Interactions between human milk oligosaccharides, microbiota and immune factors in milk of women with and without mastitis

Irma Castro, Cristina García-Carral, Annalee Furst, Sadaf Khwajazada, Janneiry García, Rebeca Arroyo, Lorena Ruiz, Juan M Rodríguez, Lars Bode, Leónides Fernández, Irma Castro, Cristina García-Carral, Annalee Furst, Sadaf Khwajazada, Janneiry García, Rebeca Arroyo, Lorena Ruiz, Juan M Rodríguez, Lars Bode, Leónides Fernández

Abstract

Lactational mastitis is an excellent target to study possible interactions between HMOs, immune factors and milk microbiota due to the infectious and inflammatory nature of this condition. In this work, microbiological, immunological and HMO profiles of milk samples from women with (MW) or without (HW) mastitis were compared. Secretor status in women (based on HMO profile) was not associated to mastitis. DFLNH, LNFP II and LSTb concentrations in milk were higher in samples from HW than from MW among Secretor women. Milk from HW was characterized by a low bacterial load (dominated by Staphylococcus epidermidis and streptococci), high prevalence of IL10 and IL13, and low sialylated HMO concentration. In contrast, high levels of staphylococci, streptococci, IFNγ and IL12 characterized milk from MW. A comparison between subacute (SAM) and acute (AM) mastitis cases revealed differences related to the etiological agent (S. epidermidis in SAM; Staphylococcus aureus in AM), milk immunological profile (high content of IL10 and IL13 in SAM and IL2 in AM) and milk HMOs profile (high content of 3FL in SAM and of LNT, LNnT, and LSTc in AM). These results suggest that microbiological, immunological and HMOs profiles of milk are related to mammary health of women.

Conflict of interest statement

The authors declare no competing interests.

© 2022. The Author(s).

Figures

Figure 1
Figure 1
Spearman rank correlations between individual HMOs concentrations in milk samples from healthy women (HW group; A) and mastitis cases (MW group; B) groups. Only statistically significant (p < 0.05) correlations between individual HMOs that were present in > 50% of the samples in each group are shown .The strength and colors indicate directionally (blue denotes positive; red denotes negative) of the association. DFLac, difucosyllactose; DFLNH, difucosyllacto-N-hexaose; DFLNT, difucosyllacto-N-tetrose; DSLNH, diasilyllacto-N-hexaose; DSLNT, diasilyllacto-N-tetraose; FDSLNH, fucodisialyllacto-N-hexaose; FLNH, fucosyllacto-N-hexaose; HMO, human milk oligosaccharide; LNFP, lacto-N-fucopentaose; LNH, lacto-N-hexaose; LNnT, lacto-N-neotetraose; LNT, lacto-N-tetraose; LSTb, sialyl-lacto-N-tetraose b; LSTc, sialyl-lacto-N-tetraose c; 2’FL, 2’-fucosyllactose; 3FL, 3-fucosyllactose; 3’SL, 3’-sialyllactose; 6’SL, 6’-sialyllactose.
Figure 2
Figure 2
Spearman rank correlations between immunological compounds concentrations in milk samples from healthy women (HW group; A) and mastitis cases (MW group; B). Only statistically significant (p < 0.05) correlations between individual HMOs that were present in > 50% of the samples in each group are shown. The strength and colors indicate directionally (blue denotes positive; red denotes negative) of the association. G.CSF, granulocyte colony-stimulating factor; INF.g, interferon-γ; IL, interleukin; MCP.1, macrophage-monocyte chemoattractant protein-1; MIP1.b, macrophage inflammatory protein-1β; TGFb2, transforming growth factor-β2; TNF.a, tumor necrosis factor-α.
Figure 3
Figure 3
Spearman rank correlations between individual and grouped HMOs, microbial counts and immunological compounds concentrations in milk samples from healthy women (HW group; A) and mastitis cases (MW group; B). Only statistically significant (p < 0.05) correlations between those individual or grouped compounds or bacteria that were present in > 50% of the samples in each group are shown. The strength and colors indicate directionally (blue denotes positive; red denotes negative) of the association. DFLac, difucosyllactose; DFLNH, difucosyllacto-N-hexaose; DFLNT, difucosyllacto-N-tetrose; DSLNH, diasilyllacto-N-hexaose; DSLNT, diasilyllacto-N-tetraose; FDSLNH, fucodisialyllacto-N-hexaose; FLNH, fucosyllacto-N-hexaose; HMO, human milk oligosaccharide; LNFP, lacto-N-fucopentaose; LNH, lacto-N-hexaose; LNnT, lacto-N-neotetraose; LNT, lacto-N-tetraose; LSTb, sialyl-lacto-N-tetraose b; LSTc, sialyl-lacto-N-tetraose c; 2’FL, 2’-fucosyllactose; 3FL, 3-fucosyllactose; 3’SL, 3’-sialyllactose; 6’SL, 6’-sialyllactose. Total HMO-bound sialic acid; total HMO-bound fucose; small HMO; type 1; type 2; α-1,2; α-1,3; and α-2,6 were calculated as the sum of all sialic acid moieties bound to each HMO; all fucose moieties bound to each HMO; 2’FL + 3FL + 3’SL + 6’SL; LNT + LNFP I + LNFP II + LSTb + DSLNT; LNnT + LNFP III + LSTc; LNFP I + 2’FL; LNFP III + 3FL; and LSTb + LSTc + 6’SL, respectively. GCSF, granulocyte colony-stimulating factor; INFγ, interferon-γ; IL, interleukin; MCP1, macrophage-monocyte chemoattractant protein-1; MIP1β, macrophage inflammatory protein-1β; TGFβ2, transforming growth factor-β2; TNFα, tumor necrosis factor-α.
Figure 4
Figure 4
Box-plots showing the concentrations (nmol/mL) of the individual HMOs. The boxes represent the values of the interquartile ranges, with the median represented as a line. Outliers are represented as dots. Samples colored in red belong to acute mastitis (AM) cases and those in green to subacute mastitis (SAM) cases. Wilcoxon rank sum tests or ANOVA tests (depending on the distribution of the data) were used to determine differences in HMOs concentration between samples from acute or subacute mastitis-suffering women. DFLac, difucosyllactose; DFLNH, difucosyllacto-N-hexaose; DFLNT, difucosyllacto-N-tetrose; DSLNH, diasilyllacto-N-hexaose; DSLNT, diasilyllacto-N-tetraose; FDSLNH, fucodisialyllacto-N-hexaose; FLNH, fucosyllacto-N-hexaose; HMO, human milk oligosaccharide; LNFP, lacto-N-fucopentaose; LNH, lacto-N-hexaose; LNnT, lacto-N-neotetraose; LNT, lacto-N-tetraose; LSTb, sialyl-lacto-N-tetraose b; LSTc, sialyl-lacto-N-tetraose c; 2’FL, 2’-fucosyllactose; 3FL, 3-fucosyllactose; 3’SL, 3’-sialyllactose; 6’SL, 6’-sialyllactose.

References

    1. Victora CG, et al. Breastfeeding in the 21st century: Epidemiology, mechanisms, and lifelong effect. Lancet. 2016;387:475–490. doi: 10.1016/S0140-6736(15)01024-7.
    1. Andreas NJ, Kampmann B, Le-Doare MK. Human breast milk: A review on its composition and bioactivity. Early Hum. Dev. 2015;91:629–635. doi: 10.1016/j.earlhumdev.2015.08.013.
    1. Goldman AS. Future research in the immune system of human milk. J. Pediatr. 2019;206:274–279. doi: 10.1016/j.jpeds.2018.11.024.
    1. Bode L. Human milk oligosaccharides: Every baby needs a sugar mama. Glycobiology. 2012;22:1147–1162. doi: 10.1093/glycob/cws074.
    1. McGuire MK, et al. What’s normal? Oligosaccharide concentrations and profiles in milk produced by healthy women vary geographically. Am. J. Clin. Nutr. 2017;105:1086–1100. doi: 10.3945/ajcn.116.139980.
    1. Ruiz L, et al. What’s normal? Immune profiling of human milk from healthy women living in different geographical and socioeconomic settings. Front. Immunol. 2017;8:1–17. doi: 10.3389/fimmu.2017.00696.
    1. Lackey KA, et al. What’s normal? Microbiomes in human milk and infant feces are related to each other but vary geographically: The INSPIRE study. Front. Nutr. 2019;6:45. doi: 10.3389/fnut.2019.00045.
    1. Doare KL, Holder B, Bassett A, Pannaraj PS. Mother’s milk: A purposeful contribution to the development of the infant microbiota and immunity. Front. Immunol. 2018;9:361. doi: 10.3389/fimmu.2018.00361.
    1. Moossavi S, et al. Integrated analysis of human milk microbiota with oligosaccharides and fatty acids in the CHILD cohort. Front. Nutr. 2019;6:58. doi: 10.3389/fnut.2019.00058.
    1. Wilson E, Woodd SL, Benova L. Incidence of and risk factors for lactational mastitis: A systematic review. J. Hum. Lact. 2020;36:673–686. doi: 10.1177/0890334420907898.
    1. Contreras GA, Rodríguez JM. Mastitis comparative etiology and epidemiology. J. Mammary Gland Biol. Neoplas. 2011;16:339–356. doi: 10.1007/s10911-011-.9234-0.
    1. Fernández L, et al. Probiotics for human lactational mastitis. Benef. Microbes. 2014;5:169–183. doi: 10.3920/BM2013.0036.
    1. Rodríguez JM, Fernández L. Infectious mastitis during lactation: A mammary dysbiosis model. In: McGuire M, McGuire M, Bode L, editors. Prebiotics and Probiotics in Human Milk. Academic Press; 2017. pp. 401–428.
    1. Arroyo R, et al. Treatment of infectious mastitis during lactation: Antibiotics versus oral administration of Lactobacilli isolated from breast milk. Clin. Infect. Dis. 2010;50:1551–1558. doi: 10.1086/652763.
    1. Jiménez E, et al. Metagenomic analysis of milk of healthy and mastitis-suffering women. J. Hum. Lact. 2015;31:406–415. doi: 10.1177/0890334415585078.
    1. Patel SH, Vaidya YH, Joshi CG, Kunjadia AP. Culture-dependent assessment of bacterial diversity from human milk with lactational mastitis. Comp. Clin. Path. 2016;25:437–443. doi: 10.1186/1471-2334-8-51.
    1. Patel SH, et al. Culture independent assessment of human milk microbial community in lactational mastitis. Sci. Rep. 2017;7:1–11. doi: 10.1038/s41598-017-08451-7.
    1. Marín M, Arroyo R, Espinosa-Martos I, Fernández L, Rodríguez JM. Identification of emerging human mastitis pathogens by MALDI-TOF and assessment of their antibiotic resistance patterns. Front. Microbiol. 2017;8:1–13. doi: 10.3389/fmicb.2017.01258.
    1. Rimoldi SG, et al. The role of Staphylococcus aureus in mastitis: A multidisciplinary working group experience. J. Hum. Lact. 2020;36:503–509. doi: 10.1177/0890334419876272.
    1. Jiménez E, et al. Staphylococcus epidermidis: A differential trait of the fecal microbiota of breast-fed infants. BMC Microbiol. 2008;8:1–11. doi: 10.1186/1471-2180-8-143.
    1. Mediano P, et al. Microbial diversity in milk of women with mastitis: potential role of coagulase-negative staphylococci, viridans group streptococci, and corynebacteria. J. Hum. Lact. 2017;33:309–318. doi: 10.1177/0890334417692968.
    1. Hunt KM, et al. Characterization of the diversity and temporal stability of bacterial communities in human milk. PLoS One. 2011;6:e21313. doi: 10.1371/journal.pone.0021313.
    1. Cabrera-Rubio R, et al. The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am. J. Clin. Nutr. 2012;96:544–551. doi: 10.3945/ajcn.112.037382.
    1. Delgado S, et al. Staphylococcus epidermidis strains isolated from breast milk of women suffering infectious mastitis: Potential virulence traits and resistance to antibiotics. BMC Microbiol. 2009;9:1–11. doi: 10.1186/1471-2180-9-82.
    1. Munblit D, et al. Immune components in human milk are associated with early infant immunological health outcomes: A prospective three-country analysis. Nutrients. 2017;9:532. doi: 10.3390/nu9060532.
    1. Bryan D-L, Forsyth KD, Gibson RA, Hawkes JS. Interleukin-2 in human milk: a potential modulator of lymphocyte development in the breastfed infant. Cytokine. 2006;33:289–293. doi: 10.1016/j.cyto.2006.02.009.
    1. Schroder K, Hertzog PJ, Ravasi T, Hume DA. Interferon-γ: An overview of signals, mechanisms and functions. J. Leukoc. Biol. 2004;75:163–189. doi: 10.1189/jlb.0603252.
    1. Trinchieri G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat. Rev. Immunol. 2003;3:133–146. doi: 10.1038/nri1001.
    1. Fernández-Ruiz M, Aguado JM. Risk of infection associated with anti-TNF-α therapy. Expert Rev. Anti. Infect. Ther. 2018;16:939–956. doi: 10.1080/14787210.2018.1544490.
    1. Bent R, Moll L, Grabbe S, Bros M. Interleukin-1 beta: A friend or foe in malignancies? Int. J. Mol. Sci. 2018;19:2155. doi: 10.3390/ijms19082155.
    1. Hunt KM, et al. Mastitis is associated with increased free fatty acids, somatic cell count, and interleukin-8 concentrations in human milk. Breastfeed. Med. 2013;8:105–110. doi: 10.1089/bfm.2011.0141.
    1. Tuaillon E, et al. Subclinical mastitis occurs frequently in association with dramatic changes in inflammatory/anti-inflammatory breast milk components. Pediatr. Res. 2017;81:556–564. doi: 10.1038/pr.2016.220.
    1. Castro I, et al. Metataxonomic and immunological analysis of milk from ewes with or without a history of mastitis. J. Dairy Sci. 2019;102:9298–9311. doi: 10.3168/jds.2019-16403.
    1. Wynn TA. IL-13 effector functions. Annu. Rev. Immunol. 2003;21:425–456. doi: 10.1146/annurev.immunol.21.120601.141142.
    1. Sabaté Brescó M, et al. Pathogenic mechanisms and host interactions in Staphylococcus epidermidis device-related infection. Front. Microbiol. 2017;8:1401. doi: 10.3389/fmicb.2017.01401.
    1. Spiliopoulou AI, et al. Bacterial adhesion, intracellular survival and cytokine induction upon stimulation of mononuclear cells with planktonic or biofilm phase Staphylococcus epidermidis. FEMS Microbiol. Lett. 2012;330:56–65. doi: 10.1111/j.1574-6968.2012.02533.x.
    1. Delgado S, et al. Characterization of Staphylococcus aureus strains involved in human and bovine mastitis. FEMS Immunol. Med. Microbiol. 2011;62:225–235. doi: 10.1111/j.1574-695X.2011.00806.x.
    1. Oddy WH, Rosales F. A systematic review of the importance of milk TGF-β on immunological outcomes in the infant and young child. Pediatr. Allergy Immunol. 2010;21:47–59. doi: 10.1111/j.1399-3038.2009.00913.x.
    1. Verhasselt V. Neonatal tolerance under breastfeeding influence: the presence of allergen and transforming growth factor-beta in breast milk protects the progeny from allergic asthma. J. Pediatr. 2010;156:S16–20. doi: 10.1016/j.jpeds.2009.11.015.
    1. Samuel TM, et al. Subclinical mastitis in a European multicenter cohort: Prevalence, impact on human milk (HM) composition, and association with infant HM intake and growth. Nutrients. 2020;12:105. doi: 10.3390/nu12010105.
    1. Prudden AR, et al. Synthesis of asymmetrical multiantennary human milk oligosaccharides. Proc. Natl. Acad. Sci. U. S. A. 2017;114:6954–6959. doi: 10.1073/pnas.1701785114.
    1. Morrow AL, Ruiz-Palacios GM, Jiang X, Newburg DS. Human-milk glycans that inhibit pathogen binding protect breast-feeding infants against infectious diarrhea. J. Nutr. 2005;135:1304–1307. doi: 10.1093/jn/135.5.1304.
    1. Ewald DR, Sumner SCJ. Blood type biochemistry and human disease. Wiley Interdiscip. Rev. Syst. Biol. Med. 2016;8:517–535. doi: 10.1002/wsbm.1355.
    1. Nurjadi D, Lependu J, Kremsner PG, Zanger P. Staphylococcus aureus throat carriage is associated with ABO-/Secretor status. J. Infect. 2012;65:310–317. doi: 10.1016/j.jinf.2012.05.011.
    1. Smyth DJ, et al. FUT2 non-Secretor status links type 1 diabetes susceptibility and resistance to infection. Diabetes. 2011;60:3081–3084. doi: 10.2337/db11-0638.
    1. Azad MB, et al. Human milk oligosaccharide concentrations are associated with multiple fixed and modifiable maternal characteristics, environmental factors, and feeding practices. J. Nutr. 2018;148:1733–1742. doi: 10.1093/jn/nxy175.
    1. Seppo AE, Autran CA, Bode L, Järvinen KM. Human milk oligosaccharides and development of cow’s milk allergy in infants. J. Allergy Clin. Immunol. 2017;139:708–711. doi: 10.1016/j.jaci.2016.08.031.
    1. Cabrera-Rubio R, et al. Association of maternal secretor status and human milk oligosaccharides with milk microbiota: An observational pilot study. J. Pediatr. Gastroenterol. Nutr. 2019;68:256–263. doi: 10.1097/MPG.0000000000002216.
    1. Bode L. Human milk oligosaccharides: Structure and functions. Nestle Nutr. Inst. Workshop Ser. 2020;94:115–123. doi: 10.1159/000505339.
    1. Sela DA, Mills DA. Nursing our microbiota: Molecular linkages between bifidobacteria and milk oligosaccharides. Trends Microbiol. 2010;18:298–307. doi: 10.1016/j.tim.2010.03.008.
    1. Bode L. The functional biology of human milk oligosaccharides. Early Hum. Dev. 2015;91:619–622. doi: 10.1016/j.earlhumdev.2015.09.001.
    1. Jost T, Lacroix C, Braegger C, Chassard C. Impact of human milk bacteria and oligosaccharides on neonatal gut microbiota establishment and gut health. Nutr. Rev. 2015;73:426–437. doi: 10.1093/nutrit/nuu016.
    1. Kirmiz N, Robinson RC, Shah IM, Barile D, Mills DA. Milk glycans and their interaction with the infant-gut microbiota. Annu. Rev. Food Sci. Technol. 2018;9:429–450. doi: 10.1146/annurev-food-030216-030207.
    1. Hunt KM, et al. Human milk oligosaccharides promote the growth of staphylococci. Appl. Environ. Microbiol. 2012;78:4763–4770. doi: 10.1128/AEM.00477-12.
    1. Borewicz K, et al. Correlating infant fecal microbiota composition and human milk oligosaccharide consumption by microbiota of 1-month-old breastfed infants. Mol. Nutr. Food Res. 2019;63:1–13. doi: 10.1002/mnfr.201801214.
    1. Aakko, J. New Insights Into Human Gut Microbiota Development in Early Infancy: Influence of Diet, Environment and Mother’s Microbiota [thesis]. (University of Turku, 2016).
    1. Triantis V, Bode L, van Neerven JRJ. Immunological effects of human milk oligosaccharides. Front. Pediatr. 2018;6:190. doi: 10.3389/fped.2018.00190.
    1. Lane JA, O’Callaghan J, Carrington SD, Hickey RM. Transcriptional response of HT-29 intestinal epithelial cells to human and bovine milk oligosaccharides. Br. J. Nutr. 2013;110:2127–2137. doi: 10.1017/S0007114513001591.
    1. Goehring KC, et al. Similar to those who are breastfed, infants fed a formula containing 2’-fucosyllactose have lower inflammatory cytokines in a randomized controlled trial. J. Nutr. 2016;146:2559–2566. doi: 10.3945/jn.116.236919.
    1. Walsh C, Lane JA, van Sinderen D, Hickey RM. Human milk oligosaccharides: Shaping the infant gut microbiota and supporting health. J. Funct. Foods. 2020;72:104074. doi: 10.1016/j.jff.2020.104074.
    1. Plaza-Díaz J, Fontana L, Gil A. Human milk oligosaccharides and immune system development. Nutrients. 2018;10:1038. doi: 10.3390/nu10081038.
    1. Austin S, Bénet T. Quantitative determination of non-lactose milk oligosaccharides. Anal. Chim. Acta. 2018;1010:86–96. doi: 10.1016/j.aca.2017.12.036.
    1. Prudden AR, et al. Synthesis of asymmetrical multiantennary human milk oligosaccharides. Proc. Natl. Acad. Sci. U. S. A. 2017;114:6954–6959. doi: 10.1073/pnas.1701785114.

Source: PubMed

3
Abonneren