Rationale and protocol of the StayFitLonger study: a multicentre trial to measure efficacy and adherence of a home-based computerised multidomain intervention in healthy older adults

S Belleville, M Cuesta, M Bieler-Aeschlimann, K Giacomino, A Widmer, A G Mittaz Hager, D Perez-Marcos, S Cardin, B Boller, N Bier, M Aubertin-Leheudre, L Bherer, N Berryman, S Agrigoroaei, J F Demonet, S Belleville, M Cuesta, M Bieler-Aeschlimann, K Giacomino, A Widmer, A G Mittaz Hager, D Perez-Marcos, S Cardin, B Boller, N Bier, M Aubertin-Leheudre, L Bherer, N Berryman, S Agrigoroaei, J F Demonet

Abstract

Background: In older adults, multidomain training that includes physical and cognitive activities has been associated with improvement of physical and cognitive health. The goal of the multisite StayFitLonger study is to assess a home-based computerised training programme, which combines physical exercises, stimulating cognitive activities and virtual coaching.

Methods: One hundred twenty-eight cognitively healthy older adults will be recruited from the community in Switzerland, Canada and Belgium. The study will comprise (1) a 26-week double-blind randomized controlled efficacy trial and (2) a 22-week pragmatic adherence sub-study. In the efficacy trial, participants will be randomly assigned to an experimental or an active control intervention. In the experimental intervention, participants will use the StayFitLonger programme, which is computerised on a tablet and provides content that combines physical activities with a focus on strength and balance, as well as divided attention, problem solving and memory training. Outcomes will be measured before and after 26 weeks of training. The primary efficacy outcome will be performance on the "Timed-Up & Go" test. Secondary outcomes will include measures of frailty, cognition, mood, fear of falling, quality of life, and activities of daily living. Age, sex, education, baseline cognition, expectation, and adherence will be used as moderators of efficacy. Following the 26-week efficacy trial, all participants will use the experimental programme meaning that participants in the control group will 'cross over' to receive the StayFitLonger programme for 22 weeks. Adherence will be measured in both groups based on dose, volume and frequency of use. In addition, participants' perception of the programme and its functionalities will be characterised through usability, acceptability and user experience.

Discussion: This study will determine the efficacy, adherence and participants' perception of a home-based multidomain intervention programme and its functionalities. This will allow for further development and possible commercialization of a scientifically validated training programme.

Trial registration: ClinicalTrials.gov , NCT04237519 Registered on January 22, 2020 - Retrospectively registered.

Keywords: Adherence; Cognition; Cognitive training; Computerised training; Frailty; Home-based training; Multidomain intervention; Physical activity training; Social interactions.

Conflict of interest statement

SB has been a consultant for research development on the prevention of Alzheimer’s disease for the Fondation IUGM (2016) and for Sojecci (2017 to current), and for the development of a cognitive stimulation programme for the Centre de promotion de la Santé Avant Âge (2015). She has intellectual property rights on the ‘Programme de Stimulation pour une santé cognitive, Memoria, Batterie d’évaluation de la mémoire Côte-des-Neiges’ and ‘MEMO, Méthode d’Entrainement pour une Mémoire Optimale’.

MBA, DPM and SC are employees of MindMaze SA.

The remaining authors declare that they have no competing interest.

Figures

Fig. 1
Fig. 1
Illustration of the different activities of the StayFitLonger training programme
Fig. 2
Fig. 2
Illustration of the unique features of the StayFitLonger training programme
Fig. 3
Fig. 3
Illustration of the different activities of the active control training programme

References

    1. Fried LP, Ferrucci L, Darer J, Williamson JD, Anderson G. Untangling the concepts of disability, frailty, and comorbidity: implications for improved targeting and care. J Gerontol A Biol Sci Med Sci. 2004;59(3):255–263.
    1. Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 2001;56(3):M146–M156.
    1. Palumbo P, Palmerini L, Bandinelli S, Chiari L. Fall risk assessment tools for elderly living in the community: can we do better? PLoS One. 2015;10(12):e0146247.
    1. Hartholt KA, van Beeck EF, Polinder S, van der Velde N, van Lieshout EM, Panneman MJ, et al. Societal consequences of falls in the older population: injuries, healthcare costs, and long-term reduced quality of life. J Trauma. 2011;71(3):748–753.
    1. WHO. Falls 2018. updated 16 January 2018. Available from: .
    1. Prince M, Guerchet M, Prina M. The epidemiology and impact of dementia: current state and future trends. Geneva: World Health Organization; 2015.
    1. Norton S, Matthews FE, Barnes DE, Yaffe K, Brayne C. Potential for primary prevention of Alzheimer's disease: an analysis of population-based data. Lancet Neurol. 2014;13(8):788–794.
    1. Livingston G, Sommerlad A, Orgeta V, Costafreda SG, Huntley J, Ames D, et al. Dementia prevention, intervention, and care. Lancet. 2017;390(10113):2673–2734.
    1. Seematter-Bagnoud L, Lenoble-Hoskovec C, Santos-Eggimann B, Bula C. Promotion of exercise in older people: issues and strategies. Revue medicale suisse. 2012;8(348):1453–1457.
    1. Gregory MA, Boa Sorte Silva NC, Gill DP, McGowan CL, Liu-Ambrose T, Shoemaker JK, et al. Combined dual-task gait training and aerobic exercise to improve cognition, mobility, and vascular health in community-dwelling older adults at risk for future cognitive Decline1. J Alzheimers Dis. 2017;57(3):747–763.
    1. Bherer L, Erickson KI, Liu-Ambrose T. A review of the effects of physical activity and exercise on cognitive and brain functions in older adults. J Aging Res. 2013;2013:657508.
    1. Singh MAF, Gates N, Saigal N, Wilson GC, Meiklejohn J, Brodaty H, et al. The study of mental and resistance training (SMART) study—resistance training and/or cognitive training in mild cognitive impairment: a randomized, double-blind, double-sham controlled trial. J Am Med Dir Assoc. 2014;15(12):873–880.
    1. Langlois F, Vu TT, Chasse K, Dupuis G, Kergoat MJ, Bherer L. Benefits of physical exercise training on cognition and quality of life in frail older adults. J Gerontol Ser B Psychol Sci Soc Sci. 2013;68(3):400–404.
    1. Chin APMJ, van Uffelen JG, Riphagen I, van Mechelen W. The functional effects of physical exercise training in frail older people: a systematic review. Sports Med. 2008;38(9):781–793.
    1. Barnes DE, Yaffe K. The projected effect of risk factor reduction on Alzheimer's disease prevalence. Lancet Neurol. 2011;10(9):819–828.
    1. Belleville S. Cognitive training for persons with mild cognitive impairment. Int Psychogeriatr. 2008;20(1):57–66.
    1. Mowszowski L, Batchelor J, Naismith SL. Early intervention for cognitive decline: can cognitive training be used as a selective prevention technique? Int Psychogeriatr. 2010;22(4):537–548.
    1. Mowszowski L, Lampit A, Walton CC, Naismith SL. Strategy-based cognitive training for improving executive functions in older adults: a systematic review. Neuropsychol Rev. 2016;26(3):252–270.
    1. Belleville S, Gilbert B, Fontaine F, Gagnon L, Ménard É, Gauthier S. Improvement of episodic memory in persons with mild cognitive impairment and healthy older adults: evidence from a cognitive intervention program. Dement Geriatr Cogn Disord. 2006;22(5–6):486–499.
    1. Belleville S, Hudon C, Bier N, Brodeur C, Gilbert B, Grenier S, et al. MEMO+: efficacy, durability and effect of cognitive training and psychosocial intervention in individuals with mild cognitive impairment. J Am Geriatr Soc. 2018;66(4):655–663.
    1. Belleville S, Clement F, Mellah S, Gilbert B, Fontaine F, Gauthier S. Training-related brain plasticity in subjects at risk of developing Alzheimer’s disease. Brain. 2011;134(6):1623–1634.
    1. Li KZ, Bherer L, Mirelman A, Maidan I, Hausdorff JM. Cognitive involvement in balance, gait and dual-tasking in aging: a focused review from a neuroscience of aging perspective. Front Neurol. 2018;9:913.
    1. Blackwood J, Shubert T, Fogarty K, Chase C. The impact of a home-based computerized cognitive training intervention on fall risk measure performance in community dwelling older adults, a pilot study. J Nutr Health Aging. 2016;20(2):138–145.
    1. Muir SW, Gopaul K, Montero Odasso MM. The role of cognitive impairment in fall risk among older adults: a systematic review and meta-analysis. Age Ageing. 2012;41(3):299–308.
    1. Persad CC, Jones JL, Ashton-Miller JA, Alexander NB, Giordani B. Executive function and gait in older adults with cognitive impairment. J Gerontol Ser A Biol Med Sci. 2008;63(12):1350–1355.
    1. Zhu X, Yin S, Lang M, He R, Li J. The more the better? A meta-analysis on effects of combined cognitive and physical intervention on cognition in healthy older adults. Ageing Res Rev. 2016;31:67–79.
    1. Ngandu T, Lehtisalo J, Solomon A, Levalahti E, Ahtiluoto S, Antikainen R, et al. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet (London, England) 2015;385(9984):2255–2263.
    1. Tabue-Teguo M, Barreto de Souza P, Cantet C, Andrieu S, Simo N, Fougere B, et al. Effect of multidomain intervention, Omega-3 polyunsaturated fatty acids supplementation or their Combinaison on cognitive function in non-demented older adults according to frail status: results from the MAPT study. J Nutr Health Aging. 2018;22(8):923–927.
    1. Stuifbergen A, Becker H, Morgan S, Morrison J, Perez F. Home-based computer-assisted cognitive training: feasibility and perceptions of people with multiple sclerosis. Int J MS Care. 2011;13(4):189–198.
    1. Hynes SM. Internet, home-based cognitive and strategy training with older adults: a study to assess gains to daily life. Aging Clin Exp Res. 2016;28(5):1003–1008.
    1. Payne BR, Stine-Morrow EA. The effects of home-based cognitive training on verbal working memory and language comprehension in older adulthood. Front Aging Neurosci. 2017;9:256.
    1. Barban F, Annicchiarico R, Melideo M, Federici A, Lombardi M, Giuli S, et al. Reducing fall risk with combined motor and cognitive training in elderly fallers. Brain Sci. 2017;7(2):19.
    1. Wongcharoen S, Sungkarat S, Munkhetvit P, Lugade V, Silsupadol P. Home-based interventions improve trained, but not novel, dual-task balance performance in older adults: a randomized controlled trial. Gait Posture. 2017;52:147–152.
    1. ten Brinke LF, Best JR, Chan JL, Ghag C, Erickson KI, Handy TC, et al. The effects of computerized cognitive training with and without physical exercise on cognitive function in older adults: an 8-week randomized controlled trial. J Gerontol A. 2019;75:755–63.
    1. Shatil E. Does combined cognitive training and physical activity training enhance cognitive abilities more than either alone? A four-condition randomized controlled trial among healthy older adults. Front Aging Neurosci. 2013;5:8.
    1. Holthe T, Halvorsrud L, Karterud D, Hoel KA, Lund A. Usability and acceptability of technology for community-dwelling older adults with mild cognitive impairment and dementia: a systematic literature review. Clin Interv Aging. 2018;13:863–886.
    1. Proctor E, Silmere H, Raghavan R, Hovmand P, Aarons G, Bunger A, et al. Outcomes for implementation research: conceptual distinctions, measurement challenges, and research agenda. Admin Pol Ment Health. 2011;38(2):65–76.
    1. Wesselman LM, Hooghiemstra AM, Schoonmade LJ, de Wit MC, van der Flier WM, Sikkes SA. Web-based multidomain lifestyle programs for brain health: comprehensive overview and meta-analysis. JMIR Mental Health. 2019;6(4):e12104.
    1. Hager A-GM, Mathieu N, Lenoble-Hoskovec C, Swanenburg J, de Bie R, Hilfiker R. Effects of three home-based exercise programmes regarding falls, quality of life and exercise-adherence in older adults at risk of falling: protocol for a randomized controlled trial. BMC Geriatr. 2019;19(1):13.
    1. Belleville S, Mellah S, de Boysson C, Demonet JF, Bier B. The pattern and loci of training-induced brain changes in healthy older adults are predicted by the nature of the intervention. PLoS One. 2014;9(8):e102710.
    1. Fratiglioni L, Paillard-Borg S, Winblad B. An active and socially integrated lifestyle in late life might protect against dementia. Lancet Neurol. 2004;3(6):343–353.
    1. Brown CL, Robitaille A, Zelinski EM, Dixon RA, Hofer SM, Piccinin AM. Cognitive activity mediates the association between social activity and cognitive performance: a longitudinal study. Psychol Aging. 2016;31(8):831.
    1. Perez-Marcos D, Bieler-Aeschlimann M, Serino A. Virtual reality as a vehicle to empower motor-cognitive Neurorehabilitation. Front Psychol. 2018;9:2120.
    1. Chan AW, Tetzlaff JM, Altman DG, Laupacis A, Gotzsche PC, Krleza-Jeric K, et al. SPIRIT 2013 statement: defining standard protocol items for clinical trials. Ann Intern Med. 2013;158(3):200–207.
    1. Barberger-Gateau P, Fabrigoule C, Rouch I, Letenneur L, Dartigues JF. Neuropsychological correlates of self-reported performance in instrumental activities of daily living and prediction of dementia. J Gerontol Ser B Psychol Sci Soc Sci. 1999;54(5):P293–P303.
    1. Nasreddine ZS, Phillips NA, Bedirian V, Charbonneau S, Whitehead V, Collin I, et al. The Montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53(4):695–699.
    1. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap) – A metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;2(42):377–381.
    1. Boot WR, Simons DJ, Stothart C, Stutts C. The pervasive problem with placebos in psychology: why active control groups are not sufficient to rule out placebo effects. Perspect Psychol Sci. 2013;8(4):445–454.
    1. Warmington M, Hitch GJ. Enhancing the learning of new words using an errorless learning procedure: evidence from typical adults. Memory (Hove, England) 2014;22(5):582–594.
    1. Dresler M, Shirer WR, Konrad BN, Muller NCJ, Wagner IC, Fernandez G, et al. Mnemonic training reshapes brain networks to support superior memory. Neuron. 2017;93(5):1227–35.e6.
    1. Hering A, Rendell PG, Rose NS, Schnitzspahn KM, Kliegel M. Prospective memory training in older adults and its relevance for successful aging. Psychol Res. 2014;78(6):892–904.
    1. Chesham A, Wyss P, Muri RM, Mosimann UP, Nef T. What older people like to play: genre preferences and acceptance of casual games. JMIR Serious Games. 2017;5(2):e8.
    1. Brooker H, Wesnes KA, Ballard C, Hampshire A, Aarsland D, Khan Z, et al. The relationship between the frequency of number puzzle use and baseline cognitive function in a large online sample of adults aged 50 and over. Int J Geriatr Psychiatry. 2019;34(7):932–940.
    1. Jin G, Li K, Qin Y, Zhong N, Zhou H, Wang Z, et al. fMRI study in posterior cingulate and adjacent precuneus cortex in healthy elderly adults using problem solving task. J Neurol Sci. 2012;318(1–2):135–139.
    1. Ferreira N, Owen A, Mohan A, Corbett A, Ballard C. Associations between cognitively stimulating leisure activities, cognitive function and age-related cognitive decline. Int J Geriatr Psychiatry. 2015;30(4):422–430.
    1. Murphy M, O'sullivan K, Kelleher KG. Daily crosswords improve verbal fluency: a brief intervention study. Int J Geriatr Psychiatry. 2014;29(9):915–919.
    1. Podsiadlo D, Richardson S. The timed “up & go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991;39(2):142–148.
    1. Bohannon RW. Reference values for the five-repetition sit-to-stand test: a descriptive meta-analysis of data from elders. Percept Mot Skills. 2006;103(1):215–222.
    1. Gardner MM, Buchner DM, Robertson MC, Campbell AJ. Practical implementation of an exercise-based falls prevention programme. Age Ageing. 2001;30(1):77–83.
    1. Donohue MC, Sperling RA, Salmon DP, Rentz DM, Raman R, Thomas RG, et al. The preclinical Alzheimer cognitive composite: measuring amyloid-related decline. JAMA Neurol. 2014;71(8):961–970.
    1. Lim YY, Snyder PJ, Pietrzak RH, Ukiqi A, Villemagne VL, Ames D, et al. Sensitivity of composite scores to amyloid burden in preclinical Alzheimer's disease: Introducing the Z-scores of Attention, Verbal fluency, and Episodic memory for Nondemented older adults composite score. Alzheimers Dement (Amst) 2016;2:19–26.
    1. Wechsler D. Mem-IV Echelle clinique De memoire De wechsler- quatrieme edition: ecpa par pearson. 2012.
    1. Wechsler D. Wais-IV Nouvelle version De L'echelle D'intelligence De Wechsler Pour adultes - quatrieme edition: Ecpa Par pearson. 2011.
    1. Cardebat D, Doyon B, Puel M, Goulet P, Joanette Y. Formal and semantic lexical evocation in normal subjects. Performance and dynamics of production as a function of sex, age and educational level. Acta Neurol Belg. 1990;90(4):207–217.
    1. Tombaugh TN. Trail making test a and B: normative data stratified by age and education. Arch Clin Neuropsychol. 2004;19(2):203–214.
    1. Bayard S, Erkes J, Moroni C. Victoria Stroop test: normative data in a sample group of older people and the study of their clinical applications in the assessment of inhibition in Alzheimer's disease. Arch Clin Neuropsychol. 2011;26(7):653–661.
    1. Leclercq M, Zimmermann PH, van Zomeren A. Applied neuropsychology of attention: theory, diagnosis and rehabilitation. London: Psychology Press; 2002.
    1. Delis DC, Fine EM, Stricker JL, Houston WS, Wetter SR, Cobell K, et al. Comparison of the traditional recall-based versus a new list-based method for computing semantic clustering on the California verbal learning test: evidence from Alzheimer’s disease. Clin Neuropsychol. 2010;24(1):70–79.
    1. Poitrenaud J, Deweer B, Kalafat M, Van Der Linden M. Cvlt Test D'apprentissage Et De Memoire Verbale: Ecpa Par pearson. 2017.
    1. Moroni C, Bayard S. Inhibitory process: what evolution after the age of 50? Psychol Neuropsychiatrie du vieillissement. 2009;7(2):121–129.
    1. Wilson B. Rivermead Behavioural memory test – third edition (RBMT-3) Pearson education ltd. 2018.
    1. Zigmond AS, Snaith RP. The hospital anxiety and depression scale. Acta Psychiatr Scand. 1983;67(6):361–370.
    1. Delbaere K, Close JC, Mikolaizak AS, Sachdev PS, Brodaty H, Lord SR. The falls efficacy scale international (FES-I). A comprehensive longitudinal validation study. Age Ageing. 2010;39(2):210–216.
    1. Bowling A. The psychometric properties of the older People's quality of life questionnaire, compared with the CASP-19 and the WHOQOL-OLD. Curr Gerontol Geriatr Res. 2009;2009:298950.
    1. Walsh SP, Raman R, Jones KB, Aisen PS. ADCS prevention instrument project: the mail-in cognitive function screening instrument (MCFSI) Alzheimer Dis Assoc Disord. 2006;20(4 Suppl 3):S170–S178.
    1. Farias ST, Mungas D, Reed BR, Cahn-Weiner D, Jagust W, Baynes K, et al. The measurement of everyday cognition (ECog): scale development and psychometric properties. Neuropsychology. 2008;22(4):531–544.
    1. Uemura K, Yamada M, Okamoto H. Effects of active learning on health literacy and behavior in older adults: a randomized controlled trial. J Am Geriatr Soc. 2018;66(9):1721–1729.
    1. Lallemand C, Koenig V, Gronier G, Martin R. Création et validation d’une version française du questionnaire AttrakDiff pour l’évaluation de l’expérience utilisateur des systèmes interactifs. Revue Européenne de Psychologie Appliquée/Eur Rev Appl Psychol. 2015;65(5):239–252.
    1. Schwenk M, Lauenroth A, Stock C, Moreno RR, Oster P, McHugh G, et al. Definitions and methods of measuring and reporting on injurious falls in randomised controlled fall prevention trials: a systematic review. BMC Med Res Methodol. 2012;12(1):50.
    1. Iliffe S, Kendrick D, Morris R, Masud T, Gage H, Skelton D, et al. Multicentre cluster randomised trial comparing a community group exercise programme and home-based exercise with usual care for people aged 65 years and over in primary care. Health Technol Assess. 2014;18(49):vii.
    1. Picorelli AMA, Pereira LSM, Pereira DS, Felício D, Sherrington C. Adherence to exercise programs for older people is influenced by program characteristics and personal factors: a systematic review. J Phys. 2014;60(3):151–156.
    1. Abran A, Khelifi A, Suryn W, Seffah A. Usability meanings and interpretations in ISO standards. Softw Qual J. 2003;11(4):325–338.
    1. Alexandre B, Reynaud E, Osiurak F, Navarro J. Acceptance and acceptability criteria: a literature review. Cogn Tech Work. 2018;20(2):165–177.
    1. Law EL-C. The measurability and predictability of user experience. Proceedings of the 3rd ACM SIGCHI symposium on Engineering interactive computing systems. 2011.

Source: PubMed

3
Abonneren