PRONTOX - proton therapy to reduce acute normal tissue toxicity in locally advanced non-small-cell lung carcinomas (NSCLC): study protocol for a randomised controlled trial

Sebastian Zschaeck, Monique Simon, Steffen Löck, Esther G C Troost, Kristin Stützer, Patrick Wohlfahrt, Steffen Appold, Sebastian Makocki, Rebecca Bütof, Christian Richter, Michael Baumann, Mechthild Krause, Sebastian Zschaeck, Monique Simon, Steffen Löck, Esther G C Troost, Kristin Stützer, Patrick Wohlfahrt, Steffen Appold, Sebastian Makocki, Rebecca Bütof, Christian Richter, Michael Baumann, Mechthild Krause

Abstract

Background: Primary radiochemotherapy with photons is the standard treatment for locally advanced-stage non-small cell lung cancer (NSCLC) patients. Acute radiation-induced side effects such as oesophagitis and radiation pneumonitis limit patients' quality of life, and the latter can be potentially life-threatening. Due to its distinct physical characteristics, proton therapy enables better sparing of normal tissues, which is supposed to translate into a reduction of radiation-induced side effects.

Methods/design: This is a single-centre, prospective, randomised controlled, phase II clinical trial to compare photon to proton radiotherapy up to 66 Gy (RBE) with concomitant standard chemotherapy in patients with locally advanced-stage NSCLC. Patients will be allocated in a 1:1 ratio to photon or proton therapy, and treatment will be delivered slightly accelerated with six fractions of 2 Gy (RBE) per week.

Discussion: The overall aim of the study is to show a decrease of early and intermediate radiation-induced toxicity using proton therapy. For the primary endpoint of the study we postulate a decrease of radiation-induced side effects (oesophagitis and pneumonitis grade II or higher) from 39 to 12%. Secondary endpoints are locoregional and distant failure, overall survival and late side effects.

Trial registration: Registered at ClinicalTrials.gov with Identifier NCT02731001 on 1 April 2016.

Keywords: Locally advanced; Non-small-cell lung cancer (NSCLC); Phase II trial; Photon radiotherapy; Proton radiotherapy; Randomised clinical trial; Toxicity.

Figures

Fig. 1
Fig. 1
Flowchart of planning procedures and patient allocation
Fig. 2
Fig. 2
Flowchart of both randomised treatment arms and primary endpoint
Fig. 3
Fig. 3
Dose distribution of one patient with locally advanced non-small cell lung cancer (NSCLC) planned with intensity-modulated radiation therapy (IMRT) (left) or protons (right) showing lower doses to organs at risk (OAR) by proton therapy

References

    1. Aupérin A, Le Péchoux C, Pignon JP, Koning C, Jeremic B, Clamon G, et al. Concomitant radio-chemotherapy based on platin compounds in patients with locally advanced non-small cell lung cancer (NSCLC): a meta-analysis of individual data from 1764 patients. Ann Oncol. 2006;17(3):473–483. doi: 10.1093/annonc/mdj117.
    1. Bradley JD, Paulus R, Komaki R, Masters G, Blumenschein G, Schild S, et al. Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): a randomised, two-by-two factorial phase 3 study. Lancet Oncol. 2015;16(2):187–199. doi: 10.1016/S1470-2045(14)71207-0.
    1. Nalbantov G, Kietselaer B, Vandecasteele K, Oberije C, Berbee M, Troost E, Dingemans A-M, et al. Cardiac comorbidity is an independent risk factor for radiation-induced lung toxicity in lung cancer patients. Radiother Oncol. 2013;109(1):100–106. doi: 10.1016/j.radonc.2013.08.035.
    1. Sejpal S, Komaki R, Tsao A, Chang JY, Liao Z, Wei X, et al. Early findings on toxicity of proton beam therapy with concurrent chemotherapy for nonsmall cell lung cancer. Cancer. 2011;117(13):3004–3013. doi: 10.1002/cncr.25848.
    1. Vogelius IR, Westerly DC, Aznar MC, Cannon GM, Korreman SS, Mackie TR, et al. Estimated radiation pneumonitis risk after photon versus proton therapy alone or combined with chemotherapy for lung cancer. Acta Oncol. 2011;50(6):772–776. doi: 10.3109/0284186X.2011.582519.
    1. Palma DA, Senan S, Oberije C, Belderbos J, de Dios NR, Bradley JD, et al. Predicting esophagitis after chemoradiation therapy for non-small cell lung cancer: an individual patient data meta-analysis. Int J Radiat Oncol. 2013;87(4):690–696. doi: 10.1016/j.ijrobp.2013.07.029.
    1. Palma DA, Senan S, Tsujino K, Barriger RB, Rengan R, Moreno M, et al. Predicting radiation pneumonitis after chemoradiation therapy for lung cancer: an international individual patient data meta-analysis. Int J Radiat Oncol. 2013;85(2):444–450. doi: 10.1016/j.ijrobp.2012.04.043.
    1. Makimoto T, Tsuchiya S, Hayakawa K, Saitoh R, Mori M. Risk factors for severe radiation pneumonitis in lung cancer. Jpn J Clin Oncol. 1999;29(4):192–197. doi: 10.1093/jjco/29.4.192.
    1. Marcu LG. Altered fractionation in radiotherapy: from radiobiological rationale to therapeutic gain. Cancer Treat Rev. 2010;36(8):606–614. doi: 10.1016/j.ctrv.2010.04.004.
    1. Kollar L, Rengan R. Stereotactic body radiotherapy. Semin Oncol. 2014;41(6):776–789. doi: 10.1053/j.seminoncol.2014.09.022.
    1. Choi N, Baumann M, Flentjie M, Kellokumpu-Lehtinen P, Senan S, Zamboglou N, et al. Predictive factors in radiotherapy for non-small cell lung cancer: present status. Lung Cancer. 2001;31(1):43–56. doi: 10.1016/S0169-5002(00)00156-2.
    1. van Baardwijk A, Wanders S, Boersma L, Borger J, Ollers M, Dingemans A-M, Bootsma G, et al. Mature results of an individualized radiation dose prescription study based on normal tissue constraints in stages I to III non-small-cell lung cancer. J Clin Oncol. 2010;28(8):1380–1386. doi: 10.1200/JCO.2009.24.7221.
    1. Hoffmann A, Troost E, Huizenga H, Kaanders J, Bussink J. Individualized dose prescription for hypofractionation in advanced non-small-cell lung cancer radiotherapy: an in silico trial. Int J Radiat Oncol. 2012;83(5):1596–1602. doi: 10.1016/j.ijrobp.2011.10.032.
    1. Baumann M, Herrmann T, Koch R, Matthiessen W, Appold S, Wahlers B, et al. Final results of the randomized phase III CHARTWEL-trial (ARO 97–1) comparing hyperfractionated-accelerated versus conventionally fractionated radiotherapy in non-small cell lung cancer (NSCLC) Radiother Oncol. 2011;100(1):76–85. doi: 10.1016/j.radonc.2011.06.031.
    1. Hoppe BS, Flampouri S, Henderson RH, Pham D, Bajwa AA, D’Agostino H, et al. Proton therapy with concurrent chemotherapy for non-small-cell lung cancer: technique and early results. Clin Lung Cancer. 2012;13(5):352–358. doi: 10.1016/j.cllc.2011.11.008.
    1. Saunders M, Dische S, Barrett A, Harvey A, Griffiths G, Palmar M. Continuous, hyperfractionated, accelerated radiotherapy (CHART) versus conventional radiotherapy in non-small cell lung cancer: mature data from the randomised multicentre trial. CHART Steering Committee. Radiother Oncol. 1999;52(2):137–148. doi: 10.1016/S0167-8140(99)00087-0.

Source: PubMed

3
Abonneren