Past and new challenges for malaria control and elimination: the role of operational research for innovation in designing interventions

Philippe Guyant, Vincent Corbel, Philippe J Guérin, Adeline Lautissier, François Nosten, Sébastien Boyer, Marc Coosemans, Arjen M Dondorp, Véronique Sinou, Shunmay Yeung, Nicholas White, Philippe Guyant, Vincent Corbel, Philippe J Guérin, Adeline Lautissier, François Nosten, Sébastien Boyer, Marc Coosemans, Arjen M Dondorp, Véronique Sinou, Shunmay Yeung, Nicholas White

Abstract

This meeting report presents the outcomes of a workshop held in Bangkok on December 1st 2014, where the following challenges were discussed: the threat of resistance to artemisinin and artemisinin-based combination therapy in the Greater Mekong Sub-region (GMS) and in Africa; access to treatment for most at risk and hard to reach population; insecticide resistance, residual and outdoors transmission. The role of operational research and the interactions between research institutions, National Malaria Control Programmes, Civil Society Organizations, and of financial and technical partners to address those challenges and to accelerate translation of research into policies and programmes were debated. The threat and the emergency of the artemisinin resistance spread and independent emergence in the GMS was intensely debated as it is now close to the border of India. The need for key messages, based on scientific evidence and information available and disseminated without delay, was highlighted as crucial for an effective and urgent response.

References

    1. WHO . World malaria report. Geneva: World Health Organization; 2014. p. 2014.
    1. Roper C, Pearce R, Nair S, Sharp B, Nosten F, Anderson T. Intercontinental spread of pyrimethamine-resistant malaria. Science. 2004;305:1124. doi: 10.1126/science.1098876.
    1. Trape JF, Pison G, Preziosi MP, Enel C, Du Loû AD, Delaunay V, et al. Impact of chloroquine resistance on malaria mortality. C R Acad Sci. 1998;III(321):689–697. doi: 10.1016/S0764-4469(98)80009-7.
    1. Marsh K. Malaria disaster in Africa. Lancet. 1998;352:924. doi: 10.1016/S0140-6736(05)61510-3.
    1. Global spread of antimalarial drug resistance since 1960. Worldwide antimalarial resistance network. . Accessed 6 July 2015
    1. WHO (2015) Antimalarial drug resistance. . Accessed 6 July 2015
    1. WHO/GMP (2014) Status report on artemisinin resistance, vol 13. World Health Organization, Geneva
    1. Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, et al. Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2009;361:455–467. doi: 10.1056/NEJMoa0808859.
    1. WHO (2013) Emergency response to artemisinin resistance in the Greater Mekong Subregion
    1. Tun KM, Imwong M, Lwin KM, Win AA, Hlaing TM, Hlaing T, et al. Spread of artemisinin-resistant Plasmodium falciparum in Myanmar: a cross-sectional survey of the K13 molecular marker. Lancet Infect Dis. 2015;15:415–421. doi: 10.1016/S1473-3099(15)70032-0.
    1. Denis MB, Tsuyuoka R, Lim P, Lindegardh N, Yi P, Top SN, et al. Efficacy of artemether-lumefantrine for the treatment of uncomplicated falciparum malaria in northwest Cambodia. Trop Med Int Health. 2006;11:1800–1807. doi: 10.1111/j.1365-3156.2006.01739.x.
    1. Song J, Socheat D, Tan B, Seila S, Xu Y, Ou F, et al. Randomized trials of artemisinin-piperaquine, dihydroartemisinin-piperaquine phosphate and artemether-lumefantrine for the treatment of multi-drug resistant falciparum malaria in Cambodia-Thailand border area. Malar J. 2011;10:231. doi: 10.1186/1475-2875-10-231.
    1. Bethell D, Se Y, Lon C, Tyner S, Saunders D, Sriwichai S, et al. Artesunate dose escalation for the treatment of uncomplicated malaria in a region of reported artemisinin resistance: a randomized clinical trial. PLoS One. 2011;6:e19283. doi: 10.1371/journal.pone.0019283.
    1. Leang R, Barrette A, Bouth DM, Menard D, Abdur R, Duong S, et al. Efficacy of dihydroartemisinin-piperaquine for treatment of uncomplicated Plasmodium falciparum and Plasmodium vivax in Cambodia, 2008–2010. Antimicrob Agents Chemother. 2013;57:818–826. doi: 10.1128/AAC.00686-12.
    1. Lon C, Manning JE, Vanachayangkul P, So M, Sea D, Se Y, et al. Efficacy of two versus three-day regimens of dihydroartemisinin-piperaquine for uncomplicated malaria in military personnel in northern Cambodia: an open-label randomized trial. PLoS One. 2014;9:e93138. doi: 10.1371/journal.pone.0093138.
    1. Saunders DL, Vanachayangkul P, Lon C. Dihydroartemisinin–piperaquine failure in Cambodia. N Engl J Med. 2014;371:484–485. doi: 10.1056/NEJMc1403007.
    1. Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2014;371:411–423. doi: 10.1056/NEJMoa1314981.
    1. Takala-Harrison S, Jacob CG, Arze C, Cummings MP, Silva JC, Dondorp AM, et al. Independent emergence of artemisinin resistance mutations among Plasmodium falciparum in Southeast Asia. J Infect Dis. 2014;211:670–679. doi: 10.1093/infdis/jiu491.
    1. Ariey F, Witkowski B, Amaratunga C, Beghain J, Langlois A-C, Khim N, et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature. 2014;505:50–55. doi: 10.1038/nature12876.
    1. Sinou V, Quang LH, Pelleau S, Huong VN, Huong NT, Tai LM, et al. Polymorphism of Plasmodium falciparum Na(+)/H(+) exchanger is indicative of a low in vitro quinine susceptibility in isolates from Viet Nam. Malar J. 2011;10:164. doi: 10.1186/1475-2875-10-164.
    1. Venkatesan M, Gadalla NB, Stepniewska K, Dahal P, Nsanzabana C, Moriera C, et al. Polymorphisms in Plasmodium falciparum chloroquine resistance transporter and multidrug resistance 1 genes: parasite risk factors that affect treatment outcomes for P. falciparum malaria after artemether-lumefantrine and artesunate-amodiaquine. Am J Trop Med Hyg. 2014;91:833–843. doi: 10.4269/ajtmh.14-0031.
    1. Leang R, Taylor WRJ, Bouth DM, Song L, Tarning J, Char MC et al (2015) Evidence of falciparum malaria multidrug resistance to artemisinin and piperaquine in western Cambodia: dihydroartemisinin-piperaquine open-label multicenter clinical assessment. Antimicrob Agents Chemother AAC.00835–15
    1. Spring MD, Lin JT, Manning JE, Vanachayangkul P, Somethy S, Bun R, et al. Dihydroartemisinin-piperaquine failure associated with a triple mutant including kelch13 C580Y in Cambodia: an observational cohort study. Lancet Infect Dis. 2015;15:683–691. doi: 10.1016/S1473-3099(15)70049-6.
    1. Wang Z, Shrestha S, Li X, Miao J, Yuan L, Cabrera M, et al. Prevalence of K13-propeller polymorphisms in Plasmodium falciparum from China-Myanmar border in 2007–2012. Malar J. 2015;14:168. doi: 10.1186/s12936-015-0672-9.
    1. Huang F, Takala-Harrison S, Jacob CG, Liu H, Sun X, Yang H et al (2015) A single mutation in K13 predominates in Southern China and is associated with delayed clearance of Plasmodium falciparum following artemisinin treatment. J Infect Dis.s pii: jiv249
    1. Tabernero P, Fernández FM, Green M, Guerin PJ, Newton PN. Mind the gaps–the epidemiology of poor-quality anti-malarials in the malarious world–analysis of the WorldWide Antimalarial Resistance Network database. Malar J. 2014;13:139. doi: 10.1186/1475-2875-13-139.
    1. Drug quality: worldwide antimalarial resistance network. . Accessed 6 July 2015
    1. Lubell Y, Dondorp A, Guérin PJ, Drake T, Meek S, Ashley E, et al. Artemisinin resistance–modelling the potential human and economic costs. Malar J. 2014;13:452. doi: 10.1186/1475-2875-13-452.
    1. Bhumiratana A, Intarapuk A, Sorosjinda-Nunthawarasilp P, Maneekan P, Koyadun S. Border malaria associated with multidrug resistance on Thailand-Myanmar and Thailand-Cambodia borders: transmission dynamic, vulnerability, and surveillance. Biomed Res Int. 2013;2013:363417. doi: 10.1155/2013/363417.
    1. WHO (2007) Containment of malaria multi-drug resistance on the Cambodia-Thailand border. Report of an Informal Consultation. World Health Organization, Geneva
    1. Carrara VI, Lwin KM, Phyo AP, Ashley E, Wiladphaingern J, Sriprawat K, et al. Malaria burden and artemisinin resistance in the mobile and migrant population on the Thai-Myanmar Border, 1999–2011: an observational study. PLoS Med. 2013;10:e1001398. doi: 10.1371/journal.pmed.1001398.
    1. WHO (2014) Feasibility of Plasmodium falciparum elimination in the Greater Mekong Subregion: technical, operational and financial challenges. MPAC meeting. World Health Organization, Geneva
    1. Palevalut (2015) Evaluation opérationnelle de la lutte intégrée contre le paludisme. . Accessed 6 July 2015
    1. Durnez L, Coosemans M (2013) Residual transmission of malaria: an old issue for new approaches. In: Manguin S (ed) Anopheles mosquitoes—New insights into malaria vectors. InTech
    1. Killeen GF. Characterizing, controlling and eliminating residual malaria transmission. Malar J. 2014;13:330. doi: 10.1186/1475-2875-13-330.
    1. Durnez L, Mao S, Denis L, Roelants P, Sochantha T, Coosemans M. Outdoor malaria transmission in forested villages of Cambodia. Malar J. 2013;12:329. doi: 10.1186/1475-2875-12-329.
    1. Trung HD, Van Bortel W, Sochantha T, Keokenchanh K, Briët OJT, Coosemans M. Behavioural heterogeneity of Anopheles species in ecologically different localities in Southeast Asia: a challenge for vector control. Trop Med Int Health. 2005;10:251–262. doi: 10.1111/j.1365-3156.2004.01378.x.
    1. Bayoh MN, Mathias DK, Odiere MR, Mutuku FM, Kamau L, Gimnig JE, et al. Anopheles gambiae: historical population decline associated with regional distribution of insecticide-treated bed nets in western Nyanza Province, Kenya. Malar J. 2010;9:62. doi: 10.1186/1475-2875-9-62.
    1. Moiroux N, Gomez MB, Pennetier C, Elanga E, Djènontin A, Chandre F, et al. Changes in Anopheles funestus biting behavior following universal coverage of long-lasting insecticidal nets in Benin. J Infect Dis. 2012;206:1622–1629. doi: 10.1093/infdis/jis565.
    1. Taylor B. Changes in the feeding behaviour of a malaria vector, Anopheles farauti Lav., following the use of DDT as a residual spray in houses in the British Solomon Islands Protectorate. Trans R Entmol Soc Lond. 1975;127:227–292.
    1. Corbel V, Nosten F, Thanispong K, Luxemburger C, Kongmee M, Chareonviriyaphap T. Challenges and prospects for dengue and malaria control in Thailand, Southeast Asia. Trends Parasitol. 2013;29:623–633. doi: 10.1016/j.pt.2013.09.007.
    1. Corbel V, N’Guessan R (2013) Distribution, mechanisms, impact and management of insecticide resistance in malaria vectors: a pragmatic review. In: Manguin S (ed) Anopheles mosquitoes—New insights into malaria vectors. InTech, pp 579–633
    1. WHO/GMP (2012) Global plan for insecticide resistance management in malaria vectors (GPIRM), Geneva, Switzerland
    1. Van Bortel W, Trung HD, Thuan LK, Sochantha T, Socheat D, Sumrandee C, et al. The insecticide resistance status of malaria vectors in the Mekong region. Malar J. 2008;7:102. doi: 10.1186/1475-2875-7-102.
    1. Verhaeghen K, Van Bortel W, Trung HD, Sochantha T, Keokenchanh K, Coosemans M. Knockdown resistance in Anopheles vagus, An. sinensis, An. paraliae and An. peditaeniatus populations of the Mekong region. Parasit Vectors. 2010;3:59. doi: 10.1186/1756-3305-3-59.
    1. WHO: World malaria report. Geneva: World Health Organization; 2012. p. 2012.
    1. WHO (2015) Guidance note on the control of residual malaria parasite transmission. . Accessed 26 Feb 2015
    1. Hill N, Lenglet A, Arnéz AM, Carneiro I. Plant based insect repellent and insecticide treated bed nets to protect against malaria in areas of early evening biting vectors: double blind randomised placebo controlled clinical trial in the Bolivian Amazon. BMJ. 1023;2007:335.
    1. Maia MF, Onyango SP, Thele M, Simfukwe ET, Turner EL, Moore SJ. Do topical repellents divert mosquitoes within a community? Health equity implications of topical repellents as a mosquito bite prevention tool. PLoS One. 2013;8:e84875. doi: 10.1371/journal.pone.0084875.
    1. Kiszewski AE, Darling ST. Estimating a mosquito repellent’s potential to reduce malaria in communities. J Vector Borne Dis. 2010;47:217–221.
    1. Chen-Hussey V, Carneiro I, Keomanila H, Gray R, Bannavong S, Phanalasy S, et al. Can topical insect repellents reduce malaria? A cluster-randomised controlled trial of the insect repellent N, N-diethyl-m-toluamide (DEET) in Lao PDR. PLoS One. 2013;8:e70664. doi: 10.1371/journal.pone.0070664.
    1. Deressa W, Yihdego YY, Kebede Z, Batisso E, Tekalegne A, Dagne GA. Effect of combining mosquito repellent and insecticide treated net on malaria prevalence in Southern Ethiopia: a cluster-randomised trial. Parasit Vectors. 2014;7:132. doi: 10.1186/1756-3305-7-132.
    1. WHO (2014) Second Meeting of the Vector Control Advisory Group. World Health Organization, Geneva.
    1. Raymond M, Callaghan A, Fort P, Pasteur N. Worldwide migration of amplified insecticide resistance genes in mosquitoes. Nature. 1991;350:151–153. doi: 10.1038/350151a0.
    1. Santolamazza F, Calzetta M, Etang J, Barrese E, Dia I, Caccone A, et al. Distribution of knock-down resistance mutations in Anopheles gambiae molecular forms in west and west-central Africa. Malar J. 2008;7:74. doi: 10.1186/1475-2875-7-74.
    1. Pinto J, Lynd A, Vicente JL, Santolamazza F, Randle NP, Gentile G, et al. Multiple origins of knockdown resistance mutations in the Afrotropical mosquito vector Anopheles gambiae. PLoS One. 2007;2:e1243. doi: 10.1371/journal.pone.0001243.

Source: PubMed

3
Abonneren