Tumor Microenvironment as A "Game Changer" in Cancer Radiotherapy

Magdalena Jarosz-Biej, Ryszard Smolarczyk, Tomasz Cichoń, Natalia Kułach, Magdalena Jarosz-Biej, Ryszard Smolarczyk, Tomasz Cichoń, Natalia Kułach

Abstract

Radiotherapy (RT), besides cancer cells, also affects the tumor microenvironment (TME): tumor blood vessels and cells of the immune system. It damages endothelial cells and causes radiation-induced inflammation. Damaged vessels inhibit the infiltration of CD8+ T lymphocytes into tumors, and immunosuppressive pathways are activated. They lead to the accumulation of radioresistant suppressor cells, including tumor-associated macrophages (TAMs) with the M2 phenotype, myeloid-derived suppressor cells (MDSCs), and regulatory T cells (Tregs). The area of tumor hypoxia increases. Hypoxia reduces oxygen-dependent DNA damage and weakens the anti-cancer RT effect. It activates the formation of new blood vessels and leads to cancer relapse after irradiation. Irradiation may also activate the immune response through immunogenic cell death induction. This leads to the "in situ" vaccination effect. In this article, we review how changes in the TME affect radiation-induced anticancer efficacy. There is a very delicate balance between the activation of the immune system and the immunosuppression induced by RT. The effects of RT doses on immune system reactions and also on tumor vascularization remain unclear. A better understanding of these interactions will contribute to the optimization of RT treatment, which may prevent the recurrence of cancer.

Keywords: hypoxia; immunosuppression; radioresistance; radiotherapy; tumor microenvironment; tumor vasculature; “in situ” vaccination.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Tumor microenvironment (TME). TME is a functional and structural niche where tumor progression occurs. It consists of cellular and molecular (extracellular matrix, cytokines, chemokines, and other molecules) components. The microenvironment is composed of tumor stromal cells (cancer-associated fibroblast (CAFs), mesenchymal stromal cells (MSCs), endothelial cells (ECs), pericytes) and immune cells (T cells, B cells, natural killer (NK) cells, dendritic cells (DCs), tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs), myeloid-derived suppressor cells (MDSCs)) [6]. The cells differ in radiosensitivity. The term “radiosensitivity” means the relative susceptibility of cells to radiotherapy (RT)-induced irreversible damage such as chromosomal instability and cell death [37]. (A) Proliferating tumor cells are sensitive to irradiation (IR) [37]. Endothelial cells are resistant to doses up to 10Gy. CAFs are the most resistant stromal cells. (B) Within the cells of the immune system regulatory T cells (Tregs) are more radioresistant than any other population of T cells [38] and B cells [39]. NK cells and B lymphocytes are the most radiosensitive immune cells, while DCs are the most resistant [40].
Figure 2
Figure 2
The effect of various doses of radiotherapy (RT) on the components of the tumor microenvironment. Radiation doses affect the cancer cells and the surrounding tumor microenvironment differently, including tumor vascularization, immune system cells, and CAFs. Low doses (Low-dose radiation, LDR) induce mainly apoptosis in cancer cells, with tolerogenic or immunogenic cell death. APCs are not activated, immunosuppressive macrophages TAM M2 and MDSCs are recruited. In some cases, TAMs may be polarized towards M1, and CD8+ and CD4+ T lymphocyte infiltration may be increased. However, the activated anticancer response is insufficient. ECs survive low IR doses, and angiogenesis/vasculogenesis is stimulated. During fractionated radiotherapy, “tumor reoxygenation” may occur, which leads to an increase in the effectiveness of RT. Intermediate-dose radiation (IDR) induces tumor cell death without increasing hypoxia or immunosuppression. MHC-I up-regulation, antigen presentation by DCs, reduced levels of MDSCs or Tregs, and transient induction of environmental proinflammatories occur. The vessels may be normalized, and perfusion, oxygenation, and the number of pericytes may be increased. IDR can also induce the process of angiogenesis or vasculogenesis. High-dose radiation (HDR) induces necrosis of tumor cells, and immunogenic cell death associated with the release of TAAs and DAMPs. An effective antitumor immune response is activated. ECs undergo apoptosis or senescence. Tumor vascularization is destroyed. Increased areas of hypoxia lead to an immunosuppressive environment. New vessels are formed in the process of vasculogenesis. CAFs also undergo a senescence process. They secrete a number of SASP factors involved in fibrosis and TME modulation. The effect of doses on tumor vascularization or immune system reactions is not entirely clear. There are conflicting literature reports. This is related to the fact that there is a delicate balance between the activation and inhibition of the immune system induced by RT. Further research into TME mechanisms triggered by various RT doses is necessary. TAA, tumor-associated antigens; DAMPs, death-associated molecular patterns; MVD, microvessel density; TGF-β, transforming growth factor-β; MHC-I, major histocompatibility complex I; LNs, lymph nodes; BM-DC, bone-marrow-derived dendritic cell; SASP, senescence-associated secretory phenotype.

References

    1. Hanahan D., Weinberg R.A. Hallmarks of cancer: The next generation. Cell. 2011;144:646–674. doi: 10.1016/j.cell.2011.02.013.
    1. Mantovani A., Ponzetta A., Inforzato A., Jaillon S. Innate immunity, inflammation and tumour progression: Double-edged swords. J. Intern. Med. 2019 doi: 10.1111/joim.12886.
    1. Barcellos-Hoff M.H. Remodeling the Irradiated Tumor Microenvironment: The Fifth R of Radiobiology? In: Tofilon P., Camphausen K., editors. Increasing the Therapeutic Ratio of Radiotherapy. Cancer Drug Discovery and Development. Humana Press; Cham, Switzerland: 2017. pp. 135–149.
    1. Merlo L.M., Pepper J.W., Reid B.J., Maley C.C. Cancer as an evolutionary and ecological process. Nat. Rev. Cancer. 2006;6:924–935. doi: 10.1038/nrc2013.
    1. Shekarian T., Valsesia-Wittmann S., Caux C., Marabelle A. Paradigm shift in oncology: Targeting the immune system rather than cancer cells. Mutagenesis. 2015;30:205–211. doi: 10.1093/mutage/geu073.
    1. Cui Y., Guo G. Immunomodulatory Function of the Tumor Suppressor p53 in Host Immune Response and the Tumor Microenvironment. Int. J. Mol. Sci. 2016;17:1942. doi: 10.3390/ijms17111942.
    1. Chen D.S., Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature. 2017;541:321–330. doi: 10.1038/nature21349.
    1. Albini A., Bruno A., Noonan D.M., Mortara L. Contribution to Tumor Angiogenesis From Innate Immune Cells Within the Tumor Microenvironment: Implications for Immunotherapy. Front. Immunol. 2018;9:527. doi: 10.3389/fimmu.2018.00527.
    1. Tugues S., Ducimetiere L., Friebel E., Becher B. Innate lymphoid cells as regulators of the tumor microenvironment. Semin. Immunol. 2019 doi: 10.1016/j.smim.2019.03.002.
    1. Hanahan D., Coussens L.M. Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012;21:309–322. doi: 10.1016/j.ccr.2012.02.022.
    1. Ramamonjisoa N., Ackerstaff E. Characterization of the Tumor Microenvironment and Tumor-Stroma Interaction by Non-invasive Preclinical Imaging. Front. Oncol. 2017;7:3. doi: 10.3389/fonc.2017.00003.
    1. Vaupel P., Kallinowski F., Okunieff P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: A review. Cancer Res. 1989;49:6449–6465.
    1. Kleibeuker E.A., Griffioen A.W., Verheul H.M., Slotman B.J., Thijssen V.L. Combining angiogenesis inhibition and radiotherapy: A double-edged sword. Drug Resist. Updates. 2012;15:173–182. doi: 10.1016/j.drup.2012.04.002.
    1. Martin J.D., Fukumura D., Duda D.G., Boucher Y., Jain R.K. Reengineering the Tumor Microenvironment to Alleviate Hypoxia and Overcome Cancer Heterogeneity. Cold Spring Harb Perspect. Med. 2016;6:a027094. doi: 10.1101/cshperspect.a027094.
    1. Viallard C., LarriveÂe B. Tumor angiogenesis and vascular normalization: Alternative therapeutic targets. Angiogenesis. 2017;20:409–426. doi: 10.1007/s10456-017-9562-9.
    1. El Alaoui-Lasmaili K., Faivre B. Antiangiogenic therapy: Markers of response, “normalization” and resistance. Crit. Rev. Oncol. Hematol. 2018;128:118–129. doi: 10.1016/j.critrevonc.2018.06.001.
    1. Yu Y., Cui J. Present and future of cancer immunotherapy: A tumor microenvironmental perspective. Oncol. Lett. 2018;16:4105–4113. doi: 10.3892/ol.2018.9219.
    1. Szala S., Jarosz-Biej M., Cichoń T., Smolarczyk S. Polarization of tumor milieu: Therapeutic implications. In: Rezaei N., editor. Cancer Immunology: Translational Medicine from Bench to Bedside. Springer; Heidelberg, Germany: 2015. pp. 401–408. Part II: Cancer Immunotherapy.
    1. Jarosz-Biej M., Kamińska N., Matuszczak S., Cichoń T., Pamuła-Piłat J., Czapla J., Smolarczyk R., Skwarzyńska D., Kulik K., Szala S. M1-like macrophages change tumor blood vessels and microenvironment in murine melanoma. PLoS ONE. 2018;13:e0191012. doi: 10.1371/journal.pone.0191012.
    1. Klein D. The Tumor Vascular Endothelium as Decision Maker in Cancer Therapy. Front. Oncol. 2018;8:367. doi: 10.3389/fonc.2018.00367.
    1. Terry S., Buart S., Chouaib S. Hypoxic Stress-Induced Tumor and Immune Plasticity, Suppression, and Impact on Tumor Heterogeneity. Front. Immunol. 2017;8:1625. doi: 10.3389/fimmu.2017.01625.
    1. Schito L., Semenza G.L. Hypoxia-Inducible Factors: Master Regulators of Cancer Progression. Trends Cancer. 2016;2:758–770. doi: 10.1016/j.trecan.2016.10.016.
    1. Qiu G.Z., Jin M.Z., Dai J.X., Sun W., Feng J.H., Jin W.L. Reprogramming of the Tumor in the Hypoxic Niche: The Emerging Concept and Associated Therapeutic Strategies. Trends Pharmacol. Sci. 2017;38:669–686. doi: 10.1016/j.tips.2017.05.002.
    1. Chanmee T., Ontong P., Konno K., Itano N. Tumor-associated macrophages as major players in the tumor microenvironment. Cancers. 2014;6:1670–1690. doi: 10.3390/cancers6031670.
    1. Murdoch C., Giannoudis A., Lewis C.E. Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood. 2004;104:2224–2234. doi: 10.1182/blood-2004-03-1109.
    1. Swartz M.A., Iida N., Roberts E.W., Sangaletti S., Wong M.H., Yull F.E., Coussens L.M., DeClerck Y.A. Tumor microenvironment complexity: Emerging roles in cancer therapy. Cancer Res. 2012;72:2473–2480. doi: 10.1158/0008-5472.CAN-12-0122.
    1. Mantovani A., Marchesi F., Malesci A., Laghi L., Allavena P. Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol. 2017;14:399–416. doi: 10.1038/nrclinonc.2016.217.
    1. Tariq M., Zhang J., Liang G., Ding L., He Q., Yang B. Macrophage Polarization: Anti-Cancer Strategies to Target Tumor-Associated Macrophage in Breast Cancer. J. Cell. Biochem. 2017;118:2484–2501. doi: 10.1002/jcb.25895.
    1. Lewis C.E., Pollard J.W. Distinct role of macrophages in different tumor microenvironments. Cancer Res. 2006;66:605–612. doi: 10.1158/0008-5472.CAN-05-4005.
    1. Qian B.-Z., Pollard J.W. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141:39–51. doi: 10.1016/j.cell.2010.03.014.
    1. Vatner R.E., Formenti S.C. Myeloid-derived cells in tumors: Effects of radiation. Semin. Radiat. Oncol. 2015;25:18–27. doi: 10.1016/j.semradonc.2014.07.008.
    1. Gun S.Y., Lee S.W.L., Sieow J.L., Wong S.C. Targeting immune cells for cancer therapy. Redox Biol. 2019:101174. doi: 10.1016/j.redox.2019.101174.
    1. Shevtsov M., Sato H., Multhoff G., Shibata A. Novel Approaches to Improve the Efficacy of Immuno-Radiotherapy. Front. Oncol. 2019;9:156. doi: 10.3389/fonc.2019.00156.
    1. Ma Y., Pitt J.M., Li Q., Yang H. The renaissance of anti-neoplastic immunity from tumor cell demise. Immunol. Rev. 2017;280:194–206. doi: 10.1111/imr.12586.
    1. Harrington K., Jankowska P., Hingorani M. Molecular biology for the radiation oncologist: The 5Rs of radiobiology meet the hallmarks of cancer. Clin. Oncol. 2007;19:561–571. doi: 10.1016/j.clon.2007.04.009.
    1. Good J.S., Harrington K.J. The hallmarks of cancer and the radiation oncologist: Updating the 5Rs of radiobiology. Clin. Oncol. 2013;25:569–577. doi: 10.1016/j.clon.2013.06.009.
    1. Hekim N., Cetin Z., Nikitaki Z., Cort A., Saygili E.I. Radiation triggering immune response and inflammation. Cancer Lett. 2015;368:156–163. doi: 10.1016/j.canlet.2015.04.016.
    1. Qu Y., Jin S., Zhang A., Zhang B., Shi X., Wang J., Zhao Y. Gamma-ray resistance of regulatory CD4+CD25+Foxp3+ T cells in mice. Radiat. Res. 2010;173:148–157. doi: 10.1667/RR0978.1.
    1. Persa E., Balogh A., Sáfrány G., Lumniczky K. The effect of ionizing radiation on regulatory T cells in health and disease. Cancer Lett. 2015;368:252–261. doi: 10.1016/j.canlet.2015.03.003.
    1. Carvalho H.A., Villar R.C. Radiotherapy and immune response: The systemic effects of a local treatment. Clinics. 2018;73:e557s. doi: 10.6061/clinics/2018/e557s.
    1. Herrera F.G., Bourhis J., Coukos G. Radiotherapy combination opportunities leveraging immunity for the next oncology practice. CA Cancer J. Clin. 2017;67:65–85. doi: 10.3322/caac.21358.
    1. Formenti S.C., Demaria S. Combining radiotherapy and cancer immunotherapy: A paradigm shift. J. Natl. Cancer Inst. 2013;105:256–265. doi: 10.1093/jnci/djs629.
    1. Falcke S.E., Rühle P.F., Deloch L., Fietkau R., Frey B., Gaipl U.S. Clinically Relevant Radiation Exposure Differentially Impacts Forms of Cell Death in Human Cells of the Innate and Adaptive Immune System. Int. J. Mol. Sci. 2018;19:3574. doi: 10.3390/ijms19113574.
    1. Ozpiskin O.M., Zhang L., Li J.J. Immune targets in the tumor microenvironment treated by radiotherapy. Theranostics. 2019;9:1215–1231. doi: 10.7150/thno.32648.
    1. Rodríguez-Ruiz M.E., Vanpouille-Box C., Melero I., Formenti S.C., Demaria S. Immunological Mechanisms Responsible for Radiation-Induced Abscopal Effect. Trends Immunol. 2018;39:644–655. doi: 10.1016/j.it.2018.06.001.
    1. Schaue D., McBride W.H. Opportunities and challenges of radiotherapy for treating cancer. Nat. Rev. Clin. Oncol. 2015;12:527–540. doi: 10.1038/nrclinonc.2015.120.
    1. Gandhi S., Chandna S. Radiation-induced inflammatory cascade and its reverberating crosstalks as potential cause of post-radiotherapy second malignancies. Cancer Metastasis Rev. 2017;36:375–393. doi: 10.1007/s10555-017-9669-x.
    1. Derer A., Frey B., Fietkau R., Gaipl U.S. Immune-modulating properties of ionizing radiation: Rationale for the treatment of cancer by combination radiotherapy and immune checkpoint inhibitors. Cancer Immunol. Immunother. 2016;65:779–786. doi: 10.1007/s00262-015-1771-8.
    1. Chajon E., Castelli J., Marsiglia H., De Crevoisier R. The synergistic effect of radiotherapy and immunotherapy: A promising but not simple partnership. Crit. Rev. Oncol. Hematol. 2017;111:124–132. doi: 10.1016/j.critrevonc.2017.01.017.
    1. Toulany M. Targeting DNA Double-Strand Break Repair Pathways to Improve Radiotherapy Response. Genes. 2019;10:25. doi: 10.3390/genes10010025.
    1. Baskar R., Dai J., Wenlong N., Yeo R., Yeoh K.W. Biological response of cancer cells to radiation treatment. Front. Mol. Biosci. 2014;1:24. doi: 10.3389/fmolb.2014.00024.
    1. Lauber K., Ernst A., Orth M., Herrmann M., Belka C. Dying cell clearance and its impact on the outcome of tumor radiotherapy. Front. Oncol. 2012;2:116. doi: 10.3389/fonc.2012.00116.
    1. Deloch L., Derer A., Hartmann J., Frey B., Fietkau R., Gaipl U.S. Modern Radiotherapy Concepts and the Impact of Radiation on Immune Activation. Front. Oncol. 2016;6:141. doi: 10.3389/fonc.2016.00141.
    1. Maier P., Hartmann L., Wenz F., Herskind C. Cellular Pathways in Response to Ionizing Radiation and Their Targetability for Tumor Radiosensitization. Int. J. Mol. Sci. 2016;17:102. doi: 10.3390/ijms17010102.
    1. Gupta K., Burns T.C. Radiation-Induced Alterations in the Recurrent Glioblastoma Microenvironment: Therapeutic Implications. Front. Oncol. 2018;8:503. doi: 10.3389/fonc.2018.00503.
    1. Barker H.E., Paget J.T., Khan A.A., Harrington K.J. The tumour microenvironment after radiotherapy: Mechanisms of resistance and recurrence. Nat. Rev. Cancer. 2015;15:409–425. doi: 10.1038/nrc3958.
    1. Demaria S., Formenti S.C. Role of T lymphocytes in tumor response to radiotherapy. Front. Oncol. 2012;2:95. doi: 10.3389/fonc.2012.00095.
    1. Locy H., de Mey S., de Mey W., De Ridder M., Thielemans K., Maenhout S.K. Immunomodulation of the Tumor Microenvironment: Turn Foe Into Friend. Front. Immunol. 2018;9:2909. doi: 10.3389/fimmu.2018.02909.
    1. Wirsdörfer F., de Leve S., Jendrossek V. Combining Radiotherapy and Immunotherapy in Lung Cancer: Can We Expect Limitations Due to Altered Normal Tissue Toxicity? Int. J. Mol. Sci. 2018;20:24. doi: 10.3390/ijms20010024.
    1. Rückert M., Deloch L., Fietkau R., Frey B., Hecht M., Gaipl U.S. Immune modulatory effects of radiotherapy as basis for well-reasoned radioimmunotherapies. Strahlenther. Onkol. 2018;194:509–519. doi: 10.1007/s00066-018-1287-1.
    1. Tsoutsou P.G., Zaman K., Martin Lluesma S., Cagnon L., Kandalaft L., Vozenin M.C. Emerging Opportunities of Radiotherapy Combined With Immunotherapy in the Era of Breast Cancer Heterogeneity. Front. Oncol. 2018;8:609. doi: 10.3389/fonc.2018.00609.
    1. Vanpouille-Box C., Diamond J.M., Pilones K.A., Zavadil J., Babb J.S., Formenti S.C., Barcellos-Hoff M.H., Demaria S. TGFβ Is a Master Regulator of Radiation Therapy-Induced Antitumor Immunity. Cancer Res. 2015;75:2232–2242. doi: 10.1158/0008-5472.CAN-14-3511.
    1. Hammerich L., Bhardwaj N., Kohrt H.E., Brody J.D. In situ vaccination for the treatment of cancer. Immunotherapy. 2016;8:315–330. doi: 10.2217/imt.15.120.
    1. Matzinger P. The danger model: A renewed sense of self. Science. 2002;296:301–305. doi: 10.1126/science.1071059.
    1. Wennerberg E., Lhuillier C., Vanpouille-Box C., Pilones K.A., García-Martínez E., Rudqvist N.P., Formenti S.C., Demaria S. Barriers to Radiation-Induced In Situ Tumor Vaccination. Front. Immunol. 2017;8:229. doi: 10.3389/fimmu.2017.00229.
    1. Arnold K.M., Flynn N.J., Raben A., Romak L., Yu Y., Dicker A.P., Mourtada F., Sims-Mourtada J. The Impact of Radiation on the Tumor Microenvironment: Effect of Dose and Fractionation Schedules. Cancer Growth Metastasis. 2018;11:1179064418761639. doi: 10.1177/1179064418761639.
    1. Ebner D.K., Tinganelli W., Helm A., Bisio A., Yamada S., Kamada T., Shimokawa T., Durante M. The Immunoregulatory Potential of Particle Radiation in Cancer Therapy. Front. Immunol. 2017;8:99. doi: 10.3389/fimmu.2017.00099.
    1. Wang Y., Deng W., Li N., Neri S., Sharma A., Jiang W., Lin S.H. Combining Immunotherapy and Radiotherapy for Cancer Treatment: Current Challenges and Future Directions. Front. Pharmacol. 2018;9:185. doi: 10.3389/fphar.2018.00185.
    1. Frey B., Rubner Y., Wunderlich R., Weiss E.M., Pockley A.G., Fietkau R., Gaipl U.S. Induction of abscopal anti-tumor immunity and immunogenic tumor cell death by ionizing irradiation—implications for cancer therapies. Curr. Med. Chem. 2012;19:1751–1764. doi: 10.2174/092986712800099811.
    1. Bockel S., Durand B., Deutsch E. Combining radiation therapy and cancer immune therapies: From preclinical findings to clinical applications. Cancer Radiother. 2018;22:567–580. doi: 10.1016/j.canrad.2018.07.136.
    1. Park B., Yee C., Lee K.M. The effect of radiation on the immune response to cancers. Int. J. Mol. Sci. 2014;15:927–943. doi: 10.3390/ijms15010927.
    1. Frey B., Rubner Y., Kulzer L., Werthmöller N., Weiss E.M., Fietkau R., Gaipl U.S. Antitumor immune responses induced by ionizing irradiation and further immune stimulation. Cancer Immunol. Immunother. 2014;63:29–36. doi: 10.1007/s00262-013-1474-y.
    1. Gandhi S.J., Minn A.J., Vonderheide R.H., Wherry E.J., Hahn S.M., Maity A. Awakening the immune system with radiation: Optimal dose and fractionation. Cancer Lett. 2015;368:185–190. doi: 10.1016/j.canlet.2015.03.024.
    1. Golden E.B., Formenti S.C. Is tumor (R)ejection by the immune system the “5th R” of radiobiology? Oncoimmunology. 2014;3:e28133. doi: 10.4161/onci.28133.
    1. Ishikawa H., Ma Z., Barber G.N. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature. 2009;461:788–792. doi: 10.1038/nature08476.
    1. Weichselbaum R.R., Liang H., Deng L., Fu Y.X. Radiotherapy and immunotherapy: A beneficial liaison? Na.t Rev. Clin. Oncol. 2017;14:365–379. doi: 10.1038/nrclinonc.2016.211.
    1. Bose D. cGAS/STING Pathway in Cancer: Jekyll and Hyde Story of Cancer Immune Response. Int. J. Mol. Sci. 2017;18:2456. doi: 10.3390/ijms18112456.
    1. Sokolowska O., Nowis D. STING Signaling in Cancer Cells: Important or Not? Arch. Immunol. Ther. Exp. 2018;66:125–132. doi: 10.1007/s00005-017-0481-7.
    1. Walle T., Martinez Monge R., Cerwenka A., Ajona D., Melero I., Lecanda F. Radiation effects on antitumor immune responses: Current perspectives and challenges. Ther. Adv. Med. Oncol. 2018;10:1758834017742575. doi: 10.1177/1758834017742575.
    1. Hallahan D., Kuchibhotla J., Wyble C. Cell adhesion molecules mediate radiation-induced leukocyte adhesion to the vascular endothelium. Cancer Res. 1996;56:5150–5155.
    1. Bernier J. Immuno-oncology: Allying forces of radio- and immuno-therapy to enhance cancer cell killing. Crit. Rev. Oncol. Hematol. 2016;108:97–108. doi: 10.1016/j.critrevonc.2016.11.001.
    1. Menon H., Ramapriyan R., Cushman T.R., Verma V., Kim H.H., Schoenhals J.E., Atalar C., Selek U., Chun S.G., Chang J.Y., et al. Role of Radiation Therapy in Modulation of the Tumor Stroma and Microenvironment. Front. Immunol. 2019;10:193. doi: 10.3389/fimmu.2019.00193.
    1. Hanna G.G., Coyle V.M., Prise K.M. Immune modulation in advanced radiotherapies: Targeting out-of-field effects. Cancer Lett. 2015;368:246–251. doi: 10.1016/j.canlet.2015.04.007.
    1. Wang R., Zhou T., Liu W., Zuo L. Molecular mechanism of bystander effects and related abscopal/cohort effects in cancer therapy. Oncotarget. 2018;9:18637–18647. doi: 10.18632/oncotarget.24746.
    1. Marín A., Martín M., Liñán O., Alvarenga F., López M., Fernández L., Büchser D., Cerezo L. Bystander effects and radiotherapy. Rep. Pract. Oncol. Radiother. 2014;20:12–21. doi: 10.1016/j.rpor.2014.08.004.
    1. Klammer H., Mladenov E., Li F., Iliakis G. Bystander effects as manifestation of intercellular communication of DNA damage and of the cellular oxidative status. Cancer Lett. 2015;356:58–71. doi: 10.1016/j.canlet.2013.12.017.
    1. Mukherjee S., Chakraborty A. Radiation-induced bystander phenomenon: Insight and implications in radiotherapy. Int. J. Radiat. Biol. 2019;95:243–263. doi: 10.1080/09553002.2019.1547440.
    1. Meziani L., Deutsch E., Mondini M. Macrophages in radiation injury: A new therapeutic target. Oncoimmunology. 2018;7:e1494488. doi: 10.1080/2162402X.2018.1494488.
    1. Mole R.H. Whole body irradiation; radiobiology or medicine? Br. J. Radiol. 1953;26:234–241. doi: 10.1259/0007-1285-26-305-234.
    1. Deplanque G., Shabafrouz K., Obeid M. Can local radiotherapy and IL-12 synergise to overcome the immunosuppressive tumor microenvironment and allow “in situ tumor vaccination”? Cancer Immunol. Immunother. 2017;66:833–840. doi: 10.1007/s00262-017-2000-4.
    1. Hu Z.I., McArthur H.L., Ho A.Y. The Abscopal Effect of Radiation Therapy: What Is It and How Can We Use It in Breast Cancer? Curr. Breast Cancer Rep. 2017;9:45–51. doi: 10.1007/s12609-017-0234-y.
    1. Ngwa W., Ouyang Z. Following the Preclinical Data: Leveraging the Abscopal Effect More Efficaciously. Front. Oncol. 2017;7:66. doi: 10.3389/fonc.2017.00066.
    1. Sheen M.R., Fiering S. In situ vaccination: Harvesting low hanging fruit on the cancer immunotherapy tree. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2019;11:e1524. doi: 10.1002/wnan.1524.
    1. Demaria S., Ng B., Devitt M.L., Babb J.S., Kawashima N., Liebes L., Formenti S.C. Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int. J. Radiat. Oncol. Biol. Phys. 2004;58:862–870. doi: 10.1016/j.ijrobp.2003.09.012.
    1. McKelvey K.J., Hudson A.L., Back M., Eade T., Diakos C.I. Radiation, inflammation and the immune response in cancer. Mamm. Genome. 2018;29:843–865. doi: 10.1007/s00335-018-9777-0.
    1. Kaminski J.M., Shinohara E., Summers J.B., Niermann K.J., Morimoto A., Brousal J. The controversial abscopal effect. Cancer Treat. Rev. 2005;31:159–172. doi: 10.1016/j.ctrv.2005.03.004.
    1. Wang Y., Liu Z.G., Yuan H., Deng W., Li J., Huang Y., Kim B.Y.S., Story M.D., Jiang W. The Reciprocity between Radiotherapy and Cancer Immunotherapy. Clin. Cancer Res. 2019;25:1709–1717. doi: 10.1158/1078-0432.CCR-18-2581.
    1. Wennerberg E., Vanpouille-Box C., Bornstein S., Yamazaki T., Demaria S., Galluzzi L. Immune recognition of irradiated cancer cells. Immunol. Rev. 2017;280:220–230. doi: 10.1111/imr.12568.
    1. Ostrand-Rosenberg S., Horn L.A., Ciavattone N.G. Radiotherapy Both Promotes and Inhibits Myeloid-Derived Suppressor Cell Function: Novel Strategies for Preventing the Tumor-Protective Effects of Radiotherapy. Front. Oncol. 2019;9:215. doi: 10.3389/fonc.2019.00215.
    1. Wang S.J., Haffty B. Radiotherapy as a New Player in Immuno-Oncology. Cancers. 2018;10:515. doi: 10.3390/cancers10120515.
    1. Jeong H., Bok S., Hong B.J., Choi H.S., Ahn G.O. Radiation-induced immune responses: Mechanisms and therapeutic perspectives. Blood Res. 2016;51:157–163. doi: 10.5045/br.2016.51.3.157.
    1. Hoves S., Ooi C.H., Wolter C., Sade H., Bissinger S., Schmittnaegel M., Ast O., Giusti A.M., Wartha K., Runza V., et al. Rapid activation of tumor-associated macrophages boosts preexisting tumor immunity. J. Exp. Med. 2018;215:859–876. doi: 10.1084/jem.20171440.
    1. Rolny C., Mazzone M., Tugues S., Laoui D., Johansson I., Coulon C., Squadrito M.L., Segura I., Li X., Knevels E., et al. HRG inhibits tumor growth and metastasis by inducing macrophage polarization and vessel normalization through downregulation of PlGF. Cancer Cell. 2011;19:31–44. doi: 10.1016/j.ccr.2010.11.009.
    1. Huang Y., Yuan J., Righi E., Kamoun W.S., Ancukiewicz M., Nezivar J., Santosuosso M., Martin J.D., Martin M.R., Vianello F., et al. Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proc. Natl. Acad. Sci. USA. 2012;109:17561–17566. doi: 10.1073/pnas.1215397109.
    1. Guo C., Buranych A., Sarkar D., Fisher P.B., Wang X.Y. The role of tumor-associated macrophages in tumor vascularization. Vasc. Cell. 2013;5:20. doi: 10.1186/2045-824X-5-20.
    1. Shi X., Shiao S.L. The role of macrophage phenotype in regulating the response to radiation therapy. Transl. Res. 2018;191:64–80. doi: 10.1016/j.trsl.2017.11.002.
    1. Schaue D., McBride W.H. T lymphocytes and normal tissue responses to radiation. Front. Oncol. 2012;2:119. doi: 10.3389/fonc.2012.00119.
    1. Oh C.W., Bump E.A., Kim J.S., Janigro D., Mayberg M.R. Induction of a senescence-like phenotype in bovine aortic endothelial cells by ionizing radiation. Radiat. Res. 2001;156:232–240. doi: 10.1667/0033-7587(2001)156[0232:IOASLP];2.
    1. Wang Y., Boerma M., Zhou D. Ionizing Radiation-Induced Endothelial Cell Senescence and Cardiovascular Diseases. Radiat. Res. 2016;186:153–161. doi: 10.1667/RR14445.1.
    1. Venkatesulu B.P., Mahadevan L.S., Aliru M.L., Yang X., Bodd M.H., Singh P.K., Yusuf S.W., Abe J.I., Krishnan S. Radiation-Induced Endothelial Vascular Injury: A Review of Possible Mechanisms. JACC Basic Transl. Sci. 2018;3:563–572. doi: 10.1016/j.jacbts.2018.01.014.
    1. Jaillet C., Morelle W., Slomianny M.C., Paget V., Tarlet G., Buard V., Selbonne S., Caffin F., Rannou E., Martinez P., et al. Radiation-induced changes in the glycome of endothelial cells with functional consequences. Sci. Rep. 2017;7:5290. doi: 10.1038/s41598-017-05563-y.
    1. Sun X., Deng L., Lu Y. Challenges and opportunities of using stereotactic body radiotherapy with anti-angiogenesis agents in tumor therapy. Chin. J. Cancer Res. 2018;30:147–156. doi: 10.21147/j.issn.1000-9604.2018.01.15.
    1. Semenza G.L. Intratumoral hypoxia, radiation resistance, and HIF-1. Cancer Cell. 2004;5:405–406. doi: 10.1016/S1535-6108(04)00118-7.
    1. Nguemgo Kouam P., Bühler H., Hero T., Adamietz I.A. The increased adhesion of tumor cells to endothelial cells after irradiation can be reduced by FAK-inhibition. Radiat. Oncol. 2019;14:25. doi: 10.1186/s13014-019-1230-3.
    1. Brown J.M. Vasculogenesis: A crucial player in the resistance of solid tumours to radiotherapy. Br. J. Radiol. 2014;87:20130686. doi: 10.1259/bjr.20130686.
    1. Martinez-Zubiaurre I., Chalmers A.J., Hellevik T. Radiation-Induced Transformation of Immunoregulatory Networks in the Tumor Stroma. Front. Immunol. 2018;9:1679. doi: 10.3389/fimmu.2018.01679.
    1. Ahn G.O., Brown J.M. Matrix metalloproteinase-9 is required for tumor vasculogenesis but not for angiogenesis: Role of bone marrow-derived myelomonocytic cells. Cancer Cell. 2008;13:193–205. doi: 10.1016/j.ccr.2007.11.032.
    1. Kozin S.V., Kamoun W.S., Huang Y., Dawson M.R., Jain R.K., Duda D.G. Recruitment of myeloid but not endothelial precursor cells facilitates tumor regrowth after local irradiation. Cancer Res. 2010;70:5679–5685. doi: 10.1158/0008-5472.CAN-09-4446.
    1. Wang H., Jiang H., Van De Gucht M., De Ridder M. Hypoxic Radioresistance: Can ROS Be the Key to Overcome It? Cancers. 2019;11:112. doi: 10.3390/cancers11010112.
    1. Leith J.T., Mousa S.A., Hercbergs A., Lin H.Y., Davis P.J. Radioresistance of cancer cells, integrin αvβ3 and thyroid hormone. Oncotarget. 2018;9:37069–37075. doi: 10.18632/oncotarget.26434.
    1. Hill R.P., Bristow R.G., Fyles A., Koritzinsky M., Milosevic M., Wouters B.G. Hypoxia and Predicting Radiation Response. Semin. Radiat. Oncol. 2015;25:260–272. doi: 10.1016/j.semradonc.2015.05.004.
    1. Smolarczyk R., Cichoń T., Pilny E., Jarosz-Biej M., Poczkaj A., Kułach N., Szala S. Combination of anti-vascular agent - DMXAA and HIF-1α inhibitor - digoxin inhibits the growth of melanoma tumors. Sci. Rep. 2018;8:7355. doi: 10.1038/s41598-018-25688-y.
    1. Soukup K., Wang X. Radiation meets immunotherapy - a perfect match in the era of combination therapy? Int. J. Radiat. Biol. 2015;91:299–305. doi: 10.3109/09553002.2014.995383.
    1. Frey B., Rückert M., Deloch L., Rühle P.F., Derer A., Fietkau R., Gaipl U.S. Immunomodulation by ionizing radiation-impact for design of radio-immunotherapies and for treatment of inflammatory diseases. Immunol. Rev. 2017;280:231–248. doi: 10.1111/imr.12572.
    1. Manda K., Glasow A., Paape D., Hildebrandt G. Effects of ionizing radiation on the immune system with special emphasis on the interaction of dendritic and T cells. Front. Oncol. 2012;2:102. doi: 10.3389/fonc.2012.00102.
    1. Rubner Y., Wunderlich R., Rühle P.F., Kulzer L., Werthmöller N., Frey B., Weiss E.M., Keilholz L., Fietkau R., Gaipl U.S. How does ionizing irradiation contribute to the induction of anti-tumor immunity? Front. Oncol. 2012;2:75. doi: 10.3389/fonc.2012.00075.
    1. Hellevik T., Martinez-Zubiaurre I. Radiotherapy and the tumor stroma: The importance of dose and fractionation. Front. Oncol. 2014;4:1. doi: 10.3389/fonc.2014.00001.
    1. Beyranvand Nejad E., Welters M.J., Arens R., van der Burg S.H. The importance of correctly timing cancer immunotherapy. Expert. Opin. Biol. Ther. 2017;17:87–103. doi: 10.1080/14712598.2017.1256388.
    1. Klug F., Prakash H., Huber P.E., Seibel T., Bender N., Halama N., Pfirschke C., Voss R.H., Timke C., Umansky L., et al. Low-dose irradiation programs macrophage differentiation to an iNOS⁺/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell. 2013;24:589–602. doi: 10.1016/j.ccr.2013.09.014.
    1. Burnette B.C., Liang H., Lee Y., Chlewicki L., Khodarev N.N., Weichselbaum R.R., Fu Y.X., Auh S.L. The efficacy of radiotherapy relies upon induction of type i interferon-dependent innate and adaptive immunity. Cancer Res. 2011;71:2488–2496. doi: 10.1158/0008-5472.CAN-10-2820.
    1. Nguyen H.Q., To N.H., Zadigue P., Kerbrat S., De La Taille A., Le Gouvello S., Belkacemi Y. Ionizing radiation-induced cellular senescence promotes tissue fibrosis after radiotherapy. A review. Crit. Rev. Oncol. Hematol. 2018;129:13–26. doi: 10.1016/j.critrevonc.2018.06.012.
    1. Tsai C.S., Chen F.H., Wang C.C., Huang H.L., Jung S.M., Wu C.J., Lee C.C., McBride W.H., Chiang C.S., Hong J.H. Macrophages from irradiated tumors express higher levels of iNOS, arginase-I and COX-2, and promote tumor growth. Int. J. Radiat. Oncol. Biol. Phys. 2007;68:499–507. doi: 10.1016/j.ijrobp.2007.01.041.
    1. Potiron V.A., Abderrahmani R., Clément-Colmou K., Marionneau-Lambot S., Oullier T., Paris F., Supiot S. Improved functionality of the vasculature during conventionally fractionated radiation therapy of prostate cancer. PLoS ONE. 2013;8:e84076. doi: 10.1371/journal.pone.0084076.
    1. Garcia-Barros M., Paris F., Cordon-Cardo C., Lyden D., Rafii S., Haimovitz-Friedman A., Fuks Z., Kolesnick R. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science. 2003;300:1155–1159. doi: 10.1126/science.1082504.
    1. Galon J., Bruni D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug Discov. 2019;18:197–218. doi: 10.1038/s41573-018-0007-y.

Source: PubMed

3
Abonneren