Hydrogel: Preparation, characterization, and applications: A review

Enas M Ahmed, Enas M Ahmed

Abstract

Hydrogel products constitute a group of polymeric materials, the hydrophilic structure of which renders them capable of holding large amounts of water in their three-dimensional networks. Extensive employment of these products in a number of industrial and environmental areas of application is considered to be of prime importance. As expected, natural hydrogels were gradually replaced by synthetic types due to their higher water absorption capacity, long service life, and wide varieties of raw chemical resources. Literature on this subject was found to be expanding, especially in the scientific areas of research. However, a number of publications and technical reports dealing with hydrogel products from the engineering points of view were examined to overview technological aspects covering this growing multidisciplinary field of research. The primary objective of this article is to review the literature concerning classification of hydrogels on different bases, physical and chemical characteristics of these products, and technical feasibility of their utilization. It also involved technologies adopted for hydrogel production together with process design implications, block diagrams, and optimized conditions of the preparation process. An innovated category of recent generations of hydrogel materials was also presented in some details.

Keywords: Hydrogel; Innovation; Optimization; Preparation; Processing.

Figures

Graphical abstract
Graphical abstract
Fig. 1
Fig. 1
Stimuli response swelling hydrogel.
Fig. 2
Fig. 2
Schematic diagram of hydrogel preparation.
Fig. 3
Fig. 3
Hydrogel preparation block diagram (solution polymerization/cross-linking procedure).
Fig. 4
Fig. 4
Solution polymerization with recycle loop.
Fig. 5
Fig. 5
Block diagram of suspension polymerization process.
Fig. 6
Fig. 6
Suspension terpolymerization process with recycle loop.
Fig. 7
Fig. 7
Block diagram for the preparation of the high swelling hydrogel.
Fig. 8
Fig. 8
Block diagram of the rapid preparation process of superabsorbent hydrogel.
Fig. 9
Fig. 9
Preparative flowchart for grafted starch and P(AM-co-IA) hydrogel.
Fig. 10
Fig. 10
Preparative steps in the production of SAPs and SPHs.
Fig. 11
Fig. 11
Post-preparation steps of SAPs and SPHs.
Fig. 12
Fig. 12
Typical swelling and mechanical properties of: first (A and B), second (C and D) and third (E and F) SPH generations.
Fig. 13
Fig. 13
Schematic diagram of batch reactor.
Fig. 14
Fig. 14
Schematic diagram of impellers used in high viscosity range.
https://www.ncbi.nlm.nih.gov/pmc/articles/instance/4348459/bin/fx1.jpg

References

    1. Ahmed Enas M., Aggor Fatma S., Awad Ahmed M., El-Aref Ahmed T. An innovative method for preparation of nanometal hydroxide superabsorbent hydrogel. Carbohydr Polym. 2013;91:693–698.
    1. Buchholz F.L., Graham A.T. Wiley- VCH; New York: 1998. Modern superabsorbent polymer technology. [chapters 1–7]
    1. Brannon-Peppas L., Harland R.S. Absorbent polymer technology. J Controlled Release. 1991;17(3):297–298.
    1. Li Yuhui, Huang Guoyou, Zhang Xiaohui, Li Baoqiang, Chen Yongmei, Lu Tingli, Lu Tian Jian, Xu Feng. Magnetic hydrogels and their potential biomedical applications. Adv Funct Mater. 2013;23(6):660–672.
    1. .
    1. Burkert Sina, Schmidt Thomas, Gohs Uwe, Dorschner Helmut. Karl-Friedrich Arndt cross-linking of poly(N-vinyl pyrrolidone) films by electron beam irradiation. Radiat Phys Chem. 2007;76(8–9):1324–1328.
    1. Wen Zhao, Xing Jin, Yang Cong, Yuying Liu, Jun Fu. Degradable natural polymer hydrogels for articular cartilage tissue engineering. J Chem Technol Biotechnol. 2013;88(3):327–339.
    1. Takashi L., Hatsumi T., Makoto M., Takashi I., Takehiko G., Shuji S. Synthesis of porous poly(N-isopropylacrylamide) gel beads by sedimentation polymerization and their morphology. J Appl Polym Sci. 2007;104(2):842.
    1. Yang L., Chu J.S., Fix J.A. Colon-specific drug delivery: new approaches and in vitro/in vivo evaluation. Int J Pharm. 2002;235:1–15.
    1. Maolin Z., Jun L., Min Y., Hongfei H. The swelling behaviour of radiation prepared semi-interpenetrating polymer networks composed of polyNIPAAm and hydrophilic polymers. Radiat Phys Chem. 2000;58:397–400.
    1. Hacker MC, Mikos AG. Synthetic polymers, principles of regenerative medicine. 2nd ed.; 2011. p. 587–622.
    1. Shin Jinsub., Braun Paul.V., Lee Wonmok. Fast response photonic crystal pH sensor based on templated photo-polymerized hydrogel inverse opal. Sens Actuat B: Chem. 2010;150(1):183–190.
    1. Wichterle O. Hydrophilic gels for biological use. Nature. 1960;185:117.
    1. Singh Anisha, Sharma Pramod Kumar, Garg Vipin Kumar, Garg Garima. Hydrogels: a review. 2010;4(2):Article 016. ISSN: 0976-044X [September–October].
    1. Amulya K. Saxena synthetic biodegradable hydrogel (Pleura Seal) sealant for sealing of lung tissue after thoracoscopic resection. J Thoracic Cardiovasc Surg. 2010;139(2):496–497.
    1. Hamidi Mehrdad, Azadi Amir, Rafiei Pedram. Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev. 2009;60(15):1638–1649.
    1. Sun X., Zhang G., Shi Q., Tang B., Wu Z.J. Preparation and characterization of water-swellable natural rubbers. J Appl Polym Sci. 2002;86:3212–3717.
    1. Chen X., Martin B.D., Neubauer T.K., Linhardt R.J., Dordick J.S., Rethwisch D.G. Enzymatic and chemoenzymatic approaches to synthesis of sugar based polymer and hydrogels. Carbohydr Polym. 1995;28:15–21.
    1. Kashyap N., Kumar N., Kumar M. Hydrogels for pharmaceutical and biomedical applications. Crit Rev Ther Drug Carr Syst. 2005;22:107–149.
    1. Kaihara Sachiko., Matsumura Shuichi., Fisher John.P. Synthesis and characterization of cyclic acetal based degradable hydrogels. Eur J Pharm Biopharm. 2008;68(1):67–73.
    1. Stamatialis Dimitrios F., Papenburg Bernke J., Gironés Miriam, Saiful Saiful, Bettahalli Srivatsa N.M., Schmitmeier Stephanie, Wessling Matthias. Medical applications of membranes: drug delivery, artificial organs and tissue engineering. J Membr Sci. 2008;308(1–2):1–34.
    1. Zhang Ling, Li Kuifeng, Xiao Wenqian, Zheng Li, Xiao Yumei, Fan Hongsong. Preparation of collagen–chondroitin sulfate–hyaluronic acid hybrid hydrogel scaffolds and cell compatibility in vitro. Carbohydr Polym. 2011;84(1):118–125.
    1. Saul Justin M, Williams David F. Hydrogels in regenerative medicine, principles of regenerative medicine. 2nd ed.; 2011. p. 637–61.
    1. Van der Linden H.J., Herber S., Olthuis W., Bergveld P. Patterned dual pH responsive core shell hydrogels with controllable swelling kinetics and volume. Analyst. 2003;128:325–331.
    1. Sikareepaisan Panprung, Ruktanonchai Uracha, Supaphol Pitt. Preparation and characterization of asiaticoside-loaded alginate films and their potential for use as effectual wound dressings. Carbohydr Polym. 2011;83(4):1457–1469.
    1. Wang Feng, Li Zhenqing, Khan Mahmood, Tamama Kenichi, Kuppusamy Periannan. Injectable, rapid gelling and highly flexible hydrogel composites as growth factor and cell carriers. Acta Biomater. 2010;6(6):1978–1991.
    1. Roy Debashish, Cambre Jennifer N., Brent S. Sumerlin future perspectives and recent advances in stimuli-responsive materials. Prog Polym Sci. 2010;35(12):278–301.
    1. Krsko Peter, McCann Thomas E., Thach Thu-Trang, Laabs Tracy L., Geller Herbert M., Libera Matthew R. Length-scale mediated adhesion and directed growth of neural cells by surface-patterned poly(ethylene glycol) hydrogels Original Research Article. Biomaterials. 2009;30(5):721–729.
    1. Park J.H., Kim D. Study on foaming water-swellable EPDM rubber. J Appl Polym Sci. 2001;80:115–121.
    1. Pourjavadi A., Harzandi A.M., Hosseinzadeh H. Modified carrageenan 3. Synthesis of a novel polysaccharide-based superabsorbent hydrogel via graft copolymerization of acrylic acid onto kappa-carrageenan in air. Eur Polym J. 2004;40(7):1363–1370.
    1. Peppas NA, Mikos AG. In: Peppas NA, editor. Hydrogels in medicine and pharmacy – fundamentals, vol. I. Florida: CRC Press, Inc.; 1986. p. 1–25.
    1. Khoylou F., Naimian F. Radiation synthesis of superabsorbent polyethylene oxide/tragacanth hydrogel. Radiat Phys Chem. 2009;78(3):195–198.
    1. Park Mi-Ran, Chun Chang Ju, Ahn Sung-Won, Ki Min-Hyo, Cho Chong-Su, Song Soo-Chang. Sustained delivery of human growth hormone using a polyelectrolyte complex-loaded thermosensitive polyphosphazene hydrogel. J Controlled Release. 2010;147(3):359–367.
    1. Vijayalakshmi Sridhar, Kenichi Takahata. A hydrogel-based passive wireless sensor using a flex-circuit inductive transducer. Sens Actuat A: Phys. 2009;155(1):58–65.
    1. Tabata Y. Biomaterial technology for tissue engineering applications. J R Soc Interf. 2009;6:S311–S324.
    1. Shantha K.L., Harding D.R.K. Synthesis and evaluation of sucrose-containing polymeric hydrogels for oral drug delivery. J Appl Polym Sci. 2002;84:2597.
    1. Raju K.M., Raju M.P. Synthesis of novel superabsorbing copolymers for agricultural and horticultural applications. Polym Int. 2001;50:946–951.
    1. Takeda H, Taniguchi Y. Production process for highly water absorbable polymer. US Patent 1985; 4,525,527.
    1. Chen J., Zhao Y. Relation between water absorbency and reaction conditions in aqueous solution polymerization of polyacrylate superabsorbent polymers. J Appl Polym Sci. 2000;75:808–814.
    1. Kiatkamjornwong Suda. Superabsorbent polymers and superabsorbent polymer composites. Science Asia 2007;33(Suppl):1.39–43.
    1. Ogata Tomonari., Nagayoshi Kana., Nagasako Tadashi., Kurihara Seiji., Nonaka Takamasa. Synthesis of hydrogel beads having phosphinic acid groups and its adsorption ability for lanthanide ions. React Funct Polym. 2006;66(6):625–633.
    1. Hunkeler D. Synthesis and characterization of high molecular weight water-soluble polymers. Polym Int. 1992;27:23–33.
    1. Watanabe N., Hosoya Y., Tamura A., Kosuge H. Characteristics of water-absorbent polymer emulsions. Polym Int. 1993;30:525–531.
    1. Talaat H.A., Sorour M.H., Aboulnour A.G., Shaalan H.F., Ahmed Enas M., Awad A.M., Ahmed M.A. Development of a multi-component fertilizing hydrogel with relevant techno-economic indicators. Am-Euras J Agric Environ Sci. 2008;3(5):764–770.
    1. Qunyi Tong., Ganwei Zhang. Rapid synthesis of a superabsorbent from a saponified starch and acrylonitrile/AMPS graft copolymers. Carbohydr Polym. 2005;62:74–79.
    1. Karadað E., Saraydin D., Gûven O. Radiation induced superabsorbent hydrogels. acrylamide/itaconic acid copolymers. Macromol Mater Eng. 2001;286:34–42.
    1. Ajji Z., Mirjalili G., Alkhatab A., Dada H. Use of electron beam for the production of hydrogel dressings. Radiat Phys Chem. 2008;77(2):200–202.
    1. Zohuriaan-Mehr M.J. Iran Polymer Society; Tehran: 2006. Super-absorbents. p. 2–4 [in Persian]
    1. Zohuriaan-Mehr Mohammad J., Kabiri Kourosh. Superabsorbent polymer materials: a review. Iran Polym J. 2008;17(6):451–477.
    1. Don Trong-Ming, Huang Mei-Lien, Chiu Ai-Chien, Kuo Kuo-Huai, Chiu Wen-Yen, Chiu Lien-Hua. Preparation of thermo-responsive acrylic hydrogels useful for the application in transdermal drug delivery systems. Mater Chem Phys. 2008;107(2–3):266–273.
    1. Pourjavadi A., Kurdtabar M., Mahdavinia G.R., Hosseinzadeh H. Synthesis and super-swelling behavior of a novel protein-based superabsorbent hydrogel. Polym Bull. 2006;57:813–824.
    1. Wampler F.M. Formation of diacrylic acid during acrylic acid storage. Plant/Operation Prog. 1988;7(3):183–189.
    1. Alaei Javad, Boroojerdi Saeid Hasan, Rabiei Zahra. Application of hydrogels in drying operation. Petrol Coal. 2005;47(3):32–37.
    1. BenAmor S., Doyle F.J., McFarlane R. Polymer grade transition control using advanced real-time optimization software. J Process Control. 2004;14:349.
    1. Bindlish R., Rawlings J.B. Target linearization and model predictive control of polymerization processes. AIChE J. 2003;49:2885.
    1. Harris K.R., Palazŏglu A. Control of nonlinear processes using functional expansion models. Comput Chem Eng. 2003;27:1061.
    1. Özkan L., Kothare M.V., Georgakis C. Control of a solution copolymerization reactor using multi-model predictive control. Chem Eng Sci. 2003;58:1207.
    1. Park M.-J., Hur S.-M., Rhee H.-K. Online estimation and control of polymer quality in a copolymerization reactor. AIChE J. 2002;48:10.
    1. Hong Jinho, Lee Jeongwoo, Rhym Young-Mok, Kim Doo-Hyun, Shim Sang Eun. Polyelectrolyte-assisted synthesis of polystyrene microspheres by dispersion polymerization and the subsequent formation of silica shell. J Colloid Interface Sci. 2010;344(2):410–416.
    1. Turakhiya Jignesh M, Savani Hitesh D, Patel Jainish M, Akbari Bhavesh V, Prajapati Neha G, Shah Vyoma S. A review superporous hydrogel (SPH) – an approach for controlled drug delivery. Univ J Pharm 2013:2(1):47–58.
    1. Ma Y., Lee P. Investigation of suspension polymerization of hydrogel beads for drug delivery. Iran Polym J. 2009;18(4):307–313.
    1. Lanthong P., Nuisin R., Kiatkamjornwong S. Graft copolymerization characterization and degradation of cassava starch-g-acrylamide/itaconic acid superabsorbents. Carbohydr Polym. 2006;66:229–245.
    1. Chowdhury M.A., Alam M.M., Mina M.F., Akhtar F., Kabir S.E. Optimization of the synthetic of acrylamide hydrogel by ɣ-ray irradiation. Chin J Polym Sci. 2004;22(3):253–258.
    1. Francis S., Mitra D., Dhanawade B.R., Varshney L., Sabharwal S. Gamma radiation synthesis of rapid swelling superporous polyacrylamide hydrogels. Radiat Phys Chem. 2009;78(11):951–953.
    1. Varshney Lalit. Role of natural polysaccharides in radiation formation of PVA–hydrogel wound dressing. Nucl Instrum Methods Phys Res, Sect B. 2007;255(2):343–349.
    1. Elbert Donald.L. Liquid–liquid two-phase systems for the production of porous hydrogels and hydrogel microspheres for biomedical applications: a tutorial review. Acta Biomater. 2011;7(1):31–56.
    1. Chirila T.V., Constable I.J., Crawford G.J., Vijayasekaran S., Thompson D.E., Chen Y.C., Fletcher W.A. Poly (2-hydroxyethyl methacrylate) sponges as implant materials: in vivo and in vitro evaluation of cellular invasion. Biomaterials. 1993;14:26–38.
    1. Kabiri K., Omidian H., Hashemi S.A., Zohuriaan-Mehr M.J. Concise synthesis of fast-swelling superabsorbent hydrogels: effect of initiator concentration on porosity and absorption rate. J Polym Mater. 2003;(20):17–22.
    1. Omidian Hossein, Rocca Jose G., Park Kinam. Advances in superporous hydrogels. J Pharm Pharmacol. 2007;59:317–327.
    1. Nochos Argyrios, Douroumis Dionysios, Bouropoulos Nikolaos. In vitro release of bovine serum albumin from alginate/HPMC hydrogel beads. Carbohydr Polym. 2008;74(3):451–457.
    1. Chen J., Park H., Park K. Synthesis of superporous hydrogels: hydrogels with fast swelling and superabsorbent properties. J Biomed Mater Res. 1999;44:53–62.
    1. Park K, Chen J, Park H. Hydrogel composites and superporous hydrogel composites having fast swelling, high mechanical strength, and superabsorbent properties. US patent no. 6271278; 2001.
    1. Polnok A., Verhoef J.C., Borchard G., Sarisuta N., Junginger H.E. In vitro evaluation of intestinal absorption of desmopressin using drug-delivery systems based on super porous hydrogels. Int J Pharm. 2004;269(2):303–310.
    1. Dorkoosh F.A., Verhoef J.C., Borchard G., Rafiee-Tehrani M., Verheijden J.H.M., Junginger H.E. Intestinal absorption of human insulin in pigs using delivery systems based on superporous hydrogel polymers. Int J Pharm. 2002;247(1–2):47–55.
    1. Dorkoosh F.A., Verhoef J.C., Verheijden J.H.M., Rafiee-Tehrani M., Borchard G., Junginger H.E. Peroral absorption of octreotide in pigs formulated in delivery systems on the basis of superporous hydrogel polymers. Pharm Res. 2002;19(10):1532–1536.
    1. Omidian H, Qiu Y, Yang S, Kim D, Park H, Park K. Hydrogels having enhanced elasticity and mechanical strength properties. US patent 6960617; 2005.
    1. Omidian H., Rocca J.G., Park K. Elastic superporous hydrogel hybrid of polyacrylamide and sodium alginate. Macromol Biosci. 2006;6:703–710.
    1. Chien D.C.H., Penlidis A. On-line sensors for polymerization reactors. J Macromol Sci, Rev Macromol Chem Phys. 1990;30:1–42.
    1. Le Cardinal G., Germain E., Gelus M., Guillon B. The design of stirred batch polymerization reactor. Chem Eng Sci. 1980;35:499–505.

Source: PubMed

3
Abonneren