The development and malleability of executive control abilities

Nina S Hsu, Jared M Novick, Susanne M Jaeggi, Nina S Hsu, Jared M Novick, Susanne M Jaeggi

Abstract

Executive control (EC) generally refers to the regulation of mental activity. It plays a crucial role in complex cognition, and EC skills predict high-level abilities including language processing, memory, and problem solving, as well as practically relevant outcomes such as scholastic achievement. EC develops relatively late in ontogeny, and many sub-groups of developmental populations demonstrate an exaggeratedly poor ability to control cognition even alongside the normal protracted growth of EC skills. Given the value of EC to human performance, researchers have sought means to improve it through targeted training; indeed, accumulating evidence suggests that regulatory processes are malleable through experience and practice. Nonetheless, there is a need to understand both whether specific populations might particularly benefit from training, and what cortical mechanisms engage during performance of the tasks used in the training protocols. This contribution has two parts: in Part I, we review EC development and intervention work in select populations. Although promising, the mixed results in this early field make it difficult to draw strong conclusions. To guide future studies, in Part II, we discuss training studies that have included a neuroimaging component - a relatively new enterprise that also has not yet yielded a consistent pattern of results post-training, preventing broad conclusions. We therefore suggest that recent developments in neuroimaging (e.g., multivariate and connectivity approaches) may be useful to advance our understanding of the neural mechanisms underlying the malleability of EC and brain plasticity. In conjunction with behavioral data, these methods may further inform our understanding of the brain-behavior relationship and the extent to which EC is dynamic and malleable, guiding the development of future, targeted interventions to promote executive functioning in both healthy and atypical populations.

Keywords: connectivity analysis; executive function; fMRI; interventions; neuroimaging; training; working memory.

Figures

FIGURE 1
FIGURE 1
A wide network of brain regions is recruited during EC processes. The panels above show medial (left) and lateral (right) views of the left hemisphere. Regions in the EC network include dorsolateral prefrontal cortex (DLPFC: brown), ventrolateral prefrontal cortex (VLPFC: orange), anterior cingulate cortex (ACC: blue), posterior parietal cortex (PPC: purple), and medial temporal lobe structures (MTL: yellow). There is extensive cross-talk between these regions and with other regions sub-serving perceptual, motor, and affective/emotional functions.
FIGURE 2
FIGURE 2
A hypothetical network trajectory for changes in brain activation as a function of training, where T1 indicates pretest and T2 indicates posttest. (A) T2 taken during time period 1 (lightest gray) will observe an increase in activation that could reflect neural strengthening; (B) T2 taken during time period 2 (dark gray) will also observe an increase in activation that is actually tied to a trending decrease in activation; (C) T2 taken during time period 3 (darkest gray) will observe a decrease in activation that could reflect increased neural efficiency. Panels (A–C) consider a single cognitive process, but important information about network connectivity and co-variation could emerge by considering multiple cognitive processes in concert with one another. (D) Multiple cognitive processes with different time-course trajectories may demonstrate a more complex pattern of network changes that are best detected through approaches that can assess changes in cognitive processes in addition to their relational co-variation and connectivity. Finally, note that these outcomes do not preclude the potential benefit of multiple interim assessment scans throughout training (which, while informative, may not always be feasible for logistical and financial reasons).

References

    1. Alloway T. P., Alloway R. G. (2010). Investigating the predictive roles of working memory and IQ in academic attainment. J. Exp. Child Psychol. 106 20–29 10.1016/j.jecp.2009.11.003
    1. Amso D., Casey B. J. (2006). Beyond what develops when neuroimaging may inform how cognition changes with development. Curr. Dir. Psychol. Sci. 15 24–29 10.1111/j.0963-7214.2006.00400.x
    1. Baddeley A., Hitch G. (1974). Working Memory. The Psychology of Learning and Motivation: Advances in Research and Theory. New York: Academic Press; 47–89 10.1016/S0079-7421(08)60452-1
    1. Badre D., Wagner A. D. (2007). Left ventrolateral prefrontal cortex and the cognitive control of memory. Neuropsychologia 45 2883–2901 10.1016/j.neuropsychologia.2007.06.015
    1. Bar M. (2007). The proactive brain: using analogies and associations to generate predictions. Trends Cogn. Sci. 11 280–289 10.1016/j.tics.2007.05.005
    1. Barkley R. A. (1997). Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. Psychol. Bull. 121 65–94 10.1037/0033-2909.121.1.65
    1. Barkley R. A. (2001). The executive functions and self-regulation: an evolutionary neuropsychological perspective. Neuropsychol. Rev. 11 1–29 10.1023/A:1009085417776
    1. Beck S., Hanson C., Puffenberger S., Benninger K. L., Benninger W. B. (2010). A controlled trial of working memory training for children and adolescents with ADHD. J. Clin. Child Adolesc. Psychol. 39 825–836 10.1080/15374416.2010.517162
    1. Bialystok E., Craik F. I. M., Ryan J. (2006). Executive control in a modified antisaccade task: effects of aging and bilingualism. J. Exp. Psychol. Learn. Mem. Cogn. 32 1341–1354 10.1037/0278-7393.32.6.1341
    1. Bos K. J. (2009). Effects of early psychosocial deprivation on the development of memory and executive function. Front. Behav. Neurosci. 3:16 10.3389/neuro.08.016.2009
    1. Botvinick M. M., Braver T. S., Barch D. M., Carter C. S., Cohen J. D. (2001). Conflict monitoring and cognitive control. Psychol. Rev. 108 624–652 10.1037/0033-295X.108.3.624
    1. Brace J. J., Morton J. B., Munakata Y. (2006). When actions speak louder than words improving children’s flexibility in a card-sorting task. Psychol. Sci. 17 665–669 10.1111/j.1467-9280.2006.01763.x
    1. Brant A. M., Munakata Y., Boomsma D. I., Defries J. C., Haworth C. M., Keller M. C., et al. (2013). The nature and nurture of high IQ: an extended sensitive period for intellectual development. Psychol. Sci. 24 1487–1495 10.1177/0956797612473119
    1. Braver T. S., West R. (2007). “Working memory, executive control and aging,” in The Handbook of Aging and Cognition edsCraik F. I. M., Salthouse T. A. (New York, NY: Psychology Press)
    1. Brown D. W., Anda R. F., Tiemeier H., Bartley M., Blane D., Grosclaude P., et al. (2009). Adverse childhood experiences and the risk of premature mortality. Am. J. Prev. Med. 37 389–396 10.1016/j.amepre.2009.06.021
    1. Brown T. T., Lugar H. M., Coalson R. S., Miezin F. M., Petersen S. E., Schlaggar B. L. (2005). Developmental changes in human cerebral functional organization for word generation. Cereb. Cortex 15 275–290 10.1093/cercor/bhh129
    1. Budde H., Voelcker-Rehage C., Pietrabyk-Kendziorra S., Ribeiro P., Tidow G. (2008). Acute coordinative exercise improves attentional performance in adolescents. Neurosci. Lett. 441 219–223 10.1016/j.neulet.2008.06.024
    1. Burrage M. S., Ponitz C. C., McCready E. A., Shah P., Sims B. C., Jewkes A. M., et al. (2008). Age- and schooling-related effects on executive functions in young children: a natural experiment. Child Neuropsychol. 14 510–524 10.1080/09297040701756917
    1. Buschkuehl M., Hernandez-Garcia L., Jaeggi S. M., Bernard J. A., Jonides J. (2014). Neural effects of short-term training on working memory. Cogn. Affect. Behav. Neurosci. 14 147–160 10.3758/s13415-013-0244-9
    1. Buschkuehl M., Jaeggi S. M., Jonides J. (2012). Neuronal effects following working memory training. Dev. Cogn. Neurosci. 2(Suppl. 1) S167–S179 10.1016/j.dcn.2011.10.001
    1. Calvo A., Bialystok E. (2014). Independent effects of bilingualism and socioeconomic status on language ability and executive functioning. Cognition 130 278–288 10.1016/j.cognition.2013.11.015
    1. Carrion V. G., Weems C. F., Eliez S., Patwardhan A., Brown W., Ray R. D., et al. (2001). Attenuation of frontal asymmetry in pediatric posttraumatic stress disorder. Biol. Psychiatry 50 943–951 10.1016/S0006-3223(01)01218-5
    1. Casey B., Galvan A., Hare T. A. (2005a). Changes in cerebral functional organization during cognitive development. Curr. Opin. Neurobiol 15 239–244 10.1016/j.conb.2005.03.012
    1. Casey B., Tottenham N., Liston C., Durston S. (2005b). Imaging the developing brain: what have we learned about cognitive development? Trends Cogn. Sci. 9 104–110 10.1016/j.tics.2005.01.011
    1. Castellanos F. X., Proal E. (2012). Large-scale brain systems in ADHD: beyond the prefrontal–striatal model. Trends Cogn. Sci. 16 17–26 10.1016/j.tics.2011.11.007
    1. Chacko A., Feirsen N., Bedard A. C., Marks D., Uderman J. Z., Chimiklis A. (2013). Cogmed working memory training for youth with ADHD: a closer examination of efficacy utilizing evidence-based criteria. J. Clin. Child Adolesc. Psychol. 42 1–15 10.1080/15374416.2013.787622
    1. Chein J. M., Schneider W. (2005). Neuroimaging studies of practice-related change: fMRI and meta-analytic evidence of a domain-general control network for learning. Cogn. Brain Res. 25 607–623 10.1016/j.cogbrainres.2005.08.013
    1. Christopher G., MacDonald J. (2005). The impact of clinical depression on working memory. Cogn. Neuropsychiatry 10 379–399 10.1080/13546800444000128
    1. Chrysikou E. G., Novick J. M., Trueswell J. C., Thompson-Schill S. L. (2011). The other side of cognitive control: can a lack of cognitive control benefit language and cognition? Topics Cogn. Sci. 3 253–256 10.1111/j.1756-8765.2011.01137.x
    1. Chugani H. T., Phelps M. E. (1986). Maturational changes in cerebral function in infants determined by 18 FDG positron emission tomography. Science 231 840–843 10.1126/science.3945811
    1. Colvert E., Rutter M., Kreppner J., Beckett C., Castle J., Groothues C., et al. (2008). Do theory of mind and executive function deficits underlie the adverse outcomes associated with profound early deprivation?: findings from the English and Romanian adoptees study. J. Abnorm. Child Psychol. 36 1057–1068 10.1007/s10802-008-9232-x
    1. D’Angiulli A., Herdman A., Stapells D., Hertzman C. (2008). Children’s event-related potentials of auditory selective attention vary with their socioeconomic status. Neuropsychology 22 293–300 10.1037/0894-4105.22.3.293
    1. Dahlin E., Neely A. S., Larsson A., Bäckman L., Nyberg L. (2008). Transfer of learning after updating training mediated by the striatum. Science 320 1510–1512 10.1126/science.1155466
    1. Davis C., Tomporowski P., McDowell J., Austin B. P., Miller P. H., Yanasak N. E., et al. (2011). Exercise improves executive function and achievement and alters brain activation in overweight children: a randomized, controlled trial. Health Psychol. 30 91–98 10.1037/a0021766
    1. de Jonge P, de Jong P. F. (1996). Working memory, intelligence and reading ability in children. Person. Individ. Diff. 21 1007–1020 10.1016/S0191-8869(96)00161-4
    1. Diamond A. (2012). Activities and programs that improve children’s executive functions. Curr. Dir. Psychol. Sci. 21 335–341 10.1177/0963721412453722
    1. Diamond A., Barnett W. S., Thomas J., Munro S. (2007). THE EARLY YEARS: preschool program improves cognitive control. Science 318 1387–1388 10.1126/science.1151148
    1. Diamond A., Lee K. (2011). Interventions shown to aid executive function development in children 4 to 12 years old. Science 333 959–964 10.1126/science.1204529
    1. Dillon D. G., Holmes A. J., Birk J. L., Brooks N., Lyons-Ruth K., Pizzagalli D. A. (2009). Childhood adversity is associated with left basal ganglia dysfunction during reward anticipation in adulthood. Biol. Psychiatry 66 206–213 10.1016/j.biopsych.2009.02.019
    1. Dronkers N. (1996). A new brain region for coordinating speech articulation. Nature 384 159–161 10.1038/384159a0
    1. Duncan G., Dowsett C., Clasessens A., Magnuson K., Huston A. C., Klebanov P., et al. (2007). School readiness and later achievement. Dev. Psychol. 43 1428–1446 10.1037/0012-1649.43.6.1428
    1. Duncan G. J., Sojourner A. J. (2013). Can intensive early childhood intervention programs eliminate income-based cognitive and achievement gaps? J. Hum. Resour. 48 945–968 10.1353/jhr.2013.0025
    1. Duncan J., Owen A. (2000). Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci. 23 475–483 10.1016/S0166-2236(00)01633-7
    1. Fedorenko E., Nieto-Castañon A., Kanwisher N. (2012). Lexical and syntactic representations in the brain: an fMRI investigation with multi-voxel pattern analyses. Neuropsychologia 50 499–513 10.1016/j.neuropsychologia.2011.09.014
    1. Federenko E., Thompson-Schill S. L. (2014). Reworking the language network. Trends Cogn. Sci. 18 120–126 10.1016/j.tics.2013.12.006
    1. Ferrer E., Whitaker K. J., Steele J. S., Green C. T., Wendelken C., Bunge S. A. (2013). White matter maturation supports the development of reasoning ability through its influence on processing speed. Dev. Sci. 6 941–951 10.1111/desc.12088
    1. Friedman N. P., Miyake A. (2004). The relations among inhibition and interference control functions: a latent-variable analysis. J. Exp. Psychol. Gen. 133 101–135 10.1037/0096-3445.133.1.101
    1. Gathercole S. E., Alloway T. P., Willis C., Adams A.-M. (2006). Working memory in children with reading disabilities. J. Exp. Child Psychol. 93 265–281 10.1016/j.jecp.2005.08.003
    1. Gleitman L., Newport E., Gleitman H. (1984). The current status of the Motherese hypothesis. J. Child Lang. 11 43–79 10.1017/S0305000900005584
    1. Gogtay N., Giedd J. N., Lusk L., Hayashi K. M., Greenstein D., Vaituzis A. C., et al. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proc. Natl. Acad. Sci. U.S.A. 101 8174–8179 10.1073/pnas.0402680101
    1. Gogtay N., Thompson P. M. (2010). Mapping gray matter development: Implications for typical development and vulnerability to psychopathology. Brain Cogn. 72 6–15 10.1016/j.bandc.2009.08.009
    1. Goldin A. P., Hermida M. J., Shalom D. E., Costa M. E., Lopez-Rosenfeld M., Segretin M. S., et al. (2014). Far transfer to language and math of a short software-based gaming intervention. Proc. Natl. Acad. Sci. U.S.A. 111 6443–6448 10.1073/pnas.1320217111
    1. Gray J. R., Thompson P. M. (2004). Neurobiology of intelligence: science and ethics. Nat. Rev. Neurosci. 5 471–482 10.1038/nrn1405
    1. Gray S., Chaban R., Martinussen R., Goldberg R., Gotlieb H., Kronitz R., et al. (2012). Effects of a computerized working memory training program on working memory, attention, and academics in adolescents with severe LD and comorbid ADHD: a randomized clinical trial. J. Child Psychol. Psychiatry 53 1277–1284 10.1111/j.1469-7610.2012.02592.x
    1. Green C. T., Long D. L., Green D., Iosif A. M., Dixon J. F., Miller M. R., et al. (2012). Will working memory training generalize to improve off-task behavior in children with attention-deficit/hyperactivity disorder? Neurotherapeutics 9 639–648 10.1007/s13311-012-0124-y
    1. Gunnar M., Quevedo K. (2007). The neurobiology of stress and development. Annu. Rev. Psychol. 58 145–173 10.1146/annurev.psych.58.110405.085605
    1. Hackman D. A., Farah M. J. (2009). Socioeconomic status and the developing brain. Trends Cogn. Sci. 13 65–73 10.1016/j.tics.2008.11.003
    1. Hackman D. A., Farah M. J., Meaney M. J. (2010). Socioeconomic status and the brain: mechanistic insights from human and animal research. Nat. Rev. Neurosci. 11 651–659 10.1038/nrn2897
    1. Haier R. J., Karama S., Leyba L., Jung R. E. (2009). MRI assessment of cortical thickness and functional activity changes in adolescent girls following three months of practice on a visual-spatial task. BMC Res. Notes 2:174 10.1186/1756-0500-2-174
    1. Haxby J. V., Gobbini M. I., Furey M. L., Ishai A., Schouten J. L., Pietrini P. (2001). Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293 2425–2430 10.1126/science.1063736
    1. Heim C., Nemeroff C. B. (2001). The role of childhood trauma in the neurobiology of mood and anxiety disorders: preclinical and clinical studies. Biol. Psychiatry 49 1023–1039 10.1016/S0006-3223(01)01157-X
    1. Hempel A., Giesel F. L., Caraballo N. M. G., Amann M., Meyer H., Wüstenberg T., et al. (2004). Plasticity of cortical activation related to working memory during training. Am. J. Psychiatry 161 745–747 10.1176/appi.ajp.161.4.745
    1. Hillyard S., Hink R., Schwent V., Picton T. (1973). Electrical signs of selection attention in the human brain. Science 182 177–180 10.1126/science.182.4108.177
    1. Hindin S. B., Zelinski E. M. (2012). Extended practice and aerobic exercise interventions benefit untrained cognitive outcomes in older adults: a meta-analysis. J. Am. Geriatr. Soc. 60 136–141 10.1111/j.1532-5415.2011.03761.x
    1. Hoekzema E., Carmona S., Ramos-Quiroga J. A., Barba E., Bielsa A., Tremols V., et al. (2011). Training-induced neuroanatomical plasticity in ADHD: a tensor-based morphometric study. Hum. Brain Mapp. 32 1741–1749 10.1002/hbm.21143
    1. Hoekzema E., Carmona S., Tremols V., Gispert J. D., Guitart M., Fauquet J., et al. (2010). Enhanced neural activity in frontal and cerebellar circuits after cognitive training in children with attention-deficit/hyperactivity disorder. Hum. Brain Mapp. 31 1942–1950 10.1002/hbm.20988
    1. Hofmann W., Schmeichel B. J., Baddeley A. D. (2012). Executive functions and self-regulation. Trends Cogn. Sci. 16 174–180 10.1016/j.tics.2012.01.006
    1. Holmes J., Gathercole S. E., Dunning D. L. (2009). Adaptive training leads to sustained enhancement of poor working memory in children. Dev. Sci. 12 F9–F15 10.1111/j.1467-7687.2009.00848.x
    1. Hussey E. K., Novick J. M. (2012). The benefits of executive control training and the implications for language processing. Front. Psychol. 3:158 10.3389/fpsyg.2012.00158
    1. Huttenlocher P. R., Dabholkar A. S. (1997). Regional differences in synaptogenesis in human cerebral cortex. J. Comp. Neurol. 387 167–178 10.1002/(SICI)1096-9861(19971020)387:2<167::AID-CNE1>;2-Z
    1. Jaeggi S. M., Buschkuehl M., Jonides J., Perrig W. J. (2008). Improving fluid intelligence with training on working memory. Proc. Natl. Acad. Sci. U.S.A. 105: 6829 10.1073/pnas.0801268105
    1. Jaeggi S. M., Buschkuehl M., Jonides J., Shah P. (2011). Short- and long-term benefits of cognitive training. Proc. Natl. Acad. Sci. U.S.A. 108 10081–10086 10.1073/pnas.1103228108
    1. Jaeggi S. M., Buschkuehl M., Shah P., Jonides J. (2014). The role of individual differences in cognitive training and transfer. Mem. Cognit. 42 464–480 10.3758/s13421-013-0364-z
    1. Jaeggi S. M., Studer-Luethi B., Buschkuehl M., Su Y.-F., Jonides J., Perrig W. J. (2010). The relationship between n-back performance and matrix reasoning – implications for training and transfer. Intelligence 38 625–635 10.1016/j.intell.2010.09.001
    1. Jolles D. D., Crone E. A. (2012). Training the developing brain: a neurocognitive perspective. Front. Hum. Neurosci. 6:76 10.3389/fnhum.2012.00076
    1. Jolles D. D., van Buchem M. A., Crone E. A, Rombouts S. A. R. B. (2011). Functional brain connectivity at rest changes after working memory training. Hum. Brain Mapp. 34 396–406 10.1002/hbm.21444
    1. Jonides J., Lewis R. L., Nee D. E., Lustig C. A., Berman M. G., Moore K. S. (2008). The mind and brain of short-term memory. Annu. Rev. Psychol. 59 193–224 10.1146/annurev.psych.59.103006.093615
    1. Jonides J., Smith E. E., Marshuetz C., Koeppe R. A., Reuter-Lorenz P. A. (1998). Inhibition in verbal working memory revealed by brain activation. Proc. Natl. Acad. Sci. U.S.A. 95 8410–8413 10.1073/pnas.95.14.8410
    1. Karbach J., Kray J. (2009). How useful is executive control training? Age differences in near and far transfer of task-switching training. Dev. Sci. 12 978–990 10.1111/j.1467-7687.2009.00846.x
    1. Karl A., Schaefer M., Malta L., Dörfel D., Rohleder N., Werner A. (2006). A meta-analysis of structural brain abnormalities in PTSD. Neurosci. Biobehav. Rev. 30 1004–1031 10.1016/j.neubiorev.2006.03.004
    1. Karmiloff-Smith A. (1998). Development itself is the key to understanding developmental disorders. Trends Cogn. Sci. 2 389–398 10.1016/S1364-6613(98)01230-3
    1. Kelly A. M. C., Di Martino A., Uddin L. Q., Shehzad Z., Gee D. G., Reiss P. T., et al. (2008). Development of anterior cingulate functional connectivity from late childhood to early adulthood. Cereb. Cortex 19 640–657 10.1093/cercor/bhn117
    1. Kelly C., Foxe J. J., Garavan H. (2006). patterns of normal human brain plasticity after practice and their implications for neurorehabilitation. Arch. Phys. Med. Rehabil. 87 20–29 10.1016/j.apmr.2006.08.333
    1. Kerns J., Cohen J., MacDonald A., Cho R. Y., Stenger V. A., Carter C. S. (2004). Anterior cingulate conflict monitoring and adjustments in control. Science 303 1023–1026 10.1126/science.1089910
    1. Kessler R., Adler L., Barkley R., Biederman J., Conners C. K., Demler O., et al. (2006). The prevalence and correlates of adult ADHD in the United States: Results from the National Comorbidity Survey replication. Am. J. Psychiatry 163 716–723 10.1176/appi.ajp.163.4.716
    1. Khurana A., Romer D., Betancourt L. M., Brodsky N. L., Giannetta J. M., Hurt H. (2013). Working memory ability predicts trajectories of early alcohol use in adolescents: the mediational role of impulsivity: working memory, impulsivity and alcohol use. Addiction 108 506–515 10.1111/add.12001
    1. Kishiyama M. M., Boyce W. T., Jimenez A. M., Perry L. M., Knight R. T. (2009). Socioeconomic disparities affect prefrontal function in children. J. Cogn. Neurosci. 21 1106–1115 10.1162/jocn.2009.21101
    1. Klingberg T., Fernell E., Olesen P. J., Johnson M., Gustafsson P., Dahlström K., et al. (2005). Computerized training of working memory in children with adhd – a randomized, controlled trial. J. Am. Acad. Child Adolesc. Psychiatry 44 177–186 10.1097/00004583-200502000-00010
    1. Klingberg T., Forssberg H., Westerberg H. (2002). training of working memory in children with ADHD. J. Clin. Exp. Neuropsychol. 24 781–791 10.1076/jcen.24.6.781.8395
    1. Knudsen E. (2004). Sensitive periods in the development of the brain and behavior. J. Cogn. Neurosci. 16 1412–1425 10.1162/0898929042304796
    1. Konzak B., Boudreau F. (1984). Martial arts training and mental health: an exercise in self-help. Can. Ment. Health 32 2–8
    1. Körding K. P., Wolpert D. M. (2006). Bayesian decision theory in sensorimotor control. Trends Cogn. Sci. 10 319–326 10.1016/j.tics.2006.05.003
    1. Kucian K., Grond U., Rotzer S., Henzi B., Schönmann C., Plangger F., et al. (2011). Mental number line training in children with developmental dyscalculia. Neuroimage 57 782–795 10.1016/j.neuroimage.2011.01.070
    1. Kueider A. M., Parisi J. M., Gross A. L., Rebok G. W. (2012). computerized cognitive training with older adults: a systematic review. PLoS ONE 7:e40588 10.1371/journal.pone.0040588
    1. Kundu B., Sutterer D. W., Emrich S. M., Postle B. R. (2013). strengthened effective connectivity underlies transfer of working memory training to tests of short-term memory and attention. J. Neurosci. 33 8705–8715 10.1523/JNEUROSCI.5565-12.2013
    1. Lakes K. D., Hoyt W. T. (2004). Promoting self-regulation through school-based martial arts training. J. Appl. Dev. Psychol. 25 283–302 10.1016/j.appdev.2004.04.002
    1. Loe I., Feldman H. (2007). Academic and educational outcomes of children with ADHD. Ambul. Pediatr. 1 82–90 10.1016/j.ambp.2006.05.005
    1. Loosli S. V., Buschkuehl M., Perrig W. J., Jaeggi S. M. (2012). Working memory training improves reading processes in typically developing children. Child Neuropsychol. 18 62–78 10.1080/09297049.2011.575772
    1. Lupien S. J., McEwen B. S., Gunnar M. R., Heim C. (2009). Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat. Rev. Neurosci. 10 434–445 10.1038/nrn2639
    1. Mackey A. P., Hill S. S., Stone S. I., Bunge S. A. (2011). Differential effects of reasoning and speed training in children. Dev. Sci. 14 582–590 10.1111/j.1467-7687.2010.01005.x
    1. Mackey A. P., Miller Singley A. T., Bunge S. A. (2013). intensive reasoning training alters patterns of brain connectivity at rest. J. Neurosci. 33 4796–4803 10.1523/JNEUROSCI.4141-12.2013
    1. Manjunath N. K., Telles S. (2001). Improved performance in the Tower of London test following yoga. Ind. J. Physiol. Pharmacol. 45 351–354
    1. Melby-Lervåg, M., Hulme C. (2013). Is working memory training effective? A meta-analytic review. Dev. Psychol. 49 270–291 10.1037/a0028228
    1. Merikangas K., He J.-P., Brody D., Fisher P. W., Bourdon K., Koretz D. S. (2010). Prevalance and treatment of mental disorders among US children in the 2001-2004 ES. Pediatrics 125 75–81 10.1542/peds.2008-2598
    1. Miller E. K., Cohen J. D. (2001). An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24 167–202 10.1146/annurev.neuro.24.1.167
    1. Miyake A. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: a latent variable analysis. Cogn. Psychol. 41 49–100 10.1006/cogp.1999.0734
    1. Monti M. (2011). Statistical analysis of fMRI time-series: a critical review of the GLM approach. Front. Hum. Neurosci. 5:28 10.3389/fnhum.2011.00028
    1. Morrison A. B., Chein J. M. (2010). Does working memory training work? The promise and challenges of enhancing cognition by training working memory. Psychon. Bull. Rev. 18 46–60 10.3758/s13423-010-0034-0
    1. Mueller S. C., Maheu F. S., Dozier M., Peloso E., Mandell D., Leibenluft E., et al. (2010). Early-life stress is associated with impairment in cognitive control in adolescence: an fMRI study. Neuropsychologia 48 3037–3044 10.1016/j.neuropsychologia.2010.06.013
    1. Navalta C. P., Polcari A., Webster D. M., Boghossian A., Teicher M. H. (2006). Effects of childhood sexual abuse on neuropsychological and cognitive function in college women. J. Neuropsychiatry Clin. Neurosci. 18 45–53 10.1176/appi.neuropsych.18.1.45
    1. Nelson C. A. (2000). Neural plasticity and human development: the role of early experience in sculpting memory systems. Dev. Sci. 3 115–136 10.1111/1467-7687.00104
    1. Neubauer A., Fink A. (2009). Intelligence and neural efficiency. Neurosci. Biobehav. Rev. 33 1004–1023 10.1016/j.neubiorev.2009.04.001
    1. Neville H. J., Stevens C., Pakulak E., Bell T. A., Fanning J., Klein S., et al. (2013). Family-based training program improves brain function, cognition, and behavior in lower socioeconomic status preschoolers. Proc. Natl. Acad. Sci. U.S.A. 110 12138–12143 10.1073/pnas.1304437110
    1. Noble K. G., McCandliss B. D., Farah M. J. (2007). Socioeconomic gradients predict individual differences in neurocognitive abilities. Dev. Sci. 10 464–480 10.1111/j.1467-7687.2007.00600.x
    1. Noble K. G., Norman M. F., Farah M. J. (2005a). Neurocognitive correlates of socioeconomic status in kindergarten children. Dev. Sci. 8 74–87 10.1111/j.1467-7687.2005.00394.x
    1. Noble K. G., Tottenham N., Casey B. J. (2005b). Neuroscience perspectives on disparities in school readiness and cognitive achievement. Future Child 15 71–89 10.1353/foc.2005.0006
    1. Norman W., Shallice T. (1986). Attention to Action: Willed and Automatic Control of Behavior. Consciousness and Self Regulation: Advances in Research and Theory 4th Edn. New York: Plenum Press; 1–18 10.1007/978-1-4757-0629-1_1
    1. Novick J. M., Hussey E. K., Teubner-Rhodes S., Harbison J. I., Bunting M. F. (2014). Clearing the garden-path: improving sentence processing through cognitive control training. Lang. Cogn. Processes 29 186–217
    1. Novick J. M., Trueswell J. C., Thompson-Schill S. L. (2005). Cognitive control and parsing: reexamining the role of Broca’s area in sentence comprehension. Cogn. Affect. Behav. Neurosci 5 263–281 10.3758/CABN.5.3.263
    1. Nyberg L., Dahlin E., Stigsdotter N, Backman L. (2009). Neural correlates of variable working memory load across adult age and skill: dissociative patterns within the fronto-parietal network. Scand. J. Psychol. 50 41–46 10.1111/j.1467-9450.2008.00678.x
    1. Olesen P. J., Westerberg H., Klingberg T. (2004). Increased prefrontal and parietal activity after training of working memory. Nat. Neurosci. 7 75–79 10.1038/nn1165
    1. Oliver A., Johnson M. H., Karmiloff-Smith A., Pennington B. (2000). Deviations in the emergence of representations: a neuroconstructivist framework for analysing developmental disorders. Dev. Sci. 3 1–40 10.1111/1467-7687.00094
    1. Pascual-Leone A., Amedi A., Fregni F., Merabet L. B. (2005). The plastic human brain cortex. Annu. Rev. Neurosci. 28 377–401 10.1146/annurev.neuro.27.070203.144216
    1. Passolunghi M. C., Siegel LS. (2001). Short-term memory, working memory, and inhibitory control in children with difficulties in arithmetic problem solving. J. Exp. Child Psychol. 80 44–57 10.1006/jecp.2000.2626
    1. Paul R., Henry L., Grieve S. M., Guilmette T. J., Niaura R., Bryant R., et al. (2008). The relationship between early life stress and microstructural integrity of the corpus callosum in a non-clinical population. Neuropsychiatr. Dis. Treat. 4 193–201 10.2147/NDT.S1549
    1. Paus T., Keshavan M., Giedd J. N. (2008). Why do many psychiatric disorders emerge during adolescence? Nat. Rev. Neurosci. 9 947–957 10.1038/nrn2513
    1. Pechtel P., Pizzagalli D. A. (2010). Effects of early life stress on cognitive and affective function: an integrated review of human literature. Psychopharmacology 214 55–70 10.1007/s00213-010-2009-2
    1. Pessoa L., Padmala S. (2006). decoding near-threshold perception of fear from distributed single-trial brain activation. Cereb. Cortex 17 691–701 10.1093/cercor/bhk020
    1. Petanjek Z., Judas M., Simic G., Rasin M. R., Uylings H. B., Rakic P., et al. (2011). Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proc. Natl. Acad. Sci. U.S.A. 108 13281–13286 10.1073/pnas.1105108108
    1. Pollak S. D., Nelson C. A., Schlaak M. F., Roeber B. J., Wewerka S. S., Wiik K. L., et al. (2010). Neurodevelopmental effects of early deprivation in postinstitutionalized children. Child Dev. 81 224–236 10.1111/j.1467-8624.2009.01391.x
    1. Polyn S. M., Natu V. S., Cohen J. D., Norman K. A. (2005). Category-specific cortical activity precedes retrieval during memory search. Science 310 1963–1966 10.1126/science.1117645
    1. Qin Y., Carter C. S., Silk E. M., Stenger V. A., Fissell K., Goode A., et al. (2004). The change of the brain activation patterns as children learn algebra equation solving. Proc. Natl. Acad. Sci. U.S.A. 101 5686–5691 10.1073/pnas.0401227101
    1. Raichle M. E. (2010). Two views of brain function. Trends Cogn. Sci. 14 180–190 10.1016/j.tics.2010.01.008
    1. Raizada R. D. S., Richards T. L., Meltzoff A., Kuhl P. K. (2008). Socioeconomic status predicts hemispheric specialisation of the left inferior frontal gyrus in young children. Neuroimage 40 1392–1401 10.1016/j.neuroimage.2008.01.021
    1. Ramscar M., Yarlett D. (2007). linguistic self-correction in the absence of feedback: a new approach to the logical problem of language acquisition. Cogn. Sci. 31 927–960 10.1080/03640210701703576
    1. Ranganath C., Blumenfeld R. (2005). Doubts about double dissociations between short- and long-term memory. Trends Cogn. Sci. 9 374–380 10.1016/j.tics.2005.06.009
    1. Rauscher F. H., Shaw G. L., Levine L. J., Wright E. L., Dennis W. R., Newcomb R. L. (1997). Music training causes long-term enhancement of preschool children’s spatial-temporal reasoning. Neurol. Res. 19 2–8
    1. Rebok G. W., Ball K., Guey L. T., Jones R. N., Kim H. Y., King J. W., et al. (2014). Ten-year effects of the advanced cognitive training for independent and vital elderly cognitive training trial on cognition and everyday functioning in older adults. J. Am. Geriatr. Soc. 10.1111/jgs.12607 [Epub ahead of print]
    1. Redick T. S., Shipstead Z., Harrison T. L., Hicks K. L., Fried D. E., Hambrick D. Z., et al. (2012). No evidence of intelligence improvement after working memory training: a randomized, placebo-controlled study. J. Exp. Psychol. Gen. 142 359–379 10.1037/a0029082
    1. Robinson G., Shallice T., Cipolotti L. (2005). A failure of high level verbal response selection in progressive dynamic aphasia. Cogn. Neuropsychol. 22 661–694 10.1080/02643290442000239
    1. Rutledge K. J., Bos W., McClure S. M., Schweitzer J. B. (2012). Training cognition in ADHD: current findings, borrowed concepts, and future directions. Neurotherapeutics 9 542–558 10.1007/s13311-012-0134-9
    1. Scerif G. (2010). Attention trajectories, mechanisms and outcomes: at the interface between developing cognition and environment: attention and developing cognition. Dev. Sci. 3 805–812 10.1111/j.1467-7687.2010.01013.x
    1. Schiffer F., Teicher M., Papanicolaou A. (1995). Evoked potential evidence for right brain activity during the recall of traumatic memories. J. Neuropsychiatry Clin. Neurosci. 7 169–175
    1. Schneiders J. A., Opitz B., Krick C. M., Mecklinger A. (2011). Separating intra-modal and across-modal training effects in visual working memory: an fMRI investigation. Cereb. Cortex 21 2555–2564 10.1093/cercor/bhr037
    1. Seitz F., Olson G., Locke B., Quam R. (1990). The martial arts and mental health: the challenge of managing energy. Percept. Mot. Skills 70 459–464 10.2466/pms.1990.70.2.459
    1. Shah P., Buschkuehl M., Jaeggi S. M., Jonides J. (2012). Cognitive training for ADHD: the importance of individual differences. J. Appl. Res. Mem. Cogn. 1 204–205 10.1016/j.jarmac.2012.06.003
    1. Shah P., Miyake A. (1999). “Models of working memory: an introduction,” in Models of Working Memory: Mechanism of Active Maintenance and Executive Control edsMiyake A., Shah P. (Cambridge: Cambridge University Press)
    1. Shalev L., Tsal Y., Mevorach C. (2007). Computerized Progressive Attentional Training (CPAT) program: effective direct intervention for children with ADHD. Child Neuropsychol. 13 382–388 10.1080/09297040600770787
    1. Shaywitz B. A., Shaywitz S. E., Blachman B. A., Pugh K. R., Fulbright R. K., Skudlarski P., et al. (2004). Development of left occipitotemporal systems for skilled reading in children after a phonologically- based intervention. Biol. Psychiatry 55 926–933 10.1016/j.biopsych.2003.12.019
    1. Sheridan M. A., Sarsour K., Jutte D., D’Esposito M., Boyce W. T. (2012). The impact of social disparity on prefrontal function in childhood. PLoS ONE 7:e35744 10.1371/journal.pone.0035744
    1. Shimamura A. P. (2000). The role of the prefrontal cortex in dynamic filtering. Psychobiology 28 207–218 10.3758/BF03331979
    1. Sirin S. R. (2005). socioeconomic status and academic achievement: a meta-analytic review of research. Rev. Educ. Res. 75 417–453 10.3102/00346543075003417
    1. Smith E., Jonides J. (1999). Storage and executive processes in the frontal lobes. Science 283 1657–1661 10.1126/science.283.5408.1657
    1. Sonuga-Barke E. J. S., Halperin J. M. (2010). Developmental phenotypes and causal pathways in attention deficit/hyperactivity disorder: potential targets for early intervention? J. Child Psychol. Psychiatry 51 368–389 10.1111/j.1469-7610.2009.02195.x
    1. Sowell E. R., Peterson B. S., Thompson P. M., Welcome S. E., Henkenius A. L., Toga A. W. (2003). Mapping cortical change across the human life span. Nat. Neurosci. 6 309–315 10.1038/nn1008
    1. Sprenger A. M., Atkins S. M., Bolger D. J., Harbison J. I., Novick J. M., Chrabaszcz J. S., et al. (2013). Training working memory: limits of transfer. Intelligence 41 638–663 10.1016/j.intell.2013.07.013
    1. Stevens C., Fanning J., Coch D., Sanders L., Neville H. (2008). Neural mechanisms of selective auditory attention are enhanced by computerized training: Electrophysiological evidence from language-impaired and typically developing children. Brain Res. 1205 55–69 10.1016/j.brainres.2007.10.108
    1. Stevens C., Lauinger B., Neville H. (2009). Differences in the neural mechanisms of selective attention in children from different socioeconomic backgrounds. Dev. Sci. 12 634–646 10.1111/j.1467-7687.2009.00807.x
    1. Takeuchi H., Taki Y., Hashizume H, Sassa Y., Nagase T., Nouchi R. (2011). Effects of training of processing speed on neural systems. J. Neurosci. 31 12139–12148 10.1523/JNEUROSCI.2948-11.2011
    1. Takeuchi H., Taki Y., Nouchi R., Hashizume H., Sekiguchi A., Kotozaki Y. (2013). Effects of working memory training on functional connectivity and cerebral blood flow during rest. Cortex 49 2106–2125 10.1016/j.cortex.2012.09.007
    1. Tamm L., Epstein J. N., Peugh J. L., Nakonezny P. A., Hughes C. W. (2013). Preliminary data suggesting the efficacy of attention training for school-aged children with ADHD. Dev. Cogn. Neurosci. 4 16–28 10.1016/j.dcn.2012.11.004
    1. Taylor S. J., Barker L. A., Heavey L., McHale S. (2013). The typical developmental trajectory of social and executive functions in late adolescence and early adulthood. Dev. Psychol. 49 1253–1265 10.1037/a0029871
    1. Teicher M., Samson J., Polcari A., McGreenery C. (2006). Sticks, stones, and hurtful words: relative effects of various forms of childhood maltreatment. Am. J. Psychiatry 163 993–1000 10.1176/appi.ajp.163.6.993
    1. Teicher M. H., Dumont N. L., Ito Y., Vaituzis C., Giedd J. N., Andersen S. L. (2004). Childhood neglect is associated with reduced corpus callosum area. Biol. Psychiatry 56 80–85 10.1016/j.biopsych.2004.03.016
    1. Temple E., Deutsch G. K., Poldrack R. A., Miller S. L., Tallal P., Merzenich M. M., et al. (2003). Neural deficits in children with dyslexia ameliorated by behavioral remediation: evidence from functional MRI. Proc. Natl. Acad. Sci. U.S.A. 100 2860–2865 10.1073/pnas.0030098100
    1. Thompson T. W., Waskom M. L., Garel K.-L. A., Cardenas-Iniguez C., Reynolds G. O., Winte R., et al. (2013). Failure of working memory training to enhance cognition or intelligence. PLoS ONE 8:e63614 10.1371/journal.pone.0063614
    1. Thompson-Schill S. L., Bedny M., Goldberg R. F. (2005). The frontal lobes and the regulation of mental activity. Curr. Opin. Neurobiol 15 219–224 10.1016/j.conb.2005.03.006
    1. Thompson-Schill S. L., D’Esposito M., Aguirre G. K., Farah M. J. (1997). Role of left inferior prefrontal cortex in retrieval of semantic knowledge: a reevaluation. Proc. Natl. Acad. Sci. U.S.A. 94 14792–14797 10.1073/pnas.94.26.14792
    1. Thompson-Schill S. L., Ramscar M., Chrysikou E. G. (2009). cognition without control when a little frontal lobe goes a long way. Curr. Dir. Psychol. Sci. 18 259–263 10.1111/j.1467-8721.2009.01648.x
    1. Thorell L. B., Lindqvist S., Bergman Nutley S., Bohlin G., Klingberg T. (2009). Training and transfer effects of executive functions in preschool children. Dev. Sci. 12 106–113 10.1111/j.1467-7687.2008.00745.x
    1. Vinogradov S., Fisher M, de Villers-Sidani E. (2012). Cognitive training for impaired neural systems in neuropsychiatric illness. Neuropsychopharmacology 37 43–76 10.1038/npp.2011.251
    1. Wager T., Smith E. (2003). Neuroimaging studies of working memory: a meta-analysis. Cogn. Affect. Behav. Neurosci. 3 255–274 10.3758/CABN.3.4.255
    1. Wass S. V., Scerif G., Johnson M. H. (2012). Training attentional control and working memory – is younger, better? Dev. Rev. 32 360–387 10.1016/j.dr.2012.07.001
    1. Weber M., Thompson-Schill S. L., Osherson D., Haxby J., Parsons L. (2009). Predicting judged similarity of natural categories from their neural representations. Neuropsychologia 47 859–868 10.1016/j.neuropsychologia.2008.12.029
    1. Westerberg H., Klingberg T. (2007). Changes in cortical activity after training of working memory–-a single-subject analysis. Physiol. Behav. 92 186–192 10.1016/j.physbeh.2007.05.041
    1. Wiers R. W., Gladwin T. E., Hofmann W., Salemink E., Ridderinkhof K. R. (2013). Cognitive bias modification and cognitive control training in addiction and related psychopathology: mechanisms, clinical perspectives, and ways forward. Clin. Psychol. Sci. 1 192–212 10.1177/2167702612466547
    1. Xue S., Tang Y.-Y., Posner M. I. (2011). Short-term meditation increases network efficiency of the anterior cingulate cortex: Neuroreport 22 570–574 10.1097/WNR.0b013e328348c750
    1. Yamada Y., Stevens C., Dow M., Harn B. A., Chard D. J., Neville H. J. (2011). Emergence of the neural network for reading in five-year-old beginning readers of different levels of pre-literacy abilities: an fMRI study. Neuroimage 57 704–713 10.1016/j.neuroimage.2010.10.057

Source: PubMed

3
Abonneren