Safety and tolerability of adjunctive rosiglitazone treatment for children with uncomplicated malaria

Rosauro Varo, Valerie M Crowley, Antonio Sitoe, Lola Madrid, Lena Serghides, Rubao Bila, Helio Mucavele, Alfredo Mayor, Quique Bassat, Kevin C Kain, Rosauro Varo, Valerie M Crowley, Antonio Sitoe, Lola Madrid, Lena Serghides, Rubao Bila, Helio Mucavele, Alfredo Mayor, Quique Bassat, Kevin C Kain

Abstract

Background: Despite the widespread use and availability of rapidly acting anti-malarials, the fatality rate of severe malaria in sub-Saharan Africa remains high. Adjunctive therapies that target the host response to malaria infection may further decrease mortality over that of anti-malarial agents alone. Peroxisome proliferator-activated receptor-gamma agonists (e.g. rosiglitazone) have been shown to act on several pathways implicated in the pathogenesis of severe malaria and may improve clinical outcome as an adjunctive intervention.

Methods: In this study, the safety and tolerability of adjunctive rosiglitazone in paediatric uncomplicated malaria infection was evaluated in Mozambique, as a prelude to its evaluation in a randomized controlled trial in paediatric severe malaria. The study was a prospective, randomized, double-blind, placebo-controlled, phase IIa trial of rosiglitazone (0.045 mg/kg/dose) twice daily for 4 days versus placebo as adjunctive treatment in addition to Mozambican standard of care (artemisinin combination therapy Coartem®) in children with uncomplicated malaria. The primary outcomes were tolerability and safety, including clinical, haematological, biochemical, and electrocardiographic evaluations.

Results: Thirty children were enrolled: 20 were assigned to rosiglitazone and 10 to placebo. Rosiglitazone treatment did not induce hypoglycaemia nor significantly alter clinical, biochemical, haematological, or electrocardiographic parameters.

Conclusions: Adjunctive rosiglitazone was safe and well-tolerated in children with uncomplicated malaria, permitting the extension of its evaluation as adjunctive therapy for severe malaria. The trial is registered with Clinicaltrials.gov, NCT02694874.

Figures

Fig. 1
Fig. 1
Study profile of 33 patients screened for eligibility for a randomized, placebo-controlled, phase IIa trial of adjunctive rosiglitazone for the treatment of uncomplicated malaria in children
Fig. 2
Fig. 2
Median glucose levels of study participants on admission (AD) and at each measured time point. Bars represent interquartile range
Fig. 3
Fig. 3
Mean hematocrit and hemoglobin levels according to study group on admission (AD) and at each measured time point
Fig. 4
Fig. 4
Log mean parasite load in Mozambican children with uncomplicated malaria according to study group

References

    1. WHO . World malaria report 2016. Geneva: World Health Organization; 2016.
    1. Dondorp A, Nosten F, Stepniewska K, Day N, White N, SEAQAMTS Group Artesunate versus quinine for treatment of severe falciparum malaria: a randomised trial. Lancet. 2005;366:717–725. doi: 10.1016/S0140-6736(05)67176-0.
    1. Dondorp AM, Fanello CI, Hendriksen IC, Gomes E, Seni A, Chhaganlal KD, et al. Artesunate versus quinine in the treatment of severe falciparum malaria in African children (AQUAMAT): an open-label, randomised trial. Lancet. 2010;376:1647–1657. doi: 10.1016/S0140-6736(10)61924-1.
    1. John CC, Bangirana P, Byarugaba J, Opoka RO, Idro R, Jurek AM, et al. Cerebral malaria in children is associated with long-term cognitive impairment. Pediatrics. 2008;122:e92–e99. doi: 10.1542/peds.2007-3709.
    1. Boivin MJ. Effects of early cerebral malaria on cognitive ability in Senegalese children. J Dev Behav Pediatr. 2002;23:353–364. doi: 10.1097/00004703-200210000-00010.
    1. Boivin MJ, Bangirana P, Byarugaba J, Opoka RO, Idro R, Jurek AM, et al. Cognitive impairment after cerebral malaria in children: a prospective study. Pediatrics. 2007;119:e360–e366. doi: 10.1542/peds.2006-2027.
    1. Fernando SD, Rodrigo C, Rajapakse S. The ‘hidden’ burden of malaria: cognitive impairment following infection. Malar J. 2010;9:366. doi: 10.1186/1475-2875-9-366.
    1. Idro R, Kakooza-Mwesige A, Balyejjussa S, Mirembe G, Mugasha C, Tugumisirize J, et al. Severe neurological sequelae and behaviour problems after cerebral malaria in Ugandan children. BMC Res Notes. 2010;3:104. doi: 10.1186/1756-0500-3-104.
    1. Kihara M, Carter JA, Holding PA, Vargha-Khadem F, Scott RC, Idro R, et al. Impaired everyday memory associated with encephalopathy of severe malaria: the role of seizures and hippocampal damage. Malar J. 2009;8:273. doi: 10.1186/1475-2875-8-273.
    1. Birbeck GL, Molyneux ME, Kaplan PW, Seydel KB, Chimalizeni YF, Kawaza K, et al. Blantyre Malaria Project Epilepsy Study (BMPES) of neurological outcomes in retinopathy-positive paediatric cerebral malaria survivors: a prospective cohort study. Lancet Neurol. 2010;9:1173–1181. doi: 10.1016/S1474-4422(10)70270-2.
    1. Dugbartey AT, Dugbartey MT, Apedo MY. Delayed neuropsychiatric effects of malaria in Ghana. J Nerv Ment Dis. 1998;186:183–186. doi: 10.1097/00005053-199803000-00007.
    1. Carter JA, Ross AJ, Neville BG, Obiero E, Katana K, Mung’ala-Odera V, et al. Developmental impairments following severe falciparum malaria in children. Trop Med Int Health. 2005;10:3–10. doi: 10.1111/j.1365-3156.2004.01345.x.
    1. Carter JA, Mung’ala-Odera V, Neville BG, Murira G, Mturi N, Musumba C, et al. Persistent neurocognitive impairments associated with severe falciparum malaria in Kenyan children. J Neurol Neurosurg Psychiatry. 2005;76:476–481. doi: 10.1136/jnnp.2004.043893.
    1. Carter JA, Lees JA, Gona JK, Murira G, Rimba K, Neville BG, et al. Severe falciparum malaria and acquired childhood language disorder. Dev Med Child Neurol. 2006;48:51–57. doi: 10.1017/S0012162206000107.
    1. John CC, Kutamba E, Mugarura K, Opoka RO. Adjunctive therapy for cerebral malaria and other severe forms of Plasmodium falciparum malaria. Expert Rev Anti Infect Ther. 2010;8:997–1008. doi: 10.1586/eri.10.90.
    1. Higgins SJ, Elphinstone RE, Kain KC. Adjunctive therapies for malaria. In: Encyclopedia of malaria. Media SSB ed. New York: Springer Science+Business Media; 2014.
    1. Pascual G, Fong AL, Ogawa S, Gamliel A, Li AC, Perissi V, et al. A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-gamma. Nature. 2005;437:759–763. doi: 10.1038/nature03988.
    1. Giannini S, Serio M, Galli A. Pleiotropic effects of thiazolidinediones: taking a look beyond antidiabetic activity. J Endocrinol Invest. 2004;27:982–991. doi: 10.1007/BF03347546.
    1. Lehrke M, Lazar MA. The many faces of PPARgamma. Cell. 2005;123:993–999. doi: 10.1016/j.cell.2005.11.026.
    1. Kapadia R, Yi JH, Vemuganti R. Mechanisms of anti-inflammatory and neuroprotective actions of PPAR-gamma agonists. Front Biosci. 2008;13:1813–1826. doi: 10.2741/2802.
    1. Jin J, Albertz J, Guo Z, Peng Q, Rudow G, Troncoso JC, et al. Neuroprotective effects of PPAR-γ agonist rosiglitazone in N171-82Q mouse model of Huntington’s disease. J Neurochem. 2013;125:410–419. doi: 10.1111/jnc.12190.
    1. Serghides L, McDonald CR, Lu Z, Friedel M, Cui C, Ho KT, et al. PPARγ agonists improve survival and neurocognitive outcomes in experimental cerebral malaria and induce neuroprotective pathways in human malaria. PLoS Pathog. 2014;10:e1003980. doi: 10.1371/journal.ppat.1003980.
    1. Cheng Y, Rodriguiz RM, Murthy SR, Senatorov V, Thouennon E, Cawley NX, et al. Neurotrophic factor-α1 prevents stress-induced depression through enhancement of neurogenesis and is activated by rosiglitazone. Mol Psychiatry. 2015;20:744–754. doi: 10.1038/mp.2014.136.
    1. Thouennon E, Cheng Y, Falahatian V, Cawley NX, Loh YP. Rosiglitazone-activated PPARγ induces neurotrophic factor-α1 transcription contributing to neuroprotection. J Neurochem. 2015;134:463–470. doi: 10.1111/jnc.13152.
    1. Yki-Järvinen H. Thiazolidinediones. N Engl J Med. 2004;351:1106–1118. doi: 10.1056/NEJMra041001.
    1. Salzman A, Patel J. Rosiglitazone is not associated with hepatotoxicity. Diabetes. 1999;48:A114–A115.
    1. Bale TL, Baram TZ, Brown AS, Goldstein JM, Insel TR, McCarthy MM, et al. Early life programming and neurodevelopmental disorders. Biol Psychiatry. 2010;68:314–319. doi: 10.1016/j.biopsych.2010.05.028.
    1. Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007;356:2457–2471. doi: 10.1056/NEJMoa072761.
    1. Hiatt WR, Kaul S, Smith RJ. The cardiovascular safety of diabetes drugs—insights from the rosiglitazone experience. N Engl J Med. 2013;369:1285–1287. doi: 10.1056/NEJMp1309610.
    1. Serghides L, Kain KC. Peroxisome proliferator-activated receptor gamma-retinoid X receptor agonists increase CD36-dependent phagocytosis of Plasmodium falciparum-parasitized erythrocytes and decrease malaria-induced TNF-alpha secretion by monocytes/macrophages. J Immunol. 2001;166:6742–6748. doi: 10.4049/jimmunol.166.11.6742.
    1. Serghides L, Patel SN, Ayi K, Lu Z, Gowda DC, Liles WC, et al. Rosiglitazone modulates the innate immune response to Plasmodium falciparum infection and improves outcome in experimental cerebral malaria. J Infect Dis. 2009;199:1536–1545. doi: 10.1086/598222.
    1. Boggild AK, Krudsood S, Patel SN, Serghides L, Tangpukdee N, Katz K, et al. Use of peroxisome proliferator-activated receptor gamma agonists as adjunctive treatment for Plasmodium falciparum malaria: a randomized, double-blind, placebo-controlled trial. Clin Infect Dis. 2009;49:841–849. doi: 10.1086/605431.
    1. Mocambique. MdSRd. Programa Nacional de Controlo de Malaria: Normas de Tratamento da Malaria em Mocambique. Maputo 2011.
    1. Sacoor C, Nhacolo A, Nhalungo D, Aponte JJ, Bassat Q, Augusto O, et al. Profile: Manhica Health Research Centre (Manhica HDSS) Int J Epidemiol. 2013;42:1309–1318. doi: 10.1093/ije/dyt148.
    1. Bassat Q, Guinovart C, Sigauque B, Aide P, Sacarlal J, Nhampossa T, et al. Malaria in rural Mozambique. Part II: children admitted to hospital. Malar J. 2008;7:37. doi: 10.1186/1475-2875-7-37.
    1. Zawadzki JK. Clinical Review Pediatric Study Rosiglitazone (Avandia®). GlaxoSmithKline 2004.
    1. WHO. AnthroPlus Software version 1.0.4. Geneva: World Health Organization. 2007. . Accessed 18 Nov 2016.
    1. WHO . Pocket book for hospital care of children: guidelines for the management of common illness with limited resources. 2. Geneva: World Health Organization; 2013.
    1. GlaxoSmithKline (GSK). Product Monograph, AVANDIA® rosiglitazone (as rosiglitazone maleate). Date of revision: 5th March 2012. . Accessed 4 Dec 2016.
    1. Madrid L, Lanaspa M, Maculuve SA, Bassat Q. Malaria-associated hypoglycaemia in children. Expert Rev Anti Infect Ther. 2015;13:267–277. doi: 10.1586/14787210.2015.995632.
    1. White NJ. Cardiotoxicity of antimalarial drugs. Lancet Infect Dis. 2007;7:549–558. doi: 10.1016/S1473-3099(07)70187-1.
    1. Jain A, Kaushik R, Kaushik RM. Malarial hepatopathy: clinical profile and association with other malarial complications. Acta Trop. 2016;159:95–105. doi: 10.1016/j.actatropica.2016.03.031.
    1. Bukirwa H, Unnikrishnan B, Kramer CV, Sinclair D, Nair S, Tharyan P. Artesunate plus pyronaridine for treating uncomplicated Plasmodium falciparum malaria. Cochrane Database Syst Rev. 2014;(3):CD006404. doi:10.1002/14651858.CD006404.pub2.
    1. Croft AM, Whitehouse DP, Cook GC, Beer MD. Safety evaluation of the drugs available to prevent malaria. Expert Opin Drug Saf. 2002;1:19–27. doi: 10.1517/14740338.1.1.19.

Source: PubMed

3
Abonneren