Principles of Immunotherapy: Implications for Treatment Strategies in Cancer and Infectious Diseases

Krupa Naran, Trishana Nundalall, Shivan Chetty, Stefan Barth, Krupa Naran, Trishana Nundalall, Shivan Chetty, Stefan Barth

Abstract

The advances in cancer biology and pathogenesis during the past two decades, have resulted in immunotherapeutic strategies that have revolutionized the treatment of malignancies, from relatively non-selective toxic agents to specific, mechanism-based therapies. Despite extensive global efforts, infectious diseases remain a leading cause of morbidity and mortality worldwide, necessitating novel, innovative therapeutics that address the current challenges of increasing antimicrobial resistance. Similar to cancer pathogenesis, infectious pathogens successfully fashion a hospitable environment within the host and modulate host metabolic functions to support their nutritional requirements, while suppressing host defenses by altering regulatory mechanisms. These parallels, and the advances made in targeted therapy in cancer, may inform the rational development of therapeutic interventions for infectious diseases. Although "immunotherapy" is habitually associated with the treatment of cancer, this review accentuates the evolving role of key targeted immune interventions that are approved, as well as those in development, for various cancers and infectious diseases. The general features of adoptive therapies, those that enhance T cell effector function, and ligand-based therapies, that neutralize or eliminate diseased cells, are discussed in the context of specific diseases that, to date, lack appropriate remedial treatment; cancer, HIV, TB, and drug-resistant bacterial and fungal infections. The remarkable diversity and versatility that distinguishes immunotherapy is emphasized, consequently establishing this approach within the armory of curative therapeutics, applicable across the disease spectrum.

Keywords: T cell therapy; antibody therapy; cancer; immunotherapy; infectious diseases.

Figures

FIGURE 1
FIGURE 1
T cell-activating Therapeutic Strategies. (A) Treg depletion – biologics such Denileukin diftitox (DD) bind to target receptors on suppressor cells and initiate apoptosis via down-stream signaling. (B) Cytokine therapy – addition of pro-inflammatory cytokines increases immune activation while the addition of anti-inflammatory cytokines reduces immune activation. MAbs specific for cytokine receptors may also be used to block cytokine stimulation of the immune system. (C) Immune checkpoint blockade – mAbs block the interaction of inhibitory receptors CTLA-4 and PD-1, resulting in the activation of effector T cells (QYResearch) (D) Chimeric antigen receptors (CARs) T cells are modified T cells with a recombinant receptor; usually a scFv that redirects the specificity of effector T cells. First generation CARs that only comprised an activation domain were prone to anergy. Due to this signaling failure, second and third generation CARs, incorporating a CD3 chain and cytoplasmic domain of a co-stimulatory receptor, like CD28 were generated. Fourth generation CARs also included constitutive or inducible expression of co-receptors or soluble cytokines together with T cell activating CAR (Golubovskaya and Wu, 2016). (E) Bispecific antibodies containing two binding arms one specific for a target antigen and a second arm specific for CD3, thereby bringing T cells into close proximity to target cells and activating T cells while bypassing the need for MHC restricted engagement. (F) Vaccines – Introduction of non-infectious component to stimulate activation of T cells and development of memory immune cells.
FIGURE 2
FIGURE 2
HIV-targeting T cell Therapies. (A) Anti-CD3 and anti-gp120 DART treatment redirects CD8+ T cell to kill HIV infected CD4+ T cells (Perreau et al., 2017). (B) PD-1 check point inhibition of latently infected CD4+ T cell results in re-activation of the T cell and induction of apoptosis (Wykes and Lewin, 2018).
FIGURE 3
FIGURE 3
Antibody-Based Therapeutic Strategies. (A) Anticancer antibodies eliminate cancer cells and cause tumor destruction by targeting cancer antigens. (B) Antibody-conjugates – (i) Immunotoxins: bind to a surface receptor of an infected cell, undergo endocytosis and intracellular trafficking to the cytosol where most toxins induce cell death; (Becker and Benhar, 2012) (ii) ADCs: combine the specificity of mAbs with the cytotoxic potential of drugs and binds to internalizing receptors on target cell and are taken up by endocytosis; Once in the cell, ADCs undergo cellular trafficking to a lysosome where lysosomal degradation results in the cleavage and release of the active drug into the cellular cytoplasm where the drug induces apoptosis; (Scotti et al., 2015) (iii) Radioimmunoconjugates: antibodies attached to a radioactive molecule, once the antibody binds the target cell, the radio-particle’s radiation interacts with target cells, resulting in cell death. (C) Anti-viral antibodies – to eliminate a viral inhibition of cell infection, viral replication, cell-cell transmission, viral release as well as mediated killing of infected cells needs to occur; Palivizumab is a neutralizing antibody that binds to RSV preventing virus-host cell interactions (Groothuis and Nishida, 2002). Most antibacterial therapeutic mAbs function by inducing complement fixation and opsonophagocytic killing (OPK) of target bacteria; Panobacumab induces macrophage OPK of Pseudomonas aeruginosa (Que et al., 2014).

References

    1. Adams G., Shaller C., Chappell L., Wu C., Horak E., Simmons H., et al. (2000). Delivery of the α-emitting radioisotope bismuth-213 to solid tumors via single-chain Fv and diabody molecules. Nucl. Med. Biol. 27 339–346. 10.1016/S0969-8051(00)00103-7
    1. Ager A., Watson H. A., Wehenkel S. C., Mohammed R. N. (2016). Homing to solid cancers: a vascular checkpoint in adoptive cell therapy using CAR T-cells. Biochem. Soc. Trans. 44 377–385. 10.1042/BST20150254
    1. Ahmad Z. A., Yeap S. K., Ali A. M., Ho W. Y., Alitheen N. B. M., Hamid M. (2012). scFv antibody: principles and clinical application. Clin. Dev. Immunol. 2012:980250. 10.1155/2012/980250
    1. Akinrinmade O. A., Jordaan S., Hristodorov D., Mladenov R., Mungra N., Chetty S., et al. (2017). Human MAP tau based targeted cytolytic fusion proteins. Biomedicines 5:E36. 10.3390/biomedicines5030036
    1. Allen B. J. (2011). Can α-radioimmunotherapy increase efficacy for the systemic control of cancer? Immunotherapy 3 455–458. 10.2217/imt.11.13
    1. Allen T. M. (2002). Ligand-targeted therapeutics in anticancer therapy. Nat. Rev. Cancer 2 750–763. 10.1038/nrc903
    1. Allie N., Grivennikov S. I., Keeton R., Hsu N.-J., Bourigault M.-L., Court N., et al. (2013). Prominent role for T cell-derived tumour necrosis factor for sustained control of Mycobacterium tuberculosis infection. Sci. Rep. 3:1809. 10.1038/srep01809
    1. Alteri R., Kalidas M., Gadd L., Wyant T. (2018). Cancer Immunotherapy. Atlanta: American Cancer Society.
    1. Amiri-Kordestani L., Blumenthal G. M., Xu Q. C., Zhang L., Tang S. W., Ha L., et al. (2014). FDA approval: ado-trastuzumab emtansine for the treatment of patients with HER2-positive metastatic breast cancer. Clin. Cancer Res. 20 4436–4441. 10.1158/1078-0432.CCR-14-0012
    1. Amoury M., Kolberg K., Pham A.-T., Hristodorov D., Mladenov R., Di Fiore S., et al. (2016). Granzyme B-based cytolytic fusion protein targeting EpCAM specifically kills triple negative breast cancer cells in vitro and inhibits tumor growth in a subcutaneous mouse tumor model. Cancer Lett. 372 201–209. 10.1016/j.canlet.2016.01.027
    1. Anderson A. C., Joller N., Kuchroo V. K. (2016). Lag-3, Tim-3, and TIGIT: co-inhibitory receptors with specialized functions in immune regulation. Immunity 44 989–1004. 10.1016/j.immuni.2016.05.001
    1. Araki K., Youngblood B., Ahmed R. (2013). Programmed cell death 1-directed immunotherapy for enhancing T-cell function. Cold Spring Harb. Symp. Quant. Biol. 78 239–247. 10.1101/sqb.2013.78.019869
    1. Ardolino M., Raulet D. H. (2016). Cytokine therapy restores antitumor responses of NK cells rendered anergic in MHC I-deficient tumors. Oncoimmunology 5:e1002725. 10.1080/2162402X.2014.1002725
    1. Armstrong-James D., Brown G. D., Netea M. G., Zelante T., Gresnigt M. S., Van De Veerdonk F. L., et al. (2017). Immunotherapeutic approaches to treatment of fungal diseases. Lancet Infect. Dis. 17 e393–e402. 10.1016/S1473-3099(17)30442-5
    1. Ashorn P., Englund G., Martin M. A., Moss B., Berger E. A. (1991). Anti-HIV activity of CD4- Pseudomonas exotoxin on infected primary human lymphocytes and monocyte/macrophages. J. Infect. Dis. 163 703–709. 10.1093/infdis/163.4.703
    1. Babior B. M., Takeuchi C., Ruedi J., Gutierrez A., Wentworth P. (2003). Investigating antibody-catalyzed ozone generation by human neutrophils. Proc. Natl. Acad. Sci. U.S.A. 100 3031–3034. 10.1073/pnas.0530251100
    1. Baer M., Sawa T., Flynn P., Luehrsen K., Martinez D., Wiener-Kronish J. P., et al. (2009). An engineered human antibody fab fragment specific for Pseudomonas aeruginosa PcrV antigen has potent antibacterial activity. Infect. Immun. 77 1083–1090. 10.1128/IAI.00815-08
    1. Bagley S. J., Desai A. S., Linette G. P., June C. H., O’rourke D. M. (2018). CAR T-cell therapy for glioblastoma: recent clinical advances and future challenges. Neurooncology 20 1429–1438. 10.1093/neuonc/noy032
    1. Balar A. V., Galsky M. D., Rosenberg J. E., Powles T., Petrylak D. P., Bellmunt J., et al. (2017). Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial. Lancet 389 67–76. 10.1016/S0140-6736(16)32455-2
    1. Barber D. L., Wherry E. J., Masopust D., Zhu B., Allison J. P., Sharpe A. H., et al. (2006). Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439 682–687. 10.1038/nature04444
    1. Bargou R., Leo E., Zugmaier G., Klinger M., Goebeler M., Knop S., et al. (2008). Tumor regression in cancer patients by very low doses of a T cell–engaging antibody. Science 321 974–977. 10.1126/science.1158545
    1. Baron E., Narula S. (1990). From cloning to a commercial realization: human alpha interferon. Crit. Rev. Biotechnol. 10 179–190. 10.3109/07388559009038206
    1. Barth S. (2009). Editorial [Hot Topic: recombinant immunotoxins-The Next Generation (Executive Editor: Stefan Barth)]. Curr. Pharm. Des. 15 2650–2651. 10.2174/138161209788923912
    1. Beck A., Goetsch L., Dumontet C., Corvaïa N. (2017). Strategies and challenges for the next generation of antibody–drug conjugates. Nat. Rev. Drug Discov. 16 315–317. 10.1038/nrd.2016.268
    1. Becker N., Benhar I. (2012). Antibody-based immunotoxins for the treatment of cancer. Antibodies 1 39–69. 10.3390/antib1010039
    1. Berg J., Lötscher E., Steimer K. S., Capon D. J., Baenziger J., Jäck H., et al. (1991). Bispecific antibodies that mediate killing of cells infected with human immunodeficiency virus of any strain. Proc. Natl. Acad. Sci. U.S.A. 88 4723–4727. 10.1073/pnas.88.11.4723
    1. Berger E. A., Pastan I. (2010). Immunotoxin complementation of HAART to deplete persisting HIV-infected cell reservoirs. PLoS Pathog. 6:e1000803. 10.1371/journal.ppat.1000803
    1. Berod L., Puttur F., Huehn J., Sparwasser T. (2012). Tregs in infection and vaccinology: heroes or traitors? Microbial. Biotechnol. 5 260–269. 10.1111/j.1751-7915.2011.00299.x
    1. Berube B. J., Wardenburg J. B. (2013). Staphylococcus aureus α-toxin: nearly a century of intrigue. Toxins 5 1140–1166. 10.3390/toxins5061140
    1. Bi Q., Ferreras E., Pezzoli L., Legros D., Ivers L. C., Date K., et al. (2017). Protection against cholera from killed whole-cell oral cholera vaccines: a systematic review and meta-analysis. Lancet Infect. Dis. 17 1080–1088. 10.1016/S1473-3099(17)30359-6
    1. Birkholz K., Hombach A., Krug C., Reuter S., Kershaw M., Kämpgen E., et al. (2009). Transfer of mRNA encoding recombinant immunoreceptors reprograms CD4+ and CD8+ T cells for use in the adoptive immunotherapy of cancer. Gene Ther. 16 596–604. 10.1038/gt.2008.189
    1. Boettler T., Cheng Y., Ehrhardt K., Von Herrath M. (2012). TGF-β blockade does not improve control of an established persistent viral infection. Viral. Immunol. 25 232–238. 10.1089/vim.2011.0079
    1. Boll R. A., Mirzadeh S., Kennel S. J. (1997). Optimizations of radiolabeling of immunoproteins with 213Bi. Radiochim. Acta 79 145–150. 10.1524/ract.1997.79.2.145
    1. Brekke O. H., Sandlie I. (2003). Therapeutic antibodies for human diseases at the dawn of the twenty-first century. Nat. Rev. Drug Discov. 2 52–62. 10.1038/nrd984
    1. Brocker T., Karjalainen K. (1995). Signals through T cell receptor-zeta chain alone are insufficient to prime resting T lymphocytes. J. Exp. Med. 181 1653–1659. 10.1084/jem.181.5.1653
    1. Brooks D. G., Trifilo M. J., Edelmann K. H., Teyton L., Mcgavern D. B., Oldstone M. B. (2006). Interleukin-10 determines viral clearance or persistence in vivo. Nat. Med. 12 1301–1309. 10.1038/nm1492
    1. Brozy J., Schlaepfer E., Mueller C. K., Rochat M.-A., Rampini S. K., Myburgh R., et al. (2018). Antiviral Activity of HIV gp120 Targeting Bispecific T Cell Engager (BiTE®) Antibody Constructs. J. Virol. 92:JVI.00491-18.
    1. Burns T., Zhong Z., Steinitz M., Pirofski L.-A. (2003). Modulation of polymorphonuclear cell interleukin-8 secretion by human monoclonal antibodies to type 8 pneumococcal capsular polysaccharide. Infect. Immun. 71 6775–6783. 10.1128/IAI.71.12.6775-6783.2003
    1. Burton D. R. (2002). Antibodies, viruses and vaccines. Nat. Rev. Immunol. 2 706–713. 10.1038/nri891
    1. Cai Y., Berger E. A. (2011). An immunotoxin targeting the gH glycoprotein of KSHV for selective killing of cells in the lytic phase of infection. Antiviral. Res. 90 143–150. 10.1016/j.antiviral.2011.03.175
    1. Cao Y., Qin L., Zhang L., Safrit J., Ho D. D. (1995). Virologic and immunologic characterization of long-term survivors of human immunodeficiency virus type 1 infection. New Engl. J. Med. 332 201–208. 10.1056/NEJM199501263320401
    1. Casadevall A., Spitzer E., Webb D., Rinaldi M. (1993). Susceptibilities of serial Cryptococcus neoformans isolates from patients with recurrent cryptococcal meningitis to amphotericin B and fluconazole. Antimicrob. Agents Chemother. 37 1383–1386. 10.1128/AAC.37.6.1383
    1. Cecchinato V., Tryniszewska E., Ma Z. M., Vaccari M., Boasso A., Tsai W.-P., et al. (2008). Immune activation driven by CTLA-4 blockade augments viral replication at mucosal sites in simian immunodeficiency virus infection. J. Immunol. 180 5439–5447. 10.4049/jimmunol.180.8.5439
    1. Chatterjee D., Chandran B., Berger E. A. (2012). Selective killing of Kaposi’s sarcoma-associated herpesvirus lytically infected cells with a recombinant immunotoxin targeting the viral gpK8. 1A envelope glycoprotein. MAbs 4 233–242. 10.4161/mabs.4.2.19262
    1. Cheever M. A., Higano C. S. (2011). PROVENGE (Sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccine. Clin. Cancer Res. 17 3520–3526. 10.1158/1078-0432.CCR-10-3126
    1. Chen G., Huang A. C., Zhang W., Zhang G., Wu M., Xu W., et al. (2018). Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature 560 382–386. 10.1038/s41586-018-0392-8
    1. Chew G. M., Fujita T., Webb G. M., Burwitz B. J., Wu H. L., Reed J. S., et al. (2016). TIGIT marks exhausted T cells, correlates with disease progression, and serves as a target for immune restoration in HIV and SIV infection. PLoS Pathog. 12:e1005349. 10.1371/journal.ppat.1005349
    1. Christiaansen A. F., Boggiatto P. M., Varga S. M. (2014). Limitations of Foxp3+ Treg depletion following viral infection in DEREG mice. J. Immunol. Methods 406 58–65. 10.1016/j.jim.2014.03.005
    1. Conti S., Magliani W., Arseni S., Dieci E., Frazzi R., Salati A., et al. (2000). In vitro activity of monoclonal and recombinant yeast killer toxin-like antibodies against antibiotic-resistant gram-positive cocci. Mol. Med. 6 613–619. 10.1007/BF03401799
    1. Cortez-Retamozo V., Lauwereys M., Hassanzadeh Gh G., Gobert M., Conrath K., Muyldermans S., et al. (2002). Efficient tumor targeting by single-domain antibody fragments of camels. Int. J. Cancer 98 456–462. 10.1002/ijc.10212
    1. Crawford A., Angelosanto J. M., Kao C., Doering T. A., Odorizzi P. M., Barnett B. E., et al. (2014). Molecular and transcriptional basis of CD4+ T cell dysfunction during chronic infection. Immunity 40 289–302. 10.1016/j.immuni.2014.01.005
    1. Crawford A., Wherry E. J. (2009). The diversity of costimulatory and inhibitory receptor pathways and the regulation of antiviral T cell responses. Curr. Opin. Immunol. 21 179–186. 10.1016/j.coi.2009.01.010
    1. Currie A. J., Prosser A., Mcdonnell A., Cleaver A. L., Robinson B. W., Freeman G. J., et al. (2009). Dual control of antitumor CD8 T cells through the programmed death-1/programmed death-ligand 1 pathway and immunosuppressive CD4 T cells: regulation and counterregulation. J. Immunol. 183 7898–7908. 10.4049/jimmunol.0901060
    1. Currie B. P., Casadevall A. (1994). Estimation of the prevalence of cryptococcal infection among patients infected with the human immunodeficiency virus in New York City. Clin. Infect. Dis. 19 1029–1033. 10.1093/clinids/19.6.1029
    1. Cutler A., Brombacher F. (2005). Cytokine therapy. Ann. N. Y. Acad. Sci. 1056 16–29. 10.1196/annals.1352.002
    1. Dadachova E., Burns T., Bryan R., Apostolidis C., Brechbiel M., Nosanchuk J., et al. (2004). Feasibility of radioimmunotherapy of experimental pneumococcal infection. Antimicrob. Agents Chemother. 48 1624–1629. 10.1128/AAC.48.5.1624-1629.2004
    1. Dadachova E., Casadevall A. (2014). Radiolabeled antibodies for therapy of infectious diseases. Microbiol. Spectr. 2:0023. 10.1128/microbiolspec.AID-0023-2014
    1. Dadachova E., Nakouzi A., Bryan R. A., Casadevall A. (2003). Ionizing radiation delivered by specific antibody is therapeutic against a fungal infection. Proc. Natl. Acad. Sci. U.S.A. 100 10942–10947. 10.1073/pnas.1731272100
    1. Dadachova E., Patel M. C., Toussi S., Apostolidis C., Morgenstern A., Brechbiel M. W., et al. (2006). Targeted killing of virally infected cells by radiolabeled antibodies to viral proteins. PLoS Med. 3:e427. 10.1371/journal.pmed.0030427
    1. Damelin M., Zhong W., Myers J., Sapra P. (2015). Evolving strategies for target selection for antibody-drug conjugates. Pharm. Res. 32 3494–3507. 10.1007/s11095-015-1624-3
    1. Dangeti S. R. (2014). Distinct advancements and challenges in HIV 1 vaccine development and cure—A review. HIV AIDS Rev. 13 1–5. 10.1016/j.hivar.2013.10.001
    1. Datta M., Via L. E., Kamoun W. S., Liu C., Chen W., Seano G., et al. (2015). Anti-vascular endothelial growth factor treatment normalizes tuberculosis granuloma vasculature and improves small molecule delivery. Proc. Natl. Acad. Sci. U.S.A. 112 1827–1832. 10.1073/pnas.1424563112
    1. De Bernardis F., Amacker M., Arancia S., Sandini S., Gremion C., Zurbriggen R., et al. (2012). A virosomal vaccine against candidal vaginitis: immunogenicity, efficacy and safety profile in animal models. Vaccine 30 4490–4498. 10.1016/j.vaccine.2012.04.069
    1. Dietze K. K., Zelinskyy G., Gibbert K., Schimmer S., Francois S., Myers L., et al. (2011). Transient depletion of regulatory T cells in transgenic mice reactivates virus-specific CD8+ T cells and reduces chronic retroviral set points. Proc. Natl. Acad. Sci. U.S.A. 108 2420–2425. 10.1073/pnas.1015148108
    1. Divanovic S., Trompette A., Ashworth J. I., Rao M. B., Karp C. L. (2011). Therapeutic enhancement of protective immunity during experimental leishmaniasis. PLoS Negl. Trop. Dis. 5:e1316. 10.1371/journal.pntd.0001316
    1. Drabsch Y., Ten Dijke P. (2012). TGF-β signalling and its role in cancer progression and metastasis. Cancer Metastasis Rev. 31 553–568. 10.1007/s10555-012-9375-7
    1. Drutskaya M. S., Efimov G. A., Astrakhantseva I. V., Kruglov A. A., Nedospasov S. A. (2018). Making anti-cytokine therapy more selective: studies in mice. Cytokine 101 33–38. 10.1016/j.cyto.2016.08.022
    1. Duerr A., Huang Y., Buchbinder S., Coombs R. W., Sanchez J., Del Rio C., et al. (2012). Extended follow-up confirms early vaccine-enhanced risk of HIV acquisition and demonstrates waning effect over time among participants in a randomized trial of recombinant adenovirus HIV vaccine (Step Study). J. Infect. Dis. 206 258–266. 10.1093/infdis/jis342
    1. Duraiswamy J., Kaluza K. M., Freeman G. J., Coukos G. (2013). Dual blockade of PD-1 and CTLA-4 combined with tumor vaccine effectively restores T cell rejection function in tumors. Cancer Res. 73 3591–3603. 10.1158/0008-5472.CAN-12-4100
    1. Dutcher J. (2002). Current status of interleukin-2 therapy for metastatic renal cell carcinoma and metastatic melanoma. Oncology 16 4–10.
    1. Dyck L., Mills K. H. (2017). Immune checkpoints and their inhibition in cancer and infectious diseases. Eur. J. Immunol. 47 765–779. 10.1002/eji.201646875
    1. Efimov G. A., Kruglov A. A., Khlopchatnikova Z. V., Rozov F. N., Mokhonov V. V., Rose-John S., et al. (2016). Cell-type–restricted anti-cytokine therapy: TNF inhibition from one pathogenic source. Proc. Natl. Acad. Sci. U.S.A. 113 3006–3011. 10.1073/pnas.1520175113
    1. Ejrnaes M., Filippi C. M., Martinic M. M., Ling E. M., Togher L. M., Crotty S., et al. (2006). Resolution of a chronic viral infection after interleukin-10 receptor blockade. J. Exp. Med. 203 2461–2472. 10.1084/jem.20061462
    1. Esparza J., Van Regenmortel M. H. (2014). More surprises in the development of an HIV vaccine. Front. Immunol. 5:329. 10.3389/fimmu.2014.00329
    1. Falini B., Pileri S., Pizzolo G., Durkop H., Flenghi L., Stirpe F., et al. (1995). CD30 (Ki-1) molecule: a new cytokine receptor of the tumor necrosis factor receptor superfamily as a tool for diagnosis and immunotherapy. Blood 85 1–14.
    1. Fan G., Wang Z., Hao M., Li J. (2015). Bispecific antibodies and their applications. J. Hematol. Oncol. 8:130. 10.1186/s13045-015-0227-0
    1. Feldmann M. (2008). Many cytokines are very useful therapeutic targets in disease. J. Clin. Invest. 118 3533–3536. 10.1172/JCI37346
    1. Francisco L. M., Salinas V. H., Brown K. E., Vanguri V. K., Freeman G. J., Kuchroo V. K., et al. (2009). PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J. Exp. Med. 206 3015–3029. 10.1084/jem.20090847
    1. Frank D. W., Vallis A., Wiener-Kronish J. P., Roy-Burman A., Spack E. G., Mullaney B. P., et al. (2002). Generation and characterization of a protective monoclonal antibody to Pseudomonas aeruginosa PcrV. J. Infect. Dis. 186 64–73. 10.1086/341069
    1. Fu J., Kanne D. B., Leong M., Glickman L. H., Mcwhirter S. M., Lemmens E., et al. (2015). STING agonist formulated cancer vaccines can cure established tumors resistant to PD-1 blockade. Sci. Transl. Med. 7:283ra252. 10.1126/scitranslmed.aaa4306
    1. Fuller M. J., Callendret B., Zhu B., Freeman G. J., Hasselschwert D. L., Satterfield W., et al. (2013). Immunotherapy of chronic hepatitis C virus infection with antibodies against programmed cell death-1 (PD-1). Proc. Natl. Acad. Sci. U.S.A. 110 15001–15006. 10.1073/pnas.1312772110
    1. Gardiner D., Lalezari J., Lawitz E., Dimicco M., Ghalib R., Reddy K. R., et al. (2013). A randomized, double-blind, placebo-controlled assessment of BMS-936558, a fully human monoclonal antibody to programmed death-1 (PD-1), in patients with chronic hepatitis C virus infection. PLoS One 8:e63818. 10.1371/journal.pone.0063818
    1. Gardner T., Elzey B., Hahn N. M. (2012). Sipuleucel-T (Provenge) autologous vaccine approved for treatment of men with asymptomatic or minimally symptomatic castrate-resistant metastatic prostate cancer. Hum. Vaccin. Immunother. 8 534–539. 10.4161/hv.19795
    1. Garidou L., Heydari S., Gossa S., Mcgavern D. B. (2012). Therapeutic blockade of transforming growth factor beta fails to promote clearance of a persistent viral infection. J. Virol. 86 7060–7071. 10.1128/JVI.00164-12
    1. Gattinoni L., Powell D. J., Jr., Rosenberg S. A., Restifo N. P. (2006). Adoptive immunotherapy for cancer: building on success. Nat. Rev. Immunol. 6 383–393. 10.1038/nri1842
    1. Gauthier J., Turtle C. J. (2018). Insights into cytokine release syndrome and neurotoxicity after CD19-specific CAR-T cell therapy. Curr. Res. Transl. Med. 66 50–52. 10.1016/j.retram.2018.03.003
    1. Gay C. L., Bosch R. J., Ritz J., Hataye J. M., Aga E., Tressler R. L., et al. (2017). Clinical trial of the anti-PD-L1 antibody BMS-936559 in HIV-1 infected participants on suppressive antiretroviral therapy. J. Infect. Dis. 215 1725–1733. 10.1093/infdis/jix191
    1. Geoghegan E. M., Zhang H., Desai P. J., Biragyn A., Markham R. B. (2015). Antiviral activity of a single-domain antibody immunotoxin binding to glycoprotein D of herpes simplex virus 2. Antimicrob. Agents Chemother. 59 527–535. 10.1128/AAC.03818-14
    1. Gill A. L., Green S. A., Abdullah S., Le Saout C., Pittaluga S., Chen H., et al. (2016). Programed death-1/programed death-ligand 1 expression in lymph nodes of HIV infected patients: results of a pilot safety study in rhesus macaques using anti–programed death-ligand 1 (Avelumab). AIDS 30 2487–2493. 10.1097/QAD.0000000000001217
    1. Gleason M. K., Ross J. A., Warlick E. D., Lund T. C., Verneris M. R., Wiernik A., et al. (2014). CD16xCD33 bispecific killer cell engager (BiKE) activates NK cells against primary MDS and MDSC CD33+ targets. Blood 123 3016–3026. 10.1182/blood-2013-10-533398
    1. Goldstein H., Pettoello-Mantovani M., Bera T. K., Pastan I. H., Berger E. A. (2000). Chimeric toxins targeted to the human immunodeficiency virus type 1 envelope glycoprotein augment the in vivo activity of combination antiretroviral therapy in thy/liv-SCID-Hu mice. J. Infect. Dis. 181 921–926. 10.1086/315351
    1. Golubovskaya V., Wu L. (2016). Different subsets of T cells, memory, effector functions, and CAR-T immunotherapy. Cancers 8:E36. 10.3390/cancers8030036
    1. Gonçalves-Lopes R. M., Lima N. F., Carvalho K. I., Scopel K. K., Kallás E. G., Ferreira M. U. (2016). Surface expression of inhibitory (CTLA-4) and stimulatory (OX40) receptors by CD4+ regulatory T cell subsets circulating in human malaria. Microbes Infect. 18 639–648. 10.1016/j.micinf.2016.06.003
    1. Grabmeier-Pfistershammer K., Stecher C., Zettl M., Rosskopf S., Rieger A., Zlabinger G. J., et al. (2017). Antibodies targeting BTLA or TIM-3 enhance HIV-1 specific T cell responses in combination with PD-1 blockade. Clin. Immunol. 183 167–173. 10.1016/j.clim.2017.09.002
    1. Graham B. S., Ambrosino D. M. (2015). History of passive antibody administration for prevention and treatment of infectious diseases. Curr. Opin. HIV AIDS 10 129–134. 10.1097/COH.0000000000000154
    1. Grivennikov S. I., Tumanov A. V., Liepinsh D. J., Kruglov A. A., Marakusha B. I., Shakhov A. N., et al. (2005). Distinct and nonredundant in vivo functions of TNF produced by t cells and macrophages/neutrophils: protective and deleterious effects. Immunity 22 93–104. 10.1016/j.immuni.2004.11.016
    1. Groothuis J. R., Nishida H. (2002). Prevention of respiratory syncytial virus infections in high-risk infantsby monoclonal antibody (palivizumab). Pediatr. Int. 44 235–241. 10.1046/j.1442-200X.2002.01558.x
    1. Guidotti L. G., Chisari F. V. (2006). Immunobiology and pathogenesis of viral hepatitis. Annu. Rev. Pathol. Mech. Dis. 1 23–61. 10.1146/annurev.pathol.1.110304.100230
    1. Gupta S., Cheung L., Pokkali S., Winglee K., Guo H., Murphy J. R., et al. (2017). Suppressor cell–depleting immunotherapy with denileukin diftitox is an effective host-directed therapy for Tuberculosis. J. Infect. Dis. 215 1883–1887. 10.1093/infdis/jix208
    1. Hamers-Casterman C., Atarhouch T., Muyldermans S., Robinson G., Hammers C., Songa E. B., et al. (1993). Naturally occurring antibodies devoid of light chains. Nature 363 446–448. 10.1038/363446a0
    1. Haug M., Brede G., Håkerud M., Nedberg A. G., Gederaas O. A., Flo T. H., et al. (2018). Photochemical internalization of Peptide antigens Provides a novel strategy to realize Therapeutic cancer Vaccination. Front. Immunol. 9:650. 10.3389/fimmu.2018.00650
    1. Haynes B. F. (2015). New approaches to HIV vaccine development. Curr. Opin. Immunol. 35 39–47. 10.1016/j.coi.2015.05.007
    1. Health U. N. I. O. (2012). is a Database of Privately and Publicly Funded Clinical Studies Conducted Around the World. Available at:
    1. Herrera A. F., Moskowitz A. J., Bartlett N. L., Vose J. M., Ramchandren R., Feldman T. A., et al. (2018). Interim results of brentuximab vedotin in combination with nivolumab in patients with relapsed or refractory Hodgkin lymphoma. Blood 131 1183–1194. 10.1182/blood-2017-10-811224
    1. Hill J. A., Li D., Hay K. A., Green M. L., Cherian S., Chen X., et al. (2018). Infectious complications of CD19-targeted chimeric antigen receptor–modified T-cell immunotherapy. Blood 131 121–130. 10.1182/blood-2017-07-793760
    1. Hirano F., Kaneko K., Tamura H., Dong H., Wang S., Ichikawa M., et al. (2005). Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity. Cancer Res. 65 1089–1096.
    1. Ho W. Y., Blattman J. N., Dossett M. L., Yee C., Greenberg P. D. (2003). Adoptive immunotherapy: engineering T cell responses as biologic weapons for tumor mass destruction. Cancer Cell 3 431–437. 10.1016/S1535-6108(03)00113-2
    1. Hodi F. S., Chesney J., Pavlick A. C., Robert C., Grossmann K. F., Mcdermott D. F., et al. (2016). Combined nivolumab and ipilimumab versus ipilimumab alone in patients with advanced melanoma: 2-year overall survival outcomes in a multicentre, randomised, controlled, phase 2 trial. Lancet Oncol. 17 1558–1568. 10.1016/S1470-2045(16)30366-7
    1. Hogan L. E., Vasquez J., Hobbs K. S., Hanhauser E., Aguilar-Rodriguez B., Hussien R., et al. (2018). Increased HIV-1 transcriptional activity and infectious burden in peripheral blood and gut-associated CD4+ T cells expressing CD30. PLoS Pathog. 14:e1006856. 10.1371/journal.ppat.1006856
    1. Horn M. P., Zuercher A. W., Imboden M. A., Rudolf M. P., Lazar H., Wu H., et al. (2010). Preclinical in vitro and in vivo characterization of the fully human monoclonal IgM antibody KBPA101 specific for Pseudomonas aeruginosa serotype IATS-O11. Antimicrob. Agents Chemother. 2338–2344. 10.1128/AAC.01142-09
    1. Hristodorov D., Mladenov R., Pardo A., Pham A., Huhn M., Fischer R., et al. (2013). Microtubule-associated protein tau facilitates the targeted killing of proliferating cancer cells in vitro and in a xenograft mouse tumour model in vivo. Br. J. Cancer 109 1570. 10.1038/bjc.2013.457
    1. Hsu F.-S., Su C.-H., Huang K.-H. (2017). A comprehensive review of US FDA-approved immune checkpoint inhibitors in urothelial carcinoma. J. Immunol. Res. 2017:6940546. 10.1155/2017/6940546
    1. Hu J., Robinson J. L. (2010). Treatment of respiratory syncytial virus with palivizumab: a systematic review. World J. Pediatrics 6 296–300. 10.1007/s12519-010-0230-z
    1. Hua L., Hilliard J., Shi Y., Tkaczyk C., Cheng L., Yu X., et al. (2014). Assessment of an anti-alpha-toxin monoclonal antibody for prevention and treatment of Staphylococcus aureus-induced pneumonia. Antimicrob. Agents Chemother. 58 1108–1117. 10.1128/AAC.02190-13
    1. Illidge T., Johnson P. (2000). The emerging role of radioimmunotherapy in haematological malignancies. Br. J. Haematol. 108 679–688. 10.1046/j.1365-2141.2000.01926.x
    1. Illingworth J., Butler N. S., Roetynck S., Mwacharo J., Pierce S. K., Bejon P., et al. (2013). Chronic exposure to Plasmodium falciparum is associated with phenotypic evidence of B and T cell exhaustion. J. Immunol. 190 1038–1047. 10.4049/jimmunol.1202438
    1. Isaacs C., Robert N. J., Bailey F. A., Schuster M. W., Overmoyer B., Graham M., et al. (1997). Randomized placebo-controlled study of recombinant human interleukin-11 to prevent chemotherapy-induced thrombocytopenia in patients with breast cancer receiving dose-intensive cyclophosphamide and doxorubicin. J. Clin. Oncol. 15 3368–3377. 10.1200/JCO.1997.15.11.3368
    1. Jakowlew S. B. (2006). Transforming growth factor-β in cancer and metastasis. Cancer Metastasis Rev. 25 435–457. 10.1007/s10555-006-9006-2
    1. Jones P. T., Dear P. H., Foote J., Neuberger M. S., Winter G. (1986). Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321 522–525. 10.1038/321522a0
    1. Jordaan S., Akinrinmade O. A., Nachreiner T., Cremer C., Naran K., Chetty S., et al. (2018). Updates in the development of immunornases for the selective killing of tumor cells. Biomedicines 6:28. 10.3390/biomedicines6010028
    1. Kapelski S., De Almeida M., Fischer R., Barth S., Fendel R. (2015). Antimalarial Activity of Granzyme B and Its Targeted Delivery by a Granzyme B–Single-Chain Fv Fusion Protein. Antimicrob. Agents Chemother. 59 669–672. 10.1128/AAC.04190-14
    1. Karyampudi L., Lamichhane P., Scheid A. D., Kalli K. R., Shreeder B., Krempski J. W., et al. (2014). Accumulation of memory precursor CD8 T cells in regressing tumors following combination therapy with vaccine and anti-PD-1 antibody. Cancer Res. 74 2974–2984. 10.1158/0008-5472.CAN-13-2564
    1. Kaufmann D. E., Kavanagh D. G., Pereyra F., Zaunders J. J., Mackey E. W., Miura T., et al. (2007). Upregulation of CTLA-4 by HIV-specific CD4+ T cells correlates with disease progression and defines a reversible immune dysfunction. Nat. Immunol. 8 1246–1254. 10.1038/ni1515
    1. Kennedy P. E., Bera T. K., Wang Q. C., Gallo M., Wagner W., Lewis M. G., et al. (2006). Anti-HIV-1 immunotoxin 3B3 (Fv)-PE38: enhanced potency against clinical isolates in human PBMCs and macrophages, and negligible hepatotoxicity in macaques. J. Leukoc. Biol. 80 1175–1182. 10.1189/jlb.0306139
    1. Khan N., Vidyarthi A., Amir M., Mushtaq K., Agrewala J. N. (2017). T-cell exhaustion in tuberculosis: pitfalls and prospects. Crit. Rev. Microbiol 43 133–141. 10.1080/1040841X.2016.1185603
    1. Kim E. G., Kim K. M. (2015). Strategies and advancement in antibody-drug conjugate optimization for targeted cancer therapeutics. Biomol. Ther. 23 493–509. 10.4062/biomolther.2015.116
    1. Kim J. M., Rasmussen J. P., Rudensky A. Y. (2007). Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat. Immunol. 8 191–197. 10.1038/ni1428
    1. Kim P. S., Ahmed R. (2010). Features of responding T cells in cancer and chronic infection. Curr. Opin. Immunol 22 223–230. 10.1016/j.coi.2010.02.005
    1. Kiran D., Podell B. K., Chambers M., Basaraba R. J. (2016). Host-directed therapy targeting the Mycobacterium tuberculosis granuloma: a review. Semin. Immunopathol. 38 167–183. 10.1007/s00281-015-0537-x
    1. Kiyokawa T., Williams D. P., Snider C. E., Strom T. B., Murphy J. R. (1991). Protein engineering of diphtheria-toxin-related interleukin-2 fusion toxins to increase cytotoxic potency for high-affinity IL-2-receptor-bearing target cells. Protein Eng. Design Select. 4 463–468. 10.1093/protein/4.4.463
    1. Kleponis J., Skelton R., Zheng L. (2015). Fueling the engine and releasing the break: combinational therapy of cancer vaccines and immune checkpoint inhibitors. Cancer Biol. Med. 12 201–208. 10.7497/j.issn.2095-3941.2015.0046
    1. Knaul J. K., Jörg S., Oberbeck-Mueller D., Heinemann E., Scheuermann L., Brinkmann V., et al. (2014). Lung-residing myeloid-derived suppressors display dual functionality in murine pulmonary tuberculosis. Am. J. Respir. Crit. Care Med. 190 1053–1066.10.1164/rccm.201405-0828OC
    1. Kochenderfer J. N., Rosenberg S. A. (2013). Treating B-cell cancer with T cells expressing anti-CD19 chimeric antigen receptors. Nat. Rev. Clin. Oncol. 10 267–276. 10.1038/nrclinonc.2013.46
    1. Köhnke T., Krupka C., Tischer J., Knösel T., Subklewe M. (2015). Increase of PD-L1 expressing B-precursor ALL cells in a patient resistant to the CD19/CD3-bispecific T cell engager antibody blinatumomab. J. Hematol. Oncol. 8:111. 10.1186/s13045-015-0213-6
    1. Kovtun Y. V., Audette C. A., Ye Y., Xie H., Ruberti M. F., Phinney S. J., et al. (2006). Antibody-drug conjugates designed to eradicate tumors with homogeneous and heterogeneous expression of the target antigen. Cancer Res. 66 3214–3221. 10.1158/0008-5472.CAN-05-3973
    1. Kruglov A. A., Lampropoulou V., Fillatreau S., Nedospasov S. A. (2011). Pathogenic and protective functions of TNF in neuroinflammation are defined by its expression in T lymphocytes and myeloid cells. J. Immunol. 187 5660–5670. 10.4049/jimmunol.1100663
    1. Kumaresan P. R., Manuri P. R., Albert N. D., Maiti S., Singh H., Mi T., et al. (2014). Bioengineering T cells to target carbohydrate to treat opportunistic fungal infection. Proc. Natl. Acad. Sci. U.S.A. 111 10660–10665. 10.1073/pnas.1312789111
    1. Kursar M., Koch M., Mittrücker H.-W., Nouailles G., Bonhagen K., Kamradt T., et al. (2007). Cutting edge: regulatory T cells prevent efficient clearance of Mycobacterium tuberculosis. J. Immunol. 178 2661–2665. 10.4049/jimmunol.178.5.2661
    1. Kyi C., Postow M. A. (2014). Checkpoint blocking antibodies in cancer immunotherapy. FEBS Lett. 588 368–376. 10.1016/j.febslet.2013.10.015
    1. Lahl K., Loddenkemper C., Drouin C., Freyer J., Arnason J., Eberl G., et al. (2007). Selective depletion of Foxp3+ regulatory T cells induces a scurfy-like disease. J. Exp. Med. 204 57–63. 10.1084/jem.20061852
    1. Lai X., Friedman A. (2017). Combination therapy of cancer with cancer vaccine and immune checkpoint inhibitors: a mathematical model. PLoS One 12:e0178479. 10.1371/journal.pone.0178479
    1. Larocca T. J., Katona L. I., Thanassi D. G., Benach J. L. (2008). Bactericidal action of a complement-independent antibody against relapsing fever Borrelia resides in its variable region. J. Immunol. 180 6222–6228. 10.4049/jimmunol.180.9.6222
    1. Larson H. J., Clarke R. M., Jarrett C., Eckersberger E., Levine Z., Schulz W. S., et al. (2018). Measuring trust in vaccination: a systematic review. Hum. Vaccin. Immunother. 14 1599–1609. 10.1080/21645515.2018.1459252
    1. Latchman Y., Wood C. R., Chernova T., Chaudhary D., Borde M., Chernova I., et al. (2001). PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat. Immunol. 2 261. 10.1038/85330
    1. Lee P. P., Yee C., Savage P. A., Fong L., Brockstedt D., Weber J. S., et al. (1999). Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nat. Med. 5 677–685. 10.1038/9525
    1. Lehar S. M., Pillow T., Xu M., Staben L., Kajihara K. K., Vandlen R., et al. (2015). Novel antibody–antibiotic conjugate eliminates intracellular S. aureus. Nature 527 323–328. 10.1038/nature16057
    1. Li J., Li W., Huang K., Zhang Y., Kupfer G., Zhao Q. (2018). Chimeric antigen receptor T cell (CAR-T) immunotherapy for solid tumors: lessons learned and strategies for moving forward. J. Hematol. Oncol. 11:22. 10.1186/s13045-018-0568-6
    1. Li N., Xie W., Kong H., Min R., Hu C., Zhou X., et al. (2015). Enrichment of regulatory T-cells in blood of patients with multidrug-resistant tuberculosis. Int. J. Tuberc. Lung Dis. 19 1230–1238. 10.5588/ijtld.15.0148
    1. Li S., Gowans E. J., Chougnet C., Plebanski M., Dittmer U. (2008). Natural regulatory T cells and persistent viral infection. J. Virol. 82 21–30. 10.1128/JVI.01768-07
    1. Li X., Xu P., Wang C., Xu N., Xu A., Xu Y., et al. (2017). Synergistic effects of the immune checkpoint inhibitor CTLA-4 combined with the growth inhibitor lycorine in a mouse model of renal cell carcinoma. Oncotarget 8 21177–21186. 10.18632/oncotarget.15505
    1. Liedtke C., Mazouni C., Hess K. R., André F., Tordai A., Mejia J. A., et al. (2008). Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J. Clin. Oncol. 26 1275–1281. 10.1200/JCO.2007.14.4147
    1. Lilienthal N., Lohmann G., Crispatzu G., Vasyutina E., Zittrich S., Mayer P., et al. (2016). A novel recombinant anti-CD22 immunokinase delivers proapoptotic activity of death-associated protein kinase (DAPK) and mediates cytotoxicity in neoplastic B cells. Mol. Cancer Ther. 15 971–984. 10.1158/1535-7163.MCT-15-0685
    1. Lin J. H., Guo Y., Wang W. (2018). Challenges of antibody drug conjugates in cancer therapy: current understanding of mechanisms and future strategies. Curr. Pharmacol. Rep. 4 10–26. 10.1007/s40495-018-0122-9
    1. Linke R., Klein A., Seimetz D. (2010). Catumaxomab: clinical development and future directions. MAbs 2 129–136. 10.4161/mabs.2.2.11221
    1. Litzinger M. T., Fernando R., Curiel T. J., Grosenbach D. W., Schlom J., Palena C. (2007). IL-2 immunotoxin denileukin diftitox reduces regulatory T cells and enhances vaccine-mediated T-cell immunity. Blood 110 3192–3201. 10.1182/blood-2007-06-094615
    1. Liu D., Tian S., Zhang K., Xiong W., Lubaki N. M., Chen Z., et al. (2017). Chimeric antigen receptor (CAR)-modified natural killer cell-based immunotherapy and immunological synapse formation in cancer and HIV. Protein Cell 8 861–877. 10.1007/s13238-017-0415-5
    1. Mahoney K. M., Rennert P. D., Freeman G. J. (2015). Combination cancer immunotherapy and new immunomodulatory targets. Nat. Rev. Drug Discov. 14 561–584. 10.1038/nrd4591
    1. Manieri N. A., Chiang E. Y., Grogan J. L. (2017). TIGIT: a key inhibitor of the cancer immunity cycle. Trends Immunol. 38 20–28. 10.1016/j.it.2016.10.002
    1. Mao H., Zhang L., Yang Y., Zuo W., Bi Y., Gao W., et al. (2010). New insights of CTLA-4 into its biological function in breast cancer. Curr. Cancer Drug. Targets 10 728–736. 10.2174/156800910793605811
    1. Marcellin P., Lau G. K., Bonino F., Farci P., Hadziyannis S., Jin R., et al. (2004). Peginterferon alfa-2a alone, lamivudine alone, and the two in combination in patients with HBeAg-negative chronic hepatitis B. N. Engl. J. Med. 351 1206–1217. 10.1056/NEJMoa040431
    1. Mariathasan S., Tan M.-W. (2017). Antibody–antibiotic conjugates: a novel therapeutic platform against bacterial infections. Trends Mol. Med. 23 135–149. 10.1016/j.molmed.2016.12.008
    1. Massard C., Gordon M. S., Sharma S., Rafii S., Wainberg Z. A., Luke J., et al. (2016). Safety and efficacy of durvalumab (MEDI4736), an anti–programmed cell death ligand-1 immune checkpoint inhibitor, in patients with advanced urothelial bladder cancer. J. Clin. Oncol. 34 3119–3125. 10.1200/JCO.2016.67.9761
    1. Mathew M., Verma R. S. (2009). Humanized immunotoxins: a new generation of immunotoxins for targeted cancer therapy. Cancer Sci. 100 1359–1365. 10.1111/j.1349-7006.2009.01192.x
    1. Maude S. L., Frey N., Shaw P. A., Aplenc R., Barrett D. M., Bunin N. J., et al. (2014). Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371 1507–1517. 10.1056/NEJMoa1407222
    1. Mcdevitt M. R., Barendswaard E., Ma D., Lai L., Curcio M. J., Sgouros G., et al. (2000). An α-particle emitting antibody ([213Bi] J591) for radioimmunotherapy of prostate cancer. Cancer Res. 60 6095–6100.
    1. Melian E. B., Plosker G. L. (2001). Interferon alfacon-1. Drugs 61 1661–1691. 10.2165/00003495-200161110-00009
    1. Meng W., Tang A., Ye X., Gui X., Li L., Fan X., et al. (2018). Targeting human-cytomegalovirus-infected cells by redirecting T cells using an anti-CD3/anti-glycoprotein B bispecific antibody. Antimicrob. Agents Chemother. 62:e01719–17. 10.1128/AAC.01719-17
    1. Merlo A., Saverino D., Tenca C., Grossi C. E., Bruno S., Ciccone E. (2001). CD85/LIR-1/ILT2 and CD152 (Cytotoxic T Lymphocyte Antigen 4) inhibitory molecules down-regulate the cytolytic activity of human CD4+ T-Cell Clones Specific for Mycobacterium tuberculosis. Infect. Immun. 69 6022–6029. 10.1128/IAI.69.10.6022-6029.2001
    1. Michot J., Bigenwald C., Champiat S., Collins M., Carbonnel F., Postel-Vinay S., et al. (2016). Immune-related adverse events with immune checkpoint blockade: a comprehensive review. Eur. J. Cancer 54 139–148. 10.1016/j.ejca.2015.11.016
    1. Mohindra N. (2018). Current state of immunotherapy: chipping away at the tip of the iceberg. J. Cancer Immunol. Ther. 1 1–2.
    1. Moore G. L., Bautista C., Pong E., Nguyen D.-H. T., Jacinto J., Eivazi A., et al. (2011). A novel bispecific antibody format enables simultaneous bivalent and monovalent co-engagement of distinct target antigens. MAbs 3 546–557. 10.4161/mabs.3.6.18123
    1. Morrison S. L., Johnson M. J., Herzenberg L. A., Oi V. T. (1984). Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains. Proc. Natl. Acad. Sci. U.S.A. 81 6851–6855. 10.1073/pnas.81.21.6851
    1. Morrissey K. M., Yuraszeck T., Li C. C., Zhang Y., Kasichayanula S. (2016). Immunotherapy and novel combinations in oncology: current landscape, challenges, and opportunities. Clin. Transl. Sci. 9 89–104. 10.1111/cts.12391
    1. Murdock B. J., Teitz-Tennenbaum S., Chen G.-H., Dils A. J., Malachowski A. N., Curtis J. L., et al. (2014). Early or late IL-10 blockade enhances Th1 and Th17 effector responses and promotes fungal clearance in mice with cryptococcal lung infection. J. Immunol. 193 4107–4116. 10.4049/jimmunol.1400650
    1. Murray H. W., Lu C. M., Mauze S., Freeman S., Moreira A. L., Kaplan G., et al. (2002). Interleukin-10 (IL-10) in experimental visceral leishmaniasis and IL-10 receptor blockade as immunotherapy. Infect. Immun. 70 6284–6293. 10.1128/IAI.70.11.6284-6293.2002
    1. Nabel G. J. (2013). Designing tomorrow’s vaccines. N. Engl. J. Med. 368 551–560. 10.1056/NEJMra1204186
    1. Nanjappa S. G., Klein B. S. (2014). Vaccine immunity against fungal infections. Curr. Opin. Immunol 28 27–33. 10.1016/j.coi.2014.01.014
    1. Neelapu S. S., Locke F. L., Bartlett N. L., Lekakis L. J., Miklos D. B., Jacobson C. A., et al. (2017). Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N. Engl. J. Med. 377 2531–2544. 10.1056/NEJMoa1707447
    1. Neuzillet C., Tijeras-Raballand A., Cohen R., Cros J., Faivre S., Raymond E., et al. (2015). Targeting the TGFβ pathway for cancer therapy. Pharmacol. Ther. 147 22–31. 10.1016/j.pharmthera.2014.11.001
    1. Nguyen L. T., Ohashi P. S. (2015). Clinical blockade of PD1 and LAG3—potential mechanisms of action. Nat. Rev. Immunol. 15 45–56. 10.1038/nri3790
    1. Ni G., Wang T., Walton S., Zhu B., Chen S., Wu X., et al. (2015). Manipulating IL-10 signalling blockade for better immunotherapy. Cell Immunol. 293 126–129. 10.1016/j.cellimm.2014.12.012
    1. Offner S., Hofmeister R., Romaniuk A., Kufer P., Baeuerle P. A. (2006). Induction of regular cytolytic T cell synapses by bispecific single-chain antibody constructs on MHC class I-negative tumor cells. Mol. Immunol. 43 763–771. 10.1016/j.molimm.2005.03.007
    1. Oganesyan V., Peng L., Damschroder M. M., Cheng L., Sadowska A., Tkaczyk C., et al. (2014). Mechanisms of neutralization of a human anti-α-toxin antibody. J. Biol. Chem. 289 29874–29880. 10.1074/jbc.M114.601328
    1. World Health Organization (2017). Measles vaccines: WHO position paper, April 2017–Recommendations. Vaccine 10.1016/j.vaccine.2017.07.066 [Epub ahead of print].
    1. World Health Organization (2018). Diphtheria vaccine: WHO position paper, August 2017–Recommendations. Vaccine 36 199–201. 10.1016/j.vaccine.2017.08.024
    1. Paley M. A., Kroy D. C., Odorizzi P. M., Johnnidis J. B., Dolfi D. V., Barnett B. E., et al. (2012). Progenitor and terminal subsets of CD8+ T cells cooperate to contain chronic viral infection. Science 338 1220–1225. 10.1126/science.1229620
    1. Papaioannou N. E., Beniata O. V., Vitsos P., Tsitsilonis O., Samara P. (2016). Harnessing the immune system to improve cancer therapy. Ann. Transl. Med. 36 199–201. 10.21037/atm.2016.04.01
    1. Pardoll D. M. (2012). The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12 252–264. 10.1038/nrc3239
    1. Parren P. W., Burton D. R. (2001). The antiviral activity of antibodies in vitro and in vivo. Adv. Immunol. 77 195–262. 10.1016/S0065-2776(01)77018-6
    1. Pauken K. E., Wherry E. J. (2015). Overcoming T cell exhaustion in infection and cancer. Trends Immunol. 36 265–276. 10.1016/j.it.2015.02.008
    1. Perreau M., Banga R., Pantaleo G. (2017). Targeted immune interventions for an HIV-1 Cure. Trends Mol. Med. 23 945–961. 10.1016/j.molmed.2017.08.006
    1. Pitt J. M., Stavropoulos E., Redford P. S., Beebe A. M., Bancroft G. J., Young D. B., et al. (2012). Blockade of IL-10 signaling during BCG vaccination enhances and sustains Th1, Th17, and innate lymphoid IFN-γ and IL-17 responses and increases protection to Mycobacterium tuberculosis infection. J. Immunol. 189 4079–4087. 10.4049/jimmunol.1201061
    1. Postow M. A., Callahan M. K., Wolchok J. D. (2015). Immune checkpoint blockade in cancer therapy. J. Clin. Oncol. 33 1974–1982. 10.1200/JCO.2014.59.4358
    1. Pouget J.-P., Navarro-Teulon I., Bardiès M., Chouin N., Cartron G., Pèlegrin A., et al. (2011). Clinical radioimmunotherapy—the role of radiobiology. Nat. Rev. Clin. Oncol. 8 720–734. 10.1038/nrclinonc.2011.160
    1. Przepiorka D., Ko C.-W., Deisseroth A., Yancey C. L., Candau-Chacon R., Chiu H.-J., et al. (2015). FDA approval: blinatumomab. Clin. Cancer Res. 21 4035–4039. 10.1158/1078-0432.CCR-15-0612
    1. Que Y.-A., Lazar H., Wolff M., François B., Laterre P.-F., Mercier E., et al. (2014). Assessment of panobacumab as adjunctive immunotherapy for the treatment of nosocomial Pseudomonas aeruginosa pneumonia. Eur. J. Clin. Microbiol. Infect. Dis. 33 1861–1867. 10.1007/s10096-014-2156-1
    1. Qureshi O. S., Zheng Y., Nakamura K., Attridge K., Manzotti C., Schmidt E. M., et al. (2011). Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science 332 600–603. 10.1126/science.1202947
    1. ∗Qyresearch G. Global Immune Checkpoint Inhibitors Market Size (2017). Revenue and Forecast 2022 [Online]. Available: Global Immune Checkpoint Inhibitors Market Size 2017. Revenue and Forecast 2022 [Accessed].
    1. Rerks-Ngarm S., Pitisuttithum P., Nitayaphan S., Kaewkungwal J., Chiu J., Paris R., et al. (2009). Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N. Engl. J. Med. 361 2209–2220. 10.1056/NEJMoa0908492
    1. Rezvani K., Rouce R. H. (2015). The application of natural killer cell immunotherapy for the treatment of cancer. Front. Immunol. 6:578. 10.3389/fimmu.2015.00578
    1. Richter F., Liebig T., Guenzi E., Herrmann A., Scheurich P., Pfizenmaier K., et al. (2013). Antagonistic TNF receptor one-specific antibody (ATROSAB): receptor binding and in vitro bioactivity. PLoS One 8:e72156. 10.1371/journal.pone.0072156
    1. Richter K., Perriard G., Behrendt R., Schwendener R. A., Sexl V., Dunn R., et al. (2013). Macrophage and T cell produced IL-10 promotes viral chronicity. PLoS Pathog. 9:e1003735. 10.1371/journal.ppat.1003735
    1. Rittmeyer A., Barlesi F., Waterkamp D., Park K., Ciardiello F., Von Pawel J., et al. (2017). Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet 389 255–265. 10.1016/S0140-6736(16)32517-X
    1. Robert C., Long G. V., Brady B., Dutriaux C., Maio M., Mortier L., et al. (2015a). Nivolumab in previously untreated melanoma without BRAF mutation. N. Engl. J. Med. 372 320–330. 10.1056/NEJMoa1412082
    1. Robert C., Schachter J., Long G. V., Arance A., Grob J. J., Mortier L., et al. (2015b). Pembrolizumab versus ipilimumab in advanced melanoma. N. Engl. J. Med. 372 2521–2532. 10.1056/NEJMoa1503093
    1. Roybal K. T., Lim W. A. (2017). Synthetic immunology: hacking immune cells to expand their therapeutic capabilities. Annu. Rev. Immunol. 35 229–253. 10.1146/annurev-immunol-051116-052302
    1. Roybal K. T., Williams J. Z., Morsut L., Rupp L. J., Kolinko I., Choe J. H., et al. (2016). Engineering T cells with customized therapeutic response programs using synthetic notch receptors. Cell 167 419–432.e16. 10.1016/j.cell.2016.09.011
    1. Sadekar S., Figueroa I., Tabrizi M. (2015). Antibody drug conjugates: application of quantitative pharmacology in modality design and target selection. AAPS J. 17 828–836. 10.1208/s12248-015-9766-0
    1. Sadelain M., Rivière I., Brentjens R. (2003). Targeting tumours with genetically enhanced T lymphocytes. Nat. Rev. Cancer 3 35–45. 10.1038/nrc971
    1. Said E. A., Dupuy F. P., Trautmann L., Zhang Y., Shi Y., El-Far M., et al. (2010). Programmed death-1–induced interleukin-10 production by monocytes impairs CD4+ T cell activation during HIV infection. Nat. Med. 16 452–459. 10.1038/nm.2106
    1. Samaha H., Pignata A., Fousek K., Ren J., Lam F. W., Stossi F., et al. (2018). A homing system targets therapeutic T cells to brain cancer. Nature 561 331–337. 10.1038/s41586-018-0499-y
    1. Sause W. E., Buckley P. T., Strohl W. R., Lynch A. S., Torres V. J. (2016). Antibody-based biologics and their promise to combat Staphylococcus aureus infections. Trends Pharmacol. Sci. 37 231–241. 10.1016/j.tips.2015.11.008
    1. Savoldo B., Ramos C. A., Liu E., Mims M. P., Keating M. J., Carrum G., et al. (2011). CD28 costimulation improves expansion and persistence of chimeric antigen receptor–modified T cells in lymphoma patients. J. Clin. Invest. 121 1822–1826. 10.1172/JCI46110
    1. Schietinger A., Greenberg P. D. (2014). Tolerance and exhaustion: defining mechanisms of T cell dysfunction. Trends Immunol. 35 51–60. 10.1016/j.it.2013.10.001
    1. Schmid P., Adams S., Rugo H. S., Schneeweiss A., Barrios C. H., Iwata H., et al. (2018). Atezolizumab and Nab-paclitaxel in advanced triple-negative breast cancer. N. Engl. J. Med. 379 2108–2121. 10.1056/NEJMoa1809615
    1. Schmidt C. S., White C. J., Ibrahim A. S., Filler S. G., Fu Y., Yeaman M. R., et al. (2012). NDV-3, a recombinant alum-adjuvanted vaccine for Candida and Staphylococcus aureus, is safe and immunogenic in healthy adults. Vaccine 30 7594–7600. 10.1016/j.vaccine.2012.10.038
    1. Schmohl J., Gleason M., Dougherty P., Miller J., Vallera D. (2016). Heterodimeric bispecific single chain variable fragments (scFv) killer engagers (BiKEs) enhance NK-cell activity against CD133+ colorectal cancer cells. Target. Oncol. 11 353–361. 10.1007/s11523-015-0391-8
    1. Schuster S. J., Svoboda J., Chong E. A., Nasta S. D., Mato A. R., Anak Ö, et al. (2017). Chimeric antigen receptor T cells in refractory B-cell lymphomas. N. Engl. J. Med. 377 2545–2554. 10.1056/NEJMoa1708566
    1. Scotti C., Iamele L., Vecchia L. (2015). Antibody–drug conjugates: targeted weapons against cancer. Antibody Technol. J. 5 1–13. 10.2147/ANTI.S52914
    1. Sedykh S. E., Prinz V. V., Buneva V. N., Nevinsky G. A. (2018). Bispecific antibodies: design, therapy, perspectives. Drug Des. Dev. Ther. 12 195–208. 10.2147/DDDT.S151282
    1. Sgouros G., Ballangrud A. M., Jurcic J. G., Mcdevitt M. R. (1999). Phrmacokinetics and dosimetry of an (alpha-particle) emitter labeled antibody: 213Bi-HuM195 (Anti-CD33) in patients with leukemia. J. Nucl. Med. 40 1935–1946.
    1. Sharma P., Allison J. P. (2015). The future of immune checkpoint therapy. Science 348 56–61. 10.1126/science.aaa8172
    1. Sharpe A. H., Wherry E. J., Ahmed R., Freeman G. J. (2007). The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat. Immunol. 8 239–245. 10.1038/ni1443
    1. Shin D. S., Zaretsky J. M., Escuin-Ordinas H., Garcia-Diaz A., Hu-Lieskovan S., Kalbasi A., et al. (2016). Primary resistance to PD-1 blockade mediated by JAK½ mutations. Cancer Discov. 17 188–201.
    1. Simmonds R. E., Foxwell B. M. (2008). Signalling, inflammation and arthritis: NF-κ B and its relevance to arthritis and inflammation. Rheumatology 47 584–590. 10.1093/rheumatology/kem298
    1. Sipp D., Frazer I. H., Rasko J. E. (2018). No Vacillation on HPV Vaccination. Cell 172 1163–1167. 10.1016/j.cell.2018.02.045
    1. Sloan D. D., Lam C.-Y. K., Irrinki A., Liu L., Tsai A., Pace C. S., et al. (2015). Targeting HIV reservoir in infected CD4 T cells by dual-affinity re-targeting molecules (DARTs) that bind HIV envelope and recruit cytotoxic T cells. PLoS Pathog. 11:e1005233. 10.1371/journal.ppat.1005233
    1. Soares K. C., Rucki A. A., Wu A. A., Olino K., Xiao Q., Chai Y., et al. (2015). PD-1/PD-L1 blockade together with vaccine therapy facilitates effector T cell infiltration into pancreatic tumors. J. Immunother. 38 1–11. 10.1097/CJI.0000000000000062
    1. Spain L., Diem S., Larkin J. (2016). Management of toxicities of immune checkpoint inhibitors. Cancer Treat. Rev. 44 51–60. 10.1016/j.ctrv.2016.02.001
    1. Spiess K., Jakobsen M. H., Kledal T. N., Rosenkilde M. M. (2016). The future of antiviral immunotoxins. J. Leukoc. Biol. 99 911–925. 10.1189/jlb.2MR1015-468R
    1. Spiess K., Jeppesen M. G., Malmgaard-Clausen M., Krzywkowski K., Dulal K., Cheng T., et al. (2015). Rationally designed chemokine-based toxin targeting the viral G protein-coupled receptor US28 potently inhibits cytomegalovirus infection in vivo. Proc. Natl. Acad. Sci. U.S.A. 112 8427–8432. 10.1073/pnas.1509392112
    1. Srahna M., Grunsven L., Remacle J., Vandenberghe P. (2006). CTLA-4 interacts with STAT5 and inhibits STAT5-mediated transcription. Immunology 117 396–401. 10.1111/j.1365-2567.2005.02313.x
    1. Srivastava S., Riddell S. R. (2018). Chimeric antigen receptor T cell therapy: challenges to bench-to-bedside efficacy. J. Immunol. 200 459–468. 10.4049/jimmunol.1701155
    1. Steeland S., Puimège L., Vandenbroucke R. E., Van Hauwermeiren F., Haustraete J., Devoogdt N., et al. (2015). Generation and characterization of small single domain antibodies inhibiting human tumor necrosis factor receptor 1. J. Biol. Chem. 290 4022–4037. 10.1074/jbc.M114.617787
    1. Stein H., Mason D., Gerdes J., O’connor N., Wainscoat J., Pallesen G., et al. (1985). The expression of the Hodgkin’s disease associated antigen Ki-1 in reactive and neoplastic lymphoid tissue: evidence that Reed-Sternberg cells and histiocytic malignancies are derived from activated lymphoid cells. Blood 66 848–858.
    1. Stephenson K. E., T D’couto H., Barouch D. H. (2016). New concepts in HIV-1 vaccine development. Curr. Opin. Immunol 41 39–46. 10.1016/j.coi.2016.05.011
    1. Sung J. A., Pickeral J., Liu L., Stanfield-Oakley S. A., Lam C.-Y. K., Garrido C., et al. (2015). Dual-Affinity Re-Targeting proteins direct T cell–mediated cytolysis of latently HIV-infected cells. J. Clin. Invest. 125 4077–4090. 10.1172/JCI82314
    1. Syed T. A., Ahmadpour O. A. (1998). Human leukocyte derived interferon-alpha in a hydrophilic gel for the treatment of intravaginal warts in women: a placebo-controlled, double-blind study. Int. J. STD AIDS 9 769–772. 10.1258/0956462981921396
    1. Thakur A., Huang M., Lum L. G. (2018). Bispecific antibody based therapeutics: strengths and challenges. Blood Rev. 32 339–347. 10.1016/j.blre.2018.02.004
    1. Tian M., Neil J. R., Schiemann W. P. (2011). Transforming growth factor-β and the hallmarks of cancer. Cell. Signal. 23 951–962. 10.1016/j.cellsig.2010.10.015
    1. Topalian S. L., Drake C. G., Pardoll D. M. (2015). Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27 450–461. 10.1016/j.ccell.2015.03.001
    1. Trail P. A., Dubowchik G. M., Lowinger T. B. (2017). Antibody drug conjugates for treatment of breast cancer: novel targets and diverse approaches in ADC design. Pharmacol. Ther. 181 126–142. 10.1016/j.pharmthera.2017.07.013
    1. Trautmann L., Janbazian L., Chomont N., Said E. A., Gimmig S., Bessette B., et al. (2006). Upregulation of PD-1 expression on HIV-specific CD8+ T cells leads to reversible immune dysfunction. Nat. Med. 12 1198–1202. 10.1038/nm1482
    1. Tur M. K., Barth S. (2014). “Immunotherapy”, in Encyclopedia of Cancer, ed. Schwab M. (Berlin: Springer; ).
    1. Van Den Ende C., Marano C., Van Ahee A., Bunge E. M., De Moerlooze L. (2017). The immunogenicity and safety of GSK’s recombinant hepatitis B vaccine in adults: a systematic review of 30 years of experience. Expert Rev. Vaccin. 16 811–832. 10.1080/14760584.2017.1338568
    1. Vetter V., Denizer G., Friedland L. R., Krishnan J., Shapiro M. (2018). Understanding modern-day vaccines: what you need to know. Ann. Med. 50 110–120. 10.1080/07853890.2017.1407035
    1. Wagner T. A. (2018). Quarter Century of Anti-HIV CAR T Cells. Curr. HIV AIDS Rep. 15 147–154. 10.1007/s11904-018-0388-x
    1. Waldmann T. A. (2003). Immunotherapy: past, present and future. Nat. Med. 9 269–277. 10.1038/nm0303-269
    1. Walker L. M., Burton D. R. (2018). Passive immunotherapy of viral infections:’super-antibodies’ enter the fray. Nat. Rev. Immunol. 18 297–308. 10.1038/nri.2017.148
    1. Wasserman M., Sings H. L., Jones D., Pugh S., Moffatt M., Farkouh R. (2018). Review of vaccine effectiveness assumptions used in economic evaluations of infant pneumococcal conjugate vaccine. Expert Rev. Vaccin. 17 71–78. 10.1080/14760584.2018.1409116
    1. Weber J. S., Gibney G., Sullivan R. J., Sosman J. A., Slingluff C. L., Jr., Lawrence D. P., et al. (2016). Sequential administration of nivolumab and ipilimumab with a planned switch in patients with advanced melanoma (CheckMate 064): an open-label, randomised, phase 2 trial. Lancet Oncol. 17 943–955. 10.1016/S1470-2045(16)30126-7
    1. Weiner G. J. (2015). Building better monoclonal antibody-based therapeutics. Nat. Rev. Cancer 15 361–370. 10.1038/nrc3930
    1. Weiner L. M., Murray J. C., Shuptrine C. W. (2012). Antibody-based immunotherapy of cancer. Cell 148 1081–1084. 10.1016/j.cell.2012.02.034
    1. Wentworth P., Wentworth A. D., Zhu X., Wilson I. A., Janda K. D., Eschenmoser A., et al. (2003). Evidence for the production of trioxygen species during antibody-catalyzed chemical modification of antigens. Proc. Natl. Acad. Sci. U.S.A. 100 1490–1493. 10.1073/pnas.0437831100
    1. Wherry E. J. (2011). T cell exhaustion. Nat. Immunol. 12 492–499. 10.1111/cas.13065
    1. Wherry E. J., Kurachi M. (2015). Molecular and cellular insights into T cell exhaustion. Nat. Rev. Immunol. 15 486–499. 10.1038/nri3862
    1. Wightman F., Solomon A., Kumar S. S., Urriola N., Gallagher K., Hiener B., et al. (2015). Effect of ipilimumab on the HIV reservoir in an HIV-infected individual with metastatic melanoma. AIDS 29 504–506. 10.1097/QAD.0000000000000562
    1. Wolchok J. D., Kluger H., Callahan M. K., Postow M. A., Rizvi N. A., Lesokhin A. M., et al. (2013). Nivolumab plus ipilimumab in advanced melanoma. N. Engl. J. Med. 369 122–133. 10.1056/NEJMoa1302369
    1. Wolf E., Hofmeister R., Kufer P., Schlereth B., Baeuerle P. A. (2005). BiTEs: bispecific antibody constructs with unique anti-tumor activity. Drug Discov. Today 10 1237–1244. 10.1016/S1359-6446(05)03554-3
    1. Wüthrich M., Filutowicz H. I., Warner T., Deepe G. S., Klein B. S. (2003). Vaccine immunity to pathogenic fungi overcomes the requirement for CD4 help in exogenous antigen presentation to CD8+ T cells: implications for vaccine development in immune-deficient hosts. J. Exp. Med. 197 1405–1416. 10.1084/jem.20030109
    1. Wykes M. N., Lewin S. R. (2018). Immune checkpoint blockade in infectious diseases. Nat. Rev. Immunol. 18 91–104. 10.1038/nri.2017.112
    1. Yu H., Yang J., Jiao S., Li Y., Zhang W., Wang J. (2015). Cytotoxic T lymphocyte antigen 4 expression in human breast cancer: implications for prognosis. Cancer Immunol. Immunother. 64 853–860. 10.1007/s00262-015-1696-2
    1. Yuan P., Zhang H., Cai C., Zhu S., Zhou Y., Yang X., et al. (2015). Chondroitin sulfate proteoglycan 4 functions as the cellular receptor for Clostridium difficile toxin B. Cell Res. 25 157–168. 10.1038/cr.2014.169
    1. Yuraszeck T., Kasichayanula S., Benjamin J. E. (2017). Translation and clinical development of bispecific T-cell engaging antibodies for cancer treatment. Clin. Pharmacol. Ther. 101 634–645. 10.1002/cpt.651
    1. Zacharakis N., Chinnasamy H., Black M., Xu H., Lu Y.-C., Zheng Z., et al. (2018). Immune recognition of somatic mutations leading to complete durable regression in metastatic breast cancer. Nat. Med. 24 724–730. 10.1038/s41591-018-0040-8
    1. Zahaf N.-I., Schmidt G. (2017). Bacterial toxins for cancer therapy. Toxins 9:236. 10.3390/toxins9080236
    1. Zajac A. J., Blattman J. N., Murali-Krishna K., Sourdive D. J., Suresh M., Altman J. D., et al. (1998). Viral immune evasion due to persistence of activated T cells without effector function. J. Exp. Med. 188 2205–2213. 10.1084/jem.188.12.2205
    1. Zaretsky J. M., Garcia-Diaz A., Shin D. S., Escuin-Ordinas H., Hugo W., Hu-Lieskovan S., et al. (2016). Mutations associated with acquired resistance to PD-1 blockade in melanoma. N. Engl. J. Med. 375 819–829. 10.1056/NEJMoa1604958
    1. Zeng M., Smith A. J., Wietgrefe S. W., Southern P. J., Schacker T. W., Reilly C. S., et al. (2011). Cumulative mechanisms of lymphoid tissue fibrosis and T cell depletion in HIV-1 and SIV infections. J. Clin. Invest. 121 998–1008. 10.1172/JCI45157
    1. Zhao A., Tohidkia M. R., Siegel D. L., Coukos G., Omidi Y. (2016). Phage antibody display libraries: a powerful antibody discovery platform for immunotherapy. Crit. Rev. Biotechnol 36 276–289. 10.3109/07388551.2014.958978
    1. Zhao Y., Zheng Z., Cohen C. J., Gattinoni L., Palmer D. C., Restifo N. P., et al. (2006). High-efficiency transfection of primary human and mouse T lymphocytes using RNA electroporation. Mol. Ther. 13 151–159. 10.1016/j.ymthe.2005.07.688
    1. Zhen A., Peterson C. W., Carrillo M. A., Reddy S. S., Youn C. S., Lam B. B., et al. (2017). Long-term persistence and function of hematopoietic stem cell-derived chimeric antigen receptor T cells in a nonhuman primate model of HIV/AIDS. PLoS Pathog. 13:e1006753. 10.1371/journal.ppat.1006753
    1. Zhong Z., Burns T., Chang Q., Carroll M., Pirofski L. (1999). Molecular and functional characteristics of a protective human monoclonal antibody to serotype 8 Streptococcus pneumoniae capsular polysaccharide. Infect. Immun. 67 4119–4127.
    1. Zhu J.-D., Meng W., Wang X.-J., Wang H.-C. R. (2015). Broad-spectrum antiviral agents. Front. Microbiol. 6:517 10.3389/fmicb.2015.00517
    1. Zhukovsky E. A., Morse R. J., Maus M. V. (2016). Bispecific antibodies and CARs: generalized immunotherapeutics harnessing T cell redirection. Curr. Opin. Immunol. 40 24–35. 10.1016/j.coi.2016.02.006
    1. Zumla A., Rao M., Dodoo E., Maeurer M. (2016a). Potential of immunomodulatory agents as adjunct host-directed therapies for multidrug-resistant tuberculosis. BMC Med. 14:89. 10.1186/s12916-016-0635-1
    1. Zumla A., Rao M., Wallis R. S., Kaufmann S. H., Rustomjee R., Mwaba P., et al. (2016b). Host-directed therapies for infectious diseases: current status, recent progress, and future prospects. Lancet Infect. Dis. 16 e47–e63. 10.1016/S1473-3099(16)00078-5

Source: PubMed

3
Abonneren