Zidovudine plus lamivudine in Human T-Lymphotropic Virus type-I-associated myelopathy: a randomised trial

Graham P Taylor, Peter Goon, Yoshitaka Furukawa, Hannah Green, Anna Barfield, Angelina Mosley, Hirohisa Nose, Abdel Babiker, Peter Rudge, Koichiro Usuku, Mitsuhiro Osame, Charles R M Bangham, Jonathan N Weber, Graham P Taylor, Peter Goon, Yoshitaka Furukawa, Hannah Green, Anna Barfield, Angelina Mosley, Hirohisa Nose, Abdel Babiker, Peter Rudge, Koichiro Usuku, Mitsuhiro Osame, Charles R M Bangham, Jonathan N Weber

Abstract

Background: No therapies have been proven to persistently improve the outcome of HTLV-I-associated myelopathy. Clinical benefit has been reported with zidovudine and with lamivudine in observational studies. We therefore conducted a randomised, double blind, placebo controlled study of six months combination therapy with these nucleoside analogues in sixteen patients.

Results: Primary outcomes were change in HTLV-I proviral load in PBMCs and clinical measures. Secondary endpoints were changes in T-cell subsets and markers of activation and proliferation. Six patients discontinued zidovudine. No significant changes in pain, bladder function, disability score, gait, proviral load or markers of T-cell activation or proliferation were seen between the two arms. Active therapy was associated with an unexplained decrease in CD8 and non-T lymphocyte counts.

Conclusion: Failure to detect clinical improvement may have been due irreversible nerve damage in these patients with a long clinical history and future studies should target patients presenting earlier. The lack of virological effect but may reflect a lack of activity of these nucleoside analogues against HTLV-I RT in vivo, inadequate intracellular concentrations of the active moiety or the contribution of new cell infection to maintaining proviral load at this stage of infection may be relatively small masking the effects of RT inhibition.

Figures

Figure 1
Figure 1
Changes in timed 13 meter walk observed during the study period.

References

    1. Gallo RC. The discovery of the first human retrovirus: HTLV-1 and HTLV-2. Retrovirology. 2005;2
    1. Takatsuki K. Discovery of adult T-cell leukemia. Retrovirology. 2005;2
    1. Gessain A, Vernant JC, Maurs L, Barin F, Gout O, Calender A, de The G. Antibodies to human T-lymphotropic virus type-I in patients with tropical spastic paraparesis. Lancet. 1985;ii:407–409. doi: 10.1016/S0140-6736(85)92734-5.
    1. Osame M, Usuku K, Izumo S, Ijichi N, Amitani H, Igata A, Matsumoto M, Tara M. HTLV-I associated myelopathy, a new clinical entity (letter). Lancet. 1986;i:1031–1032. doi: 10.1016/S0140-6736(86)91298-5.
    1. Kaplan JE, Osame M, Kubota H, Igata A, Nishitani H, Maeda Y, Khabbaz RF, Janssen RS. The risk of development of HTLV-I associated myelopathy/tropical spastic paraparesis among persons infected with HTLV-I. J Aquir Immun Defic Synd. 1990;3:1096–1101.
    1. Tosswill JHC, Taylor GP, Tedder RS, Mortimer PP. HTLV-I-associated disease in England and Wales 1993-7:A retrospective study of serology requests. BMJ. 1999;320:611–612. doi: 10.1136/bmj.320.7235.611.
    1. Yoshida M, Osame M, Kawai H, Toita M, Kuwasaki N, Nishida Y, Hiraki Y, Takahashi K, Nomura K, Sonoda S, Eiraku N, Ijichi S, Usuku K. Increased replication of HTLV-I in HTLV-I-associated myelopathy. Ann Neurol. 1989;26:331–335. doi: 10.1002/ana.410260304.
    1. Tosswill JHC, Taylor GP, Clewley JP, Weber JN. Quantification of proviral DNA load in human T-cell leukaemia virus type-I infections. J Virol Methods. 1998;75:21–26. doi: 10.1016/S0166-0934(98)00093-7.
    1. Nagai M, Usuku K, Matsumoto W, Kodama D, Takenouchi N, Moritoyo T, Hashiguchi S, Ichinose M, Bangham CRM, Izumo S, Osame M. Analysis of HTLV-I proviral load in 202 HAM/TSP patients and 243 asymptomatic HTLV-I carriers: high proviral load strongly predisposes to HAM/TSP. J Neurovirol. 1998;4:586–593.
    1. Cartier L, Cea JG, Vergara C, Araya F, Born P. Clinical and neuropathological study of six patients with spastic paraparesis associated with HTLV-I: an axomyelinic degeneration of the central nervous system. J Neuropathol and Experimental Neurology. 1997;56:403–413.
    1. Iwasaki Y, Ohara Y, Kobayashi I, Akizuki S. Infiltration of helper/inducer T lymphocytes heralds central nervous system damage in human T-cell leukemia virus infection. Am J Pathol. 1992;140:1003–1008.
    1. Greten TF, Slansky JE, Kubota R, Soldan SS, Jaffe ES, Leist TP, Pardoll DM, Jacobson S, Schneck JP. Direct visualization of antigen-specific T cells: HTLV-1 Tax11-19-specific CD8+ T cells are activated in peripheral blood and accumulate in cerebrospinal fluid from HAM/TSP patients. Proc Natl Acad Sci USA. 1998;95:7568–7573. doi: 10.1073/pnas.95.13.7568.
    1. Biddison WE, Kuboto R, Kawanishi T, Taub DD, Cruikshank WW, Center DM, Connor EW, Utz U, Jacobson S. Human T cell leukaemia type I (HTLV-I)-specific CD8+ CTL clones from patients with HTLV-I-associated neurological disease secrete proinflammatory cytokines, chemokines and matrix metalloproteinase. J Immunol. 2002;159:2018–2025.
    1. Goon PKC, Hanon E, Igakura T, Tanaka Y, Weber JN, Taylor GP, Bangham CRM. High frequencies of Th1-type CD4+ T cells specific to HTLV-I Env and Tax proteins in patients with HTLV-1-associated myelopathy/tropical spastic paraparesis. Blood. 2002;99:3335–3341. doi: 10.1182/blood.V99.9.3335.
    1. Osame M, Igata A, Matsumoto M, Kohka M, Usuku K, Izumo S. HTLV-I-associated myelopathy (HAM): Treatment trials, retrospective survey and clinical and laboratory findings. Hematology Reviews. 1990;3:271–284.
    1. Izumo S, Goto I, Itoyama Y, Okajima T, Watanabe S, Kuroda Y, Araki S, Mori M, Nagataki S, Matsukura S, Akamine T, Nakagawa M, Yamamoto I, Osame M. Interferon-alpha is effective in HTLV-I-associated myelopathy: a multicenter, randomized, double-blind, controlled trial. Neurology. 1996;46:1016–1021.
    1. Matsushita S, Mitsuya H, Reitz MS, Broder S. Pharmacological inhibition of in vitro infectivity of human T lymphotropic virus type I. J Clin Investig. 1987;80:394–400.
    1. Macchi B, Faraoni I, Zhang J, Grelli S, Favalli C, Mastino A, Bonmassar E. AZT inhibits the transmission of human T cell leukaemia/lymphoma virus type I to adult peripheral blood mononuclear cells in vitro. J Gen Virol. 1997;78:1007–1016.
    1. Isono T, Ogawa K, Seto A. Antiviral effect of zidovudine in the experimental model of adult T-cell leukaemia in rabbits. Leukaemia Research. 1990;14:841–847. doi: 10.1016/0145-2126(90)90172-6.
    1. Gout O, Gessain A, Iba-Zizen M, Kouzan S, Bolgert F, de The G, Lyon-Caen O. The effect of zidovudine on chronic myelopathy associated withHTLV-I. J Neurol. 1991;238:108–109. doi: 10.1007/BF00315691.
    1. Sheremata WA, Benedict BS, Squilacote DC, Sazant A, de Freitas E. High-dose Zidovudine induction in HTLV-I associated myelopathy: Safety and possible efficacy. Neurology. 1993;43:2125–2129.
    1. Taylor GP, Hall SE, Navarette S, Michie CA, Davis R, Witkover AD, Rossor M, Nowak MA, Rudge P, Matutes E, Bangham CRM, Weber JN. Effect of Lamivudine on human T-cell leukaemia virus type 1 (HTLV-1) DNA copy number, T-cell phenotype, and anti-Tax cytotoxic T-cell frequency in patients with HTLV-1 associated myelopathy. J Virol. 1999;73:10289–10295.
    1. Dougan S, Payne LJC, Tosswill JHC, Davison K, Evans BG. HTLV infection in England and Wales in 2002 - results from an enhanced national surveillance system. Commun Dis Public Health. 2004;7:207–211.
    1. Balestrieri E, Forte G, Matteucci C, Mastino A, Macchi B. Effect of lamivudine on transmission of human T-cell lymphotropic virus type 1 to adult peripheral blood mononuclear cells in vitro. Antimicrobial Agents Chemotherapy. 2002;46:3080–3083. doi: 10.1128/AAC.46.9.3080-3083.2002.
    1. Garcia-Lerma JG, Nidtha S, Heneine W. Susceptibility of Human T Cell Leukaemia Virus Type 1 to Reverse-transcriptase inhibitors: evidence of resistance to lamivudine. J Infect Dis. 2001;184:507–510. doi: 10.1086/322785.
    1. Toro C, Rodés B, Mendoza Cd C, Soriano V. Lamivudine resistance in human T-cell leukaemia virus type 1 may be due to a polymorphism at codon 118 (V -->I) of the reverse transcriptase. Antimicrobial Agents Chemotherapy. 2003;47:1774–1775. doi: 10.1128/AAC.47.5.1774-1775.2003.
    1. Derse D, Hill SA, Lloyd PA, Chung HK, Morse BA. Examining human T-lymphotropic virus type 1 infection and replication by cell-free infection with recombinant virus vectors. J Virol. 2001;75:8461–8468. doi: 10.1128/JVI.75.18.8461-8468.2001.
    1. Lau AW, Nightingale S, Taylor GP, Gant T, A. C. Enhanced MDR1 Gene Expression in Human T-cell Leukaemia Virus-I-infected patients offers new prospects for therapy. Blood. 1998;91:2467–2474.
    1. Bangham CRM. The immune response to HTLV-I. Curr Opin Immun. 2000;12:397–402. doi: 10.1016/S0952-7915(00)00107-2.
    1. Igakura T, Stinchcombe JC, Goon PKC, Taylor GP, Weber JN, Griffiths GM, Tanaka Y, Osame M, Bangham CRM. Spread of HTLV-I Between Lymphocytes by Virus-Induced Polarization of the Cytoskeleton. Science. 2003;299:1713. doi: 10.1126/science.1080115.
    1. . 2006.
    1. Organisation WH. WHO diagnostic guidelines of HAM. Weekly Epidemiological Record. 1989;49:382–383.
    1. Goon PKC, Igakura T, Hanon E, Mosley AJ, Barfield A, Barnard AL, Kaftantzi L, Taylor GP, Weber JN, Bangham CRM. HTLV-I specific CD4+ T cells: Immunodominance hierarchy and preferential infection with HTLV-I. J Immunol. 2004;172:1735–1743.
    1. Hanon E, Goon P, Taylor GP, Hasegawa H, Tanaka Y, Weber JN, Bangham CRM. High production of interferon-g but not interleukin-2 by human T cell lymphotropic virus type I (HTLV-I) – infected peripheral blood mononuclear cells. Blood. 2001;98:721–726. doi: 10.1182/blood.V98.3.721.

Source: PubMed

3
Abonneren