Dementia risk and dynamic response to exercise: A non-randomized clinical trial

Eric D Vidoni, Jill K Morris, Jacqueline A Palmer, Yanming Li, Dreu White, Paul J Kueck, Casey S John, Robyn A Honea, Rebecca J Lepping, Phil Lee, Jonathan D Mahnken, Laura E Martin, Sandra A Billinger, Eric D Vidoni, Jill K Morris, Jacqueline A Palmer, Yanming Li, Dreu White, Paul J Kueck, Casey S John, Robyn A Honea, Rebecca J Lepping, Phil Lee, Jonathan D Mahnken, Laura E Martin, Sandra A Billinger

Abstract

Background: Physical exercise may support brain health and cognition over the course of typical aging. The goal of this nonrandomized clinical trial was to examine the effect of an acute bout of aerobic exercise on brain blood flow and blood neurotrophic factors associated with exercise response and brain function in older adults with and without possession of the Apolipoprotein epsilon 4 (APOE4) allele, a genetic risk factor for developing Alzheimer's. We hypothesized that older adult APOE4 carriers would have lower cerebral blood flow regulation and would demonstrate blunted neurotrophic response to exercise compared to noncarriers.

Methods: Sixty-two older adults (73±5 years old, 41 female [67%]) consented to this prospectively enrolling clinical trial, utilizing a single arm, single visit, experimental design, with post-hoc assessment of difference in outcomes based on APOE4 carriership. All participants completed a single 15-minute bout of moderate-intensity aerobic exercise. The primary outcome measure was change in cortical gray matter cerebral blood flow in cortical gray matter measured by magnetic resonance imaging (MRI) arterial spin labeling (ASL), defined as the total perfusion (area under the curve, AUC) following exercise. Secondary outcomes were changes in blood neurotrophin concentrations of insulin-like growth factor-1 (IGF-1), vascular endothelial growth factor (VEGF), and brain derived neurotrophic factor (BDNF).

Results: Genotyping failed in one individual (n = 23 APOE4 carriers and n = 38 APOE4 non-carriers) and two participants could not complete primary outcome testing. Cerebral blood flow AUC increased immediately following exercise, regardless of APOE4 carrier status. In an exploratory regional analyses, we found that cerebral blood flow increased in hippocampal brain regions, while showing no change in cerebellum across both groups. Among high inter-individual variability, there were no significant changes in any of the 3 neurotrophic factors for either group immediately following exercise.

Conclusions: Our findings show that both APOE4 carriers and non-carriers show similar effects of exercise-induced increases in cerebral blood flow and neurotrophic response to acute aerobic exercise. Our results provide further evidence that acute exercise-induced increases in cerebral blood flow may be regional specific, and that exercise-induced neurotrophin release may show a differential effect in the aging cardiovascular system. Results from this study provide an initial characterization of the acute brain blood flow and neurotrophin responses to a bout of exercise in older adults with and without this known risk allele for cardiovascular disease and Alzheimer's disease.

Trial registration: Dementia Risk and Dynamic Response to Exercise (DYNAMIC); Identifier: NCT04009629.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. CONSORT enrollment flow.
Fig 1. CONSORT enrollment flow.
Fig 2. Cerebral blood flow area under…
Fig 2. Cerebral blood flow area under the curve does not differ after exercise based on APOE4 carriage.
Total cerebral blood flow following exercise is plotted for both the primary region of interest, cortical gray matter, and the cerebellar gray matter reference region. Black bars denote APOE4 carriers. Gray bars denote APOE4 non-carriers. Error bars are standard deviation.

References

    1. Kivipelto M, Helkala EL, Laakso MP, Hanninen T, Hallikainen M, Alhainen K, et al.. Midlife vascular risk factors and Alzheimer’s disease in later life: longitudinal, population based study. BMJ. 2001;322(7300):1447–51. doi: 10.1136/bmj.322.7300.1447
    1. Willer CJ, Sanna S, Jackson AU, Scuteri A, Bonnycastle LL, Clarke R, et al.. Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nature genetics. 2008;40(2):161–9. doi: 10.1038/ng.76
    1. Khan TA, Shah T, Prieto D, Zhang W, Price J, Fowkes GR, et al.. Apolipoprotein E genotype, cardiovascular biomarkers and risk of stroke: systematic review and meta-analysis of 14,015 stroke cases and pooled analysis of primary biomarker data from up to 60,883 individuals. Int J Epidemiol. 2013;42(2):475–92. doi: 10.1093/ije/dyt034
    1. Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE. Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nature genetics. 2007;39(1):17–23. doi: 10.1038/ng1934
    1. Tarumi T, Zhang R. Cerebral hemodynamics of the aging brain: risk of Alzheimer disease and benefit of aerobic exercise. Front Physiol. 2014;5:6. doi: 10.3389/fphys.2014.00006
    1. Imtiaz B, Tolppanen AM, Kivipelto M, Soininen H. Future directions in Alzheimer’s disease from risk factors to prevention. Biochem Pharmacol. 2014;88(4):661–70. doi: 10.1016/j.bcp.2014.01.003
    1. Haskell WL, Lee IM, Pate RR, Powell KE, Blair SN, Franklin BA, et al.. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Circulation. 2007;116(9):1081–93. doi: 10.1161/CIRCULATIONAHA.107.185649
    1. Kane RL, Butler M, Fink HA, Brasure M, Davila H, Desai P, et al.. Interventions to Prevent Age-Related Cognitive Decline, Mild Cognitive Impairment, and Clinical Alzheimer’s-Type Dementia. AHRQ Comparative Effectiveness Reviews. Rockville (MD) 2017.
    1. Kramer AF, Hahn S, Cohen NJ, Banich MT, McAuley E, Harrison CR, et al.. Ageing, fitness and neurocognitive function. Nature. 1999;400(6743):418–9. doi: 10.1038/22682
    1. Colcombe SJ, Kramer AF, Erickson KI, Scalf P, McAuley E, Cohen NJ, et al.. Cardiovascular fitness, cortical plasticity, and aging. Proc Nat Acad Sci U S A. 2004;101(9):3316–21.
    1. Vidoni ED, Honea RA, Billinger SA, Swerdlow RH, Burns JM. Cardiorespiratory fitness is associated with atrophy in Alzheimer’s and aging over 2 years. Neurobiol Aging. 2012;33(8):1624–32. doi: 10.1016/j.neurobiolaging.2011.03.016
    1. Vidoni ED, Johnson DK, Morris JK, Van Sciver A, Greer CS, Billinger SA, et al.. Dose-Response of Aerobic Exercise on Cognition: A Community-Based, Pilot Randomized Controlled Trial. PloS one. 2015;10(7):e0131647. doi: 10.1371/journal.pone.0131647
    1. Freudenberger P, Petrovic K, Sen A, Toglhofer AM, Fixa A, Hofer E, et al.. Fitness and cognition in the elderly: The Austrian Stroke Prevention Study. Neurology. 2016;86(5):418–24. doi: 10.1212/WNL.0000000000002329
    1. Burns JM, Cronk BB, Anderson HS, Donnelly JE, Thomas GP, Harsha A, et al.. Cardiorespiratory fitness and brain atrophy in early Alzheimer disease. Neurology. 2008;71(3):210–6. doi: 10.1212/01.wnl.0000317094.86209.cb
    1. Williams VJ, Hayes JP, Forman DE, Salat DH, Sperling RA, Verfaellie M, et al.. Cardiorespiratory fitness is differentially associated with cortical thickness in young and older adults. Neuroimage. 2017;146:1084–92. doi: 10.1016/j.neuroimage.2016.10.033
    1. Tian Q, Studenski SA, Resnick SM, Davatzikos C, Ferrucci L. Midlife and Late-Life Cardiorespiratory Fitness and Brain Volume Changes in Late Adulthood: Results From the Baltimore Longitudinal Study of Aging. J Gerontol A Biol Sci Med Sci. 2016;71(1):124–30. doi: 10.1093/gerona/glv041
    1. Boots EA, Schultz SA, Oh JM, Larson J, Edwards D, Cook D, et al.. Cardiorespiratory fitness is associated with brain structure, cognition, and mood in a middle-aged cohort at risk for Alzheimer’s disease. Brain Imaging Behav. 2015;9(3):639–49. doi: 10.1007/s11682-014-9325-9
    1. Dougherty RJ, Ellingson LD, Schultz SA, Boots EA, Meyer JD, Lindheimer JB, et al.. Meeting physical activity recommendations may be protective against temporal lobe atrophy in older adults at risk for Alzheimer’s disease. Alzheimers Dement (Amst). 2016;4:14–7. doi: 10.1016/j.dadm.2016.03.005
    1. Dustman RE, Emmerson RY, Ruhling RO, Shearer DE, Steinhaus LA, Johnson SC, et al.. Age and fitness effects on EEG, ERPs, visual sensitivity, and cognition. Neurobiol Aging. 1990;11(3):193–200. doi: 10.1016/0197-4580(90)90545-b
    1. Maass A, Duzel S, Brigadski T, Goerke M, Becke A, Sobieray U, et al.. Relationships of peripheral IGF-1, VEGF and BDNF levels to exercise-related changes in memory, hippocampal perfusion and volumes in older adults. Neuroimage. 2016;131:142–54. doi: 10.1016/j.neuroimage.2015.10.084
    1. Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, et al.. Exercise training increases size of hippocampus and improves memory. Proc Nat Acad Sci U S A. 2011;108(7):3017–22. doi: 10.1073/pnas.1015950108
    1. Tyndall AV, Davenport MH, Wilson BJ, Burek GM, Arsenault-Lapierre G, Haley E, et al.. The brain-in-motion study: effect of a 6-month aerobic exercise intervention on cerebrovascular regulation and cognitive function in older adults. BMC Geriatr. 2013;13:21. doi: 10.1186/1471-2318-13-21
    1. Voss MW, Weng TB, Burzynska AZ, Wong CN, Cooke GE, Clark R, et al.. Fitness, but not physical activity, is related to functional integrity of brain networks associated with aging. Neuroimage. 2016;131:113–25. doi: 10.1016/j.neuroimage.2015.10.044
    1. Billinger SA, Craig JC, Kwapiszeski SJ, Sisante JV, Vidoni ED, Maletsky R, et al.. Dynamics of middle cerebral artery blood flow velocity during moderate-intensity exercise. J Appl Physiol. 2017;122(5):1125–33. doi: 10.1152/japplphysiol.00995.2016
    1. Cotman CW, Berchtold NC. Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci. 2002;25(6):295–301. doi: 10.1016/s0166-2236(02)02143-4
    1. Soto I, Graham LC, Richter HJ, Simeone SN, Radell JE, Grabowska W, et al.. APOE Stabilization by Exercise Prevents Aging Neurovascular Dysfunction and Complement Induction. PLoS Biology. 2015;13(10):e1002279. doi: 10.1371/journal.pbio.1002279
    1. Bell RD, Winkler EA, Singh I, Sagare AP, Deane R, Wu Z, et al.. Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature. 2012;485(7399):512–6. doi: 10.1038/nature11087
    1. Kloske CM, Wilcock DM. The Important Interface Between Apolipoprotein E and Neuroinflammation in Alzheimer’s Disease. Front Immunol. 2020;11:754. doi: 10.3389/fimmu.2020.00754
    1. Hasel P, Liddelow SA. Isoform-dependent APOE secretion modulates neuroinflammation. Nat Rev Neurol. 2021;17(5):265–6. doi: 10.1038/s41582-021-00483-y
    1. Tai LM, Thomas R, Marottoli FM, Koster KP, Kanekiyo T, Morris AW, et al.. The role of APOE in cerebrovascular dysfunction. Acta Neuropathol. 2016;131(5):709–23. doi: 10.1007/s00401-016-1547-z
    1. Thambisetty M, Beason-Held L, An Y, Kraut MA, Resnick SM. APOE epsilon4 genotype and longitudinal changes in cerebral blood flow in normal aging. Arch Neurology. 2010;67(1):93–8. doi: 10.1001/archneurol.2009.913
    1. Kim SM, Kim MJ, Rhee HY, Ryu CW, Kim EJ, Petersen ET, et al.. Regional cerebral perfusion in patients with Alzheimer’s disease and mild cognitive impairment: effect of APOE epsilon4 allele. Neuroradiology. 2013;55(1):25–34. doi: 10.1007/s00234-012-1077-x
    1. Toth P, Tarantini S, Ashpole NM, Tucsek Z, Milne GL, Valcarcel-Ares NM, et al.. IGF-1 deficiency impairs neurovascular coupling in mice: implications for cerebromicrovascular aging. Aging Cell. 2015;14(6):1034–44. doi: 10.1111/acel.12372
    1. Zlatar ZZ, Bischoff-Grethe A, Hays CC, Liu TT, Meloy MJ, Rissman RA, et al.. Higher Brain Perfusion May Not Support Memory Functions in Cognitively Normal Carriers of the ApoE epsilon4 Allele Compared to Non-Carriers. Front Aging Neurosci. 2016;8:151. doi: 10.3389/fnagi.2016.00151
    1. White D, John CS, Kucera A, Truver B, Lepping RJ, Kueck PJ, et al.. A methodology for an acute exercise clinical trial called dementia risk and dynamic response to exercise. Sci Rep. 2021;11(1):12776. doi: 10.1038/s41598-021-92177-0
    1. Borogovac A, Asllani I. Arterial Spin Labeling (ASL) fMRI: advantages, theoretical constrains, and experimental challenges in neurosciences. Int J Biomed Imaging. 2012;2012:818456. doi: 10.1155/2012/818456
    1. Kilroy E, Apostolova L, Liu C, Yan L, Ringman J, Wang DJ. Reliability of 2D and 3D Pseudo-Continuous Arterial Spin Labeling Perfusion MRI in Elderly Populations–Comparison with 15O-water PET. Journal of magnetic resonance imaging: JMRI. 2014;39(4):931. doi: 10.1002/jmri.24246
    1. Wang Y, Moeller S, Li X, Vu AT, Krasileva K, Ugurbil K, et al.. Simultaneous multi-slice Turbo-FLASH imaging with CAIPIRINHA for whole brain distortion-free pseudo-continuous arterial spin labeling at 3 and 7 T. Neuroimage. 2015;113:279–88. doi: 10.1016/j.neuroimage.2015.03.060
    1. Wang DJ, Alger JR, Qiao JX, Gunther M, Pope WB, Saver JL, et al.. Multi-delay multi-parametric arterial spin-labeled perfusion MRI in acute ischemic stroke—Comparison with dynamic susceptibility contrast enhanced perfusion imaging. Neuroimage Clin. 2013;3:1–7. doi: 10.1016/j.nicl.2013.06.017
    1. Yan L, Wang S, Zhuo Y, Wolf RL, Stiefel MF, An J, et al.. Unenhanced dynamic MR angiography: high spatial and temporal resolution by using true FISP-based spin tagging with alternating radiofrequency. Radiology. 2010;256(1):270–9. doi: 10.1148/radiol.10091543
    1. Dahnke R, Yotter RA, Gaser C. Cortical thickness and central surface estimation. Neuroimage. 2013;65:336–48. doi: 10.1016/j.neuroimage.2012.09.050
    1. Wang J, Alsop DC, Song HK, Maldjian JA, Tang K, Salvucci AE, et al.. Arterial transit time imaging with flow encoding arterial spin tagging (FEAST). Magn Reson Med. 2003;50(3):599–607. doi: 10.1002/mrm.10559
    1. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2021. R Foundation for Statistical Computing. ISBN 3-900051-07-0. ; 2021.
    1. Bates D, Machler M, Bolker B, Walker S. Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software. 2021;67(1).
    1. Heath Research and Services Administration. Defining Rural Population [Feb. 3, 2022]. Available from: .
    1. Zuelsdorff M, Larson JL, Hunt JFV, Kim AJ, Koscik RL, Buckingham WR, et al.. The Area Deprivation Index: A novel tool for harmonizable risk assessment in Alzheimer’s disease research. Alzheimers Dement (N Y). 2020;6(1):e12039. doi: 10.1002/trc2.12039
    1. Steventon JJ, Foster C, Furby H, Helme D, Wise RG, Murphy K. Hippocampal Blood Flow Is Increased After 20 min of Moderate-Intensity Exercise. Cereb Cortex. 2020;30(2):525–33. doi: 10.1093/cercor/bhz104
    1. MacIntosh BJ, Crane DE, Sage MD, Rajab AS, Donahue MJ, McIlroy WE, et al.. Impact of a single bout of aerobic exercise on regional brain perfusion and activation responses in healthy young adults. PloS One. 2014;9(1):e85163. doi: 10.1371/journal.pone.0085163
    1. Witte E, Liu Y, Ward JL, Kempf KS, Whitaker A, Vidoni ED, et al.. Exercise intensity and middle cerebral artery dynamics in humans. Respir Physiol Neurobiol. 2019;262:32–9. doi: 10.1016/j.resp.2019.01.013
    1. Whitaker AA, Aaron SE, Kaufman CS, Kurtz BK, Bai SX, Vidoni ED, et al.. Cerebrovascular response to an acute bout of low-volume high-intensity interval exercise and recovery in young healthy adults. J Appl Physiol. 2022;132(1):236–46. doi: 10.1152/japplphysiol.00484.2021
    1. Pereira AC, Huddleston DE, Brickman AM, Sosunov AA, Hen R, McKhann GM, et al.. An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc Nat Acad Sci U S A. 2007;104(13):5638–43.
    1. Alfini AJ, Weiss LR, Leitner BP, Smith TJ, Hagberg JM, Smith JC. Hippocampal and Cerebral Blood Flow after Exercise Cessation in Master Athletes. Front Aging Neurosci. 2016;8:184. doi: 10.3389/fnagi.2016.00184
    1. Ogoh S. Relationship between cognitive function and regulation of cerebral blood flow. J Physiol Sci. 2017;67(3):345–51. doi: 10.1007/s12576-017-0525-0
    1. Ferris LT, Williams JS, Shen CL. The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Med Sci Sport Exercise. 2007;39(4):728–34. doi: 10.1249/mss.0b013e31802f04c7
    1. Hashimoto T, Tsukamoto H, Takenaka S, Olesen ND, Petersen LG, Sorensen H, et al.. Maintained exercise-enhanced brain executive function related to cerebral lactate metabolism in men. FASEB J. 2017.
    1. Rasmussen P, Brassard P, Adser H, Pedersen MV, Leick L, Hart E, et al.. Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Exp Physiol. 2009;94(10):1062–9. doi: 10.1113/expphysiol.2009.048512
    1. Russo-Neustadt AA, Beard RC, Huang YM, Cotman CW. Physical activity and antidepressant treatment potentiate the expression of specific brain-derived neurotrophic factor transcripts in the rat hippocampus. Neuroscience. 2000;101(2):305–12. doi: 10.1016/s0306-4522(00)00349-3
    1. van Praag H, Kempermann G, Gage FH. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci. 1999;2(3):266–70. doi: 10.1038/6368
    1. Intlekofer KA, Cotman CW. Exercise counteracts declining hippocampal function in aging and Alzheimer’s disease. Neurobiol Dis. 2013;57:47–55. doi: 10.1016/j.nbd.2012.06.011
    1. Braz ID, Fisher JP. The impact of age on cerebral perfusion, oxygenation and metabolism during exercise in humans. J Physiol 2016;594(16):4471–83. doi: 10.1113/JP271081
    1. Brugniaux JV, Marley CJ, Hodson DA, New KJ, Bailey DM. Acute exercise stress reveals cerebrovascular benefits associated with moderate gains in cardiorespiratory fitness. J Cereb Blood Flow Metabol. 2014;34(12):1873–6. doi: 10.1038/jcbfm.2014.142
    1. Wessels JM, Agarwal RK, Somani A, Verschoor CP, Agarwal SK, Foster WG. Factors affecting stability of plasma brain-derived neurotrophic factor. Sci Rep. 2020;10(1):20232. doi: 10.1038/s41598-020-77046-6
    1. Antes R, Salomon-Zimri S, Beck SC, Garcia Garrido M, Livnat T, Maharshak I, et al.. VEGF Mediates ApoE4-Induced Neovascularization and Synaptic Pathology in the Choroid and Retina. Curr Alzheimer Res. 2015;12(4):323–34. doi: 10.2174/1567205012666150325182504
    1. Salomon-Zimri S, Glat MJ, Barhum Y, Luz I, Boehm-Cagan A, Liraz O, et al.. Reversal of ApoE4-Driven Brain Pathology by Vascular Endothelial Growth Factor Treatment. J Alzheimers Dis. 2016;53(4):1443–58. doi: 10.3233/JAD-160182
    1. Sen A, Nelson TJ, Alkon DL. ApoE isoforms differentially regulates cleavage and secretion of BDNF. Molecular Brain. 2017;10(1):19. doi: 10.1186/s13041-017-0301-3
    1. Heijtel DF, Mutsaerts HJ, Bakker E, Schober P, Stevens MF, Petersen ET, et al.. Accuracy and precision of pseudo-continuous arterial spin labeling perfusion during baseline and hypercapnia: a head-to-head comparison with (1)(5)O H(2)O positron emission tomography. Neuroimage. 2014;92:182–92. doi: 10.1016/j.neuroimage.2014.02.011

Source: PubMed

3
Abonneren