects with or without BCAR. Circles indicate the 12 PGCs with fold-changes ≥1.15. The x axis shows the logarithm (base 10) of the ratio between median relative levels in patients with and without BCAR. The y axis shows the −log10 p values. B, gray and white bars represent the averages of the weighted-logged peptide ratios (base 10) in samples with and without BCAR, respectively. Groups of trypsin-cleaved and miscleaved trypsin peptides and the number of samples in which each group was detected are summarized in the adjacent table. Similarly, the averages of the logged PGC ratios (base 10) for the samples with and without BCAR are represented with gray and white bars, respectively, in a separate plot. Vertical lines in all plots represent S.E.
Fig. 2.
Fig. 2.
Gene ontologies. The most significantly enriched biological processes (A) and biological categories (B) based on the 18 protein group codes differentially expressed in BCAR are shown. The x axis shows −log10 (p values).
Fig. 3.
Fig. 3.
Performance of multivariate panel. A, three-dimensional plot of the first three principal components based on 12 PGCs in the panel. Black and gray spheres represent samples with and without BCAR, respectively. B, incremental classification accuracy demonstrating stepwise inclusion of 12 PGCs in the panel. At each step, a classifier score is built using all PGCs to the left on the x axis, and its corresponding classification accuracy is indicated on the y axis. C, longitudinal change in average classifier score using the top three PGCs for subjects with (solid line) and without (dashed line) BCAR and for pre- (▴) and post-transplant samples with (●) and without (○) BCAR. “BL” represents the time before transplant (baseline), and other time points correspond to weeks (W) after transplant. Vertical lines represent S.E.
Fig. 4.
Fig. 4.
Technical validation. A, comparison of ELISA and iTRAQ analyses using 10 samples with BCAR and 19 without BCAR processed in both platforms. B, ELISA protein concentrations for four validated proteins from groups with BCAR (AR; filled circles) and without BCAR (NR; open circles). Horizontal lines represent the median within each group. C, classifier performance based on four proteins measured by ELISA: sensitivity (●), specificity (▴), and accuracy (□). pval, p value.

References

    1. Canadian Institute for Health Information (2008) 2007 Annual Report—Treatment of End-Stage Organ Failure in Canada, 1996 to 2005, Canadian Institute for Health Information, Ottawa, Canada
    1. Keown P. A. (1998) New immunosuppressive strategies. Curr. Opin. Nephrol. Hypertens. 7, 659–663
    1. Wu O., Levy A. R., Briggs A., Lewis G., Jardine A. (2009) Acute rejection and chronic nephropathy: a systematic review of the literature. Transplantation 87, 1330–1339
    1. Halloran P. F. (2004) Immunosuppressive drugs for kidney transplantation. N. Engl. J. Med. 351, 2715–2729
    1. Sacks S., Lee Q., Wong W., Zhou W. (2009) The role of complement in regulating the alloresponse. Curr. Opin. Organ Transplant. 14, 10–15
    1. Cornell L. D., Smith R. N., Colvin R. B. (2008) Kidney transplantation: mechanisms of rejection and acceptance. Annu. Rev. Pathol. 3, 189–220
    1. Land W. G. (2005) Injury to allografts: innate immune pathways to acute and chronic rejection. Saudi J. Kidney Dis. Transpl. 16, 520–539
    1. Solez K., Colvin R. B., Racusen L. C., Haas M., Sis B., Mengel M., Halloran P. F., Baldwin W., Banfi G., Collins A. B., Cosio F., David D. S., Drachenberg C., Einecke G., Fogo A. B., Gibson I. W., Glotz D., Iskandar S. S., Kraus E., Lerut E., Mannon R. B., Mihatsch M., Nankivell B. J., Nickeleit V., Papadimitriou J. C., Randhawa P., Regele H., Renaudin K., Roberts I., Seron D., Smith R. N., Valente M. (2008) Banff 07 classification of renal allograft pathology: updates and future directions. Am. J. Transplant. 8, 753–760
    1. Günther O. P., Balshaw R. F., Scherer A., Hollander Z., Mui A., Triche T. J., Freue G. C., Li G., Ng R. T., Wilson-McManus J., McMaster W. R., McManus B. M., Keown P. A.for the Biomarkers in Transplantation T. (2009) Functional genomic analysis of peripheral blood during early acute renal allograft rejection. Transplantation 88, 942–951
    1. Bermúdez-Crespo J., López J. L. (2007) A better understanding of molecular mechanisms underlying human disease. Proteomics Clin. Appl. 1, 983–1003
    1. Pierce A., Unwin R. D., Evans C. A., Griffiths S., Carney L., Zhang L., Jaworska E., Lee C. F., Blinco D., Okoniewski M. J., Miller C. J., Bitton D. A., Spooncer E., Whetton A. D. (2008) Eight-channel iTRAQ enables comparison of the activity of six leukemogenic tyrosine kinases. Mol. Cell. Proteomics 7, 853–863
    1. Traum A. Z., Schachter A. D. (2005) Transplantation proteomics. Pediatr. Transplant. 9, 700–711
    1. Sidgel T. K., Ling X. B., Lau K. H., Li L., Schilling J., Sarwal M. M. (2009) Urinary peptidomic analysis identifies potential biomarkers for acute rejection of renal transplantation. Clin. Proteomics 5, 103–113
    1. Schaub S., Wilkins J. A., Nickerson P. (2008) Proteomics and renal transplantation: searching for novel biomarkers and therapeutic targets. Contrib. Nephrol. 160, 65–75
    1. McManus C., Rose M., Dunn M. (2006) Proteomics of transplant rejection. Transplant. Rev. 20, 195–207
    1. Schaub S., Rush D., Wilkins J., Gibson I. W., Weiler T., Sangster K., Nicolle L., Karpinski M., Jeffery J., Nickerson P. (2004) Proteomic-based detection of urine proteins associated with acute renal allograft rejection. J. Am. Soc. Nephrol. 15, 219–227
    1. Quintana L. F., Campistol J. M., Alcolea M. P., Bañon-Maneus E., Sol-González A., Cutillas P. R. (2009) Application of label-free quantitative peptidomics for the identification of urinary biomarkers of kidney chronic allograft dysfunction. Mol. Cell. Proteomics 8, 1658–1673
    1. Schaub S., Wilkins J. A., Antonovici M., Krokhin O., Weiler T., Rush D., Nickerson P. (2005) Proteomic-based identification of cleaved urinary beta2-microglobulin as a potential marker for acute tubular injury in renal allografts. Am. J. Transplant. 5, 729–738
    1. Kurian S. M., Heilman R., Mondala T. S., Nakorchevsky A., Hewel J. A., Campbell D., Robison E. H., Wang L., Lin W., Gaber L., Solez K., Shidban H., Mendez R., Schaffer R. L., Fisher J. S., Flechner S. M., Head S. R., Horvath S., Yates J. R., Marsh C. L., Salomon D. R. (2009) Biomarkers for early and late stage chronic allograft nephropathy by proteogenomic profiling of peripheral blood. PLoS One 4, e6212.
    1. Kurian S., Grigoryev Y., Head S., Campbell D., Mondala T., Salomon D. R. (2007) Applying genomics to organ transplantation medicine in both discovery and validation of biomarkers. Int. Immunopharmacol. 7, 1948–1960
    1. Le-Niculescu H., Kurian S. M., Yehyawi N., Dike C., Patel S. D., Edenberg H. J., Tsuang M. T., Salomon D. R., Nurnberger J. I., Jr., Niculescu A. B. (2009) Identifying blood biomarkers for mood disorders using convergent functional genomics. Mol. Psychiatry 14, 156–174
    1. Anderson N. L., Anderson N. G. (2002) The human plasma proteome: history, character, and diagnostic prospects. Mol. Cell. Proteomics 1, 845–867
    1. Omenn G. S. (2005) Exploring the human plasma proteome. Proteomics 5, 3223–3225
    1. Shen Y., Kim J., Strittmatter E. F., Jacobs J. M., Camp D. G., 2nd, Fang R., Tolié N., Moore R. J., Smith R. D. (2005) Characterization of the human blood plasma proteome. Proteomics 5, 4034–4045
    1. Anderson N. L., Polanski M., Pieper R., Gatlin T., Tirumalai R. S., Conrads T. P., Veenstra T. D., Adkins J. N., Pounds J. G., Fagan R., Lobley A. (2004) The human plasma proteome: a nonredundant list developed by combination of four separate sources. Mol. Cell. Proteomics 3, 311–326
    1. Kuzyk M. A., Ohlund L. B., Elliott M. H., Smith D., Qian H., Delaney A., Hunter C. L., Borchers C. H. (2009) A comparison of MS/MS-based, stable-isotope-labeled, quantitation performance on ESI-quadrupole TOF and MALDI-TOF/TOF mass spectrometers. Proteomics 9, 3328–3340
    1. Ross P. L., Huang Y. N., Marchese J. N., Williamson B., Parker K., Hattan S., Khainovski N., Pillai S., Dey S., Daniels S., Purkayastha S., Juhasz P., Martin S., Bartlet-Jones M., He F., Jacobson A., Pappin D. J. (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics 3, 1154–1169
    1. Racusen L. C., Solez K., Colvin R. B., Bonsib S. M., Castro M. C., Cavallo T., Croker B. P., Demetris A. J., Drachenberg C. B., Fogo A. B., Furness P., Gaber L. W., Gibson I. W., Glotz D., Goldberg J. C., Grande J., Halloran P. F., Hansen H. E., Hartley B., Hayry P. J., Hill C. M., Hoffman E. O., Hunsicker L. G., Lindblad A. S., Marcussen N., Mihatsch M. J., Nadasdy T., Nickerson P., Olsen T. S., Papadimitriou J. C., Randhawa P. S., Rayner D. C., Roberts I., Rose S., Rush D., Salinas-Madrigal L., Salomon D. R., Sund S., Taskinen E., Trpkov K., Yamaguchi Y. (1999) The Banff 97 working classification of renal allograft pathology. Kidney Int. 55, 713–723
    1. Etminan M., Samii A. (2004) Pharmacoepidemiology I: a review of pharmacoepidemiologic study designs. Pharmacotherapy 24, 964–969
    1. Shilov I. V., Seymour S. L., Patel A. A., Loboda A., Tang W. H., Keating S. P., Hunter C. L., Nuwaysir L. M., Schaeffer D. A. (2007) The Paragon Algorithm, a next generation search engine that uses sequence temperature values and feature probabilities to identify peptides from tandem mass spectra. Mol. Cell. Proteomics 6, 1638–1655
    1. Kersey P. J., Duarte J., Williams A., Karavidopoulou Y., Birney E., Apweiler R. (2004) The International Protein Index: an integrated database for proteomics experiments. Proteomics 4, 1985–1988
    1. Nesvizhskii A. I., Aebersold R. (2005) Interpretation of shotgun proteomic data: the protein inference problem. Mol. Cell. Proteomics 4, 1419–1440
    1. Smyth G. K. (2004) Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3, Article3
    1. Troyanskaya O., Cantor M., Sherlock G., Brown P., Hastie T., Tibshirani R., Botstein D., Altman R. B. (2001) Missing value estimation methods for DNA microarrays. Bioinformatics 17, 520–525
    1. Sing T., Sander O., Beerenwinkel N., Lengauer T. (2005) ROCR: visualizing classifier performance in R. Bioinformatics 21, 3940–3941
    1. R Development Core Team (2005) R: a Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria
    1. Anglicheau D., Suthanthiran M. (2008) Noninvasive prediction of organ graft rejection and outcome using gene expression patterns. Transplantation 86, 192–199
    1. Gwinner W. (2007) Renal transplant rejection markers. World J. Urol. 25, 445–455
    1. Kahan B. D., Keown P., Levy G. A., Johnston A. (2002) Therapeutic drug monitoring of immunosuppressant drugs in clinical practice. Clin. Ther. 24, 330–350; discussion 329
    1. Sui J., Zhang J., Tan T. L., Ching C. B., Chen W. N. (2008) Comparative proteomics analysis of vascular smooth muscle cells incubated with S- and R-enantiomers of atenolol using iTRAQ-coupled two-dimensional LC-MS/MS. Mol. Cell. Proteomics 7, 1007–1018
    1. Xu J., Khor K. A., Sui J., Zhang J., Tan T. L., Chen W. N. (2008) Comparative proteomics profile of osteoblasts cultured on dissimilar hydroxyapatite biomaterials: an iTRAQ-coupled 2-D LC-MS/MS analysis. Proteomics 8, 4249–4258
    1. Guerreiro N., Gomez-Mancilla B., Williamson B., Minkoff M., Guertin S. (2009) Proteomic profiling of cerebrospinal fluid by 8-plex iTRAQ reveals potential biomarker candidates of Alzheimer's disease. Clin. Proteomics 5, 114–124
    1. Roos A., Daha M. R., van Pelt J., Berger S. P. (2007) Mannose-binding lectin and the kidney. Nephrol. Dial. Transplant. 22, 3370–3377
    1. Pratt J. R., Basheer S. A., Sacks S. H. (2002) Local synthesis of complement component C3 regulates acute renal transplant rejection. Nat. Med. 8, 582–587
    1. Berger S. P., Roos A., Daha M. R. (2005) Complement and the kidney: What the nephrologist needs to know in 2006? Nephrol. Dial. Transplant. 20, 2613–2619
    1. Berger S. P., Roos A., Mallat M. J., Fujita T., de Fijter J. W., Daha M. R. (2005) Association between mannose-binding lectin levels and graft survival in kidney transplantation. Am. J. Transplant. 5, 1361–1366
    1. Kaden J., Zwerenz P., Lambrecht H. G., Dostatni R. (2002) Lipopolysaccharide-binding protein as a new and reliable infection marker after kidney transplantation. Transpl. Int. 15, 163–172
    1. Erez E., Aravot D., Erman A., Sharoni E., Raanani E., Abramov D., Dijk D. V., Sahar G., Vidne B. A. (1997) Beta-2 microglobulin in heart transplanted patients. Transplant. Proc. 29, 2706–2707
    1. Schmitt F., Myara I., Benoit M. O., Guillemain R., Amrein C., Dreyfus G., Paris M., Moatti N. (1989) Monitoring of heart allograft rejection by simultaneous measurement of serum beta 2-microglobulin and urinary neopterin. Ann. Biol. Clin. 47, 237–241
    1. Goldman M. H., Landwehr D. M., Lippman R., Hess M., Wolfgang T., Szentpetery S., Hastillo A., Mendez-Picon G., Lee H. M., Lower R. R. (1982) Beta 2 microglobulins in rejection and cytomegalovirus infection in a cardiac transplant recipient. Transplant. Proc. 14, 437–439
    1. Roxe D. M., Siddiqui F., Santhanam S., del Greco F., Wolf J. (1981) Rationale and application of beta-2-microglobulin measurements to detect acute transplant rejection. Nephron 27, 260–264
    1. Maas K., Chan S., Parker J., Slater A., Moore J., Olsen N., Aune T. M. (2002) Cutting edge: molecular portrait of human autoimmune disease. J. Immunol. 169, 5–9
    1. Carafoli F., Chirgadze D. Y., Blundell T. L., Gherardi E. (2005) Crystal structure of the beta-chain of human hepatocyte growth factor-like/macrophage stimulating protein. FEBS J. 272, 5799–5807
    1. Bevan D., Gherardi E., Fan T. P., Edwards D., Warn R. (2004) Diverse and potent activities of HGF/SF in skin wound repair. J. Pathol. 203, 831–838
    1. Cowin A. J., Kallincos N., Hatzirodos N., Robertson J. G., Pickering K. J., Couper J., Belford D. A. (2001) Hepatocyte growth factor and macrophage-stimulating protein are upregulated during excisional wound repair in rats. Cell Tissue Res. 306, 239–250
    1. Cantaluppi V., Biancone L., Romanazzi G. M., Figliolini F., Beltramo S., Galimi F., Camboni M. G., Deriu E., Conaldi P., Bottelli A., Orlandi V., Herrera M. B., Pacitti A., Segoloni G. P., Camussi G. (2008) Macrophage stimulating protein may promote tubular regeneration after acute injury. J. Am. Soc. Nephrol. 19, 1904–1918
    1. Ikeda Y., Imai Y., Kumagai H., Nosaka T., Morikawa Y., Hisaoka T., Manabe I., Maemura K., Nakaoka T., Imamura T., Miyazono K., Komuro I., Nagai R., Kitamura T. (2004) Vasorin, a transforming growth factor beta-binding protein expressed in vascular smooth muscle cells, modulates the arterial response to injury in vivo. Proc. Natl. Acad. Sci. U.S.A. 101, 10732–10737
    1. Pozzetto U., Abeni D., Citterio F., Castagneto M., Capogrossi M. C., Facchiano A. (2008) Balance of transforming growth factor-{beta}1 and platelet-derived growth factor-BB is associated with kidney allograft rejection. Ann. Clin. Biochem. 45, 213–214
    1. Han X., Huang Z. F., Fiehler R., Broze G. J., Jr. (1999) The protein Z-dependent protease inhibitor is a serpin. Biochemistry 38, 11073–11078
    1. Van de Water N., Tan T., Ashton F., O'Grady A., Day T., Browett P., Ockelford P., Harper P. (2004) Mutations within the protein Z-dependent protease inhibitor gene are associated with venous thromboembolic disease: a new form of thrombophilia. Br. J. Haematol. 127, 190–194
    1. Pawlicki J., Cierpka L., Król R., Ziaja J. (2007) Analysis of coagulation parameters in the early period after kidney transplantation. Transplant. Proc. 39, 2754–2755
    1. Frost R. J., Engelhardt S. (2007) A secretion trap screen in yeast identifies protease inhibitor 16 as a novel antihypertrophic protein secreted from the heart. Circulation 116, 1768–1775
    1. Jerkovic L., Voegele A. F., Chwatal S., Kronenberg F., Radcliffe C. M., Wormald M. R., Lobentanz E. M., Ezeh B., Eller P., Dejori N., Dieplinger B., Lottspeich F., Sattler W., Uhr M., Mechtler K., Dwek R. A., Rudd P. M., Baier G., Dieplinger H. (2005) Afamin is a novel human vitamin E-binding glycoprotein characterization and in vitro expression. J. Proteome Res. 4, 889–899
    1. Machado C., Sunkel C. E., Andrew D. J. (1998) Human autoantibodies reveal titin as a chromosomal protein. J. Cell Biol. 141, 321–333
    1. Reinhardt W., Patschan D., Pietruck F., Philipp T., Janssen O. E., Mann K., Jockenhövel F., Witzke O. (2005) Free androgen index is superior to total testosterone for short-term assessment of the gonadal axis after renal transplantation. Horm. Res. 64, 248–252

Source: PubMed

3
Abonneren