Comprehensive Molecular Analysis of NSCLC; Clinicopathological Associations

Ilenia Chatziandreou, Panagiota Tsioli, Stratigoula Sakellariou, Ioanna Mourkioti, Ioanna Giannopoulou, Georgia Levidou, Penelope Korkolopoulou, Efstratios Patsouris, Angelica A Saetta, Ilenia Chatziandreou, Panagiota Tsioli, Stratigoula Sakellariou, Ioanna Mourkioti, Ioanna Giannopoulou, Georgia Levidou, Penelope Korkolopoulou, Efstratios Patsouris, Angelica A Saetta

Abstract

Background: Selection of NSCLC patients for targeted therapy is currently based upon the presence of sensitizing mutations in EGFR and EML4/ALK translocations. The heterogeneity of molecular alterations in lung cancer has led to the ongoing discovery of potential biomarkers and targets in order to improve survival.

Aim: This study aimed to detect alterations in EGFR, KRAS, BRAF, PIK3CA, MET-gene copy number and ALK rearrangements in a large cohort of 956 NSCLC patients of Hellenic origin using highly sensitive techniques and correlations with clinicopathological characteristics.

Results: Mutations were detected in EGFR 10.6% (101 out of 956 samples), KRAS 26.5% (191 out of 720 samples), BRAF 2.5% (12 out of 471 samples), PIK3CA 3.8% (7 out of 184 samples), MET gene amplification was detected in 18% (31 out of 170) and ALK rearrangements in 3.7% (4 out of 107 samples). EGFR mutations were detected in exon 19 (61.4% of mutant cases), exon 21 p.Leu858Arg (19.8%), exon 20 (15.8%), exon 18 (2.9%) and were correlated with gender histology, smoking status and TTF1 staining. p.Thr790Met mutant cases (3.9%) displayed concurrent mutations in exons 19 or 21. Negative TTF-1 staining showed strong negative predictive value for the presence of EGFR mutations. KRAS mutations were associated with histology, the most common mutation being p.Gly12Cys (38%).

Discussion: In conclusion, only 89 patients were eligible for EGFR -TKIs and ALK inhibitors therapy, whereas 257 patients showed other alterations, highlighting the necessity for a detailed molecular profiling potentially leading to more efficient individualized therapies for NSCLC patients.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1. Frequency of mutations (%) in…
Fig 1. Frequency of mutations (%) in exons 18, 19, 20 and 21 of EGFR gene.
Fig 2. Pie charts representing the frequencies…
Fig 2. Pie charts representing the frequencies (%) of alterations of the examined genes in this cohort.
Percentage of alterations for all the samples of the cohort (All NSCLC) and between the different histological types adenocarcinoma (AdCa), squamous cell carcinomas (Squamous), and other types (NOS and Other).
Fig 3. Schematic representation of the distribution…
Fig 3. Schematic representation of the distribution (%) of different KRAS mutations.

References

    1. Herbst RS, Heymach JV, Lippman SM. Lung cancer. N Engl J Med. 2008;359: 1367–1380. 10.1056/NEJMra0802714
    1. Ramalingam SS, Owonikoko TK, Khuri FR. Lung Cancer : New Biological Insights and Recent Therapeutic Advances. Cancer. 2011;61: 91–112. 10.3322/caac.20102 Available
    1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63: 11–30. 10.3322/caac.21166
    1. Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;64: 9–29. 10.3322/caac.21208
    1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global Cancer Statistics: 2011. CA Cancer J Clin. 2011;61: 69–90. 10.3322/caac.20107
    1. DeSantis CE, Lin CC, Mariotto AB, Siegel RL, Stein KD, Kramer JL, et al. Cancer treatment and survivorship statistics, 2014. CA Cancer J Clin. 2014; 10.3322/caac.21235
    1. Cheng L, Li Y, Zhang SB, Teng XD. Molecular pathology of lung cancer: Key to personalized medicine. Chinese J Pathol. Nature Publishing Group; 2012;41: 715–720. 10.1038/modpathol.2011.215
    1. Soria J-C, Mok TS, Cappuzzo F, Jänne PA. EGFR-mutated oncogene-addicted non-small cell lung cancer: current trends and future prospects. Cancer Treat Rev. Elsevier Ltd; 2012;38: 416–430. 10.1016/j.ctrv.2011.10.003
    1. Wu J-Y, Shih J-Y, Chen K-Y, Yang C-H, Yu C-J, Yang P-C. Gefitinib therapy in patients with advanced non-small cell lung cancer with or without testing for epidermal growth factor receptor (EGFR) mutations. Medicine (Baltimore). 2011;90: 159–167. 10.1097/MD.0b013e31821a16f4
    1. Sequist LV, Bell DW, Lynch TJ, Haber DA. Molecular predictors of response to epidermal growth factor receptor antagonists in non-small-cell lung cancer. J Clin Oncol. 2007;25: 587–595. 10.1200/JCO.2006.07.3585
    1. Munfus-McCray D, Harada S, Adams C, Askin F, Clark D, Gabrielson E, et al. EGFR and KRAS mutations in metastatic lung adenocarcinomas. Hum Pathol. Elsevier Inc.; 2011;42: 1447–1453. 10.1016/j.humpath.2010.12.011
    1. Hirsch FR, Jänne PA, Eberhardt WE, Cappuzzo F, Thatcher N, Pirker R, et al. Epidermal growth factor receptor inhibition in lung cancer: status 2012. J Thorac Oncol. 2013;8: 373–84. 10.1097/JTO.0b013e31827ed0ff
    1. Reungwetwattana T, Weroha SJ, Molina JR. Oncogenic pathways, molecularly targeted therapies, and highlighted clinical trials in non-small-cell lung cancer (NSCLC). Clin Lung Cancer. Elsevier; 2012;13: 252–66. 10.1016/j.cllc.2011.09.004
    1. Langer C. Roles of EGFR and KRAS Mutations in the Treatment Of Patients With Non–Small-Cell Lung Cancer. Pharm Ther. 2011;36.
    1. Riely GJ, Marks J, Pao W. KRAS mutations in non-small cell lung cancer. Proc Am Thorac Soc. 2009;6: 201–5. 10.1513/pats.200809-107LC
    1. Roberts PJ, Stinchcombe TE, Der CJ, Socinski MA. Personalized medicine in non-small-cell lung cancer: Is KRAS a useful marker in selecting patients for epidermal growth factor receptor-targeted therapy? J Clin Oncol. 2010;28: 4769–4777. 10.1200/JCO.2009.27.4365
    1. Mascaux C, Iannino N, Martin B, Berghmans T, Paesmans M, Berghmans T, et al. The role of RAS oncogene in survival of patients with lung cancer: a systematic review of the literature with meta-analysis. Br J Cancer. 2005;92: 131–139.
    1. Mitsudomi T, Yatabe Y. Mutations of the epidermal growth factor receptor gene and related genes as determinants of epidermal growth factor receptor tyrosine kinase inhibitors sensitivity in lung cancer. Cancer Science. 2007. pp. 1817–1824. 10.1111/j.1349-7006.2007.00607.x
    1. Pao W, Girard N. New driver mutations in non-small-cell lung cancer. Lancet Oncol. Elsevier Ltd; 2011;12: 175–180. 10.1016/S1470-2045(10)70087-5
    1. Cardarella S, Ogino A, Nishino M, Butaney M, Shen J, Lydon C, et al. Clinical, pathological and biological features associated with BRAF mutations in non-small cell lung cancer. Clin Cancer Res. 2013; 4532–4540. 10.1158/1078-0432.CCR-13-0657
    1. Sánchez-Torres J, Viteri S. BRAF mutant non-small cell lung cancer and treatment with BRAF inhibitors. Transl Lung Cancer Res. 2013;1: 244–250. 10.3978/j.issn.2218-6751.2013.04.01
    1. Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S, et al. High frequency of mutations of the PIK3CA gene in human cancers. Science. 2004;304: 554 10.1126/science.1096502
    1. Korkolopoulou P, Levidou G, Trigka EA, Prekete N, Karlou M, Thymara I, et al. A comprehensive immunohistochemical and molecular approach to the PI3K/AKT/mTOR (phosphoinositide 3-kinase/v-akt murine thymoma viral oncogene/mammalian target of rapamycin) pathway in bladder urothelial carcinoma. BJU Int. 2012;110 10.1111/j.1464-410X.2012.11569.x
    1. Morris SW, Kirstein MN, Valentine MB, Dittmer KG, Shapiro DN, Saltman DL, et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science. 1994;263: 1281–1284. 10.1126/science.8122112
    1. Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448: 561–566. 10.1038/nature05945
    1. Kwak EL, Bang YJ, Camidge DR, Shaw AT, Solomon B, Maki RG, et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med. 2010;363: 1693–1703. 10.1056/NEJMoa1006448
    1. Thunnissen E, Bubendorf L, Dietel M, Elmberger G, Kerr K, Lopez-Rios F, et al. EML4-ALK testing in non-small cell carcinomas of the lung: A review with recommendations. Virchows Arch. 2012;461: 245–257. 10.1007/s00428-012-1281-4
    1. Chan BA, Hughes BGM. Targeted therapy for non-small cell lung cancer : current standards and the promise of the future. Transl Lung Cancer Res. 2015;4: 36–54. 10.3978/j.issn.2218-6751.2014.05.01
    1. Shaw AT, Solomon B, Mino-Kenudson M. Crizotinib and testing for ALK. JNCCN Journal of the National Comprehensive Cancer Network. 2011. pp. 1335–1341.
    1. Zhao F, Xu M, Lei H, Zhou Z, Wang L, Li P, et al. Clinicopathological Characteristics of Patients with Non-Small-Cell Lung Cancer Who Harbor EML4-ALK Fusion Gene: A Meta-Analysis. PLoS One. 2015;10: e0117333 10.1371/journal.pone.0117333
    1. Levidou G, Saetta AA, Gigelou F, Karlou M, Papanastasiou P, Stamatelli A, et al. ERK/pERK expression, B-raf and K-ras mutations in colon adenocarcinomas: correlation with clinicopathological characteristics and expression of hMLH1 and hMSH2. World Journal of Surgical Oncology. 2012. p. 47 10.1186/PREACCEPT-1032136556616351
    1. Tasioudi KE, Saetta AA, Sakellariou S, Levidou G, Michalopoulos NV, Theodorou D, et al. pERK activation in esophageal carcinomas: clinicopathological associations. Pathol Res Pract. Elsevier GmbH.; 2012;208: 398–404. 10.1016/j.prp.2012.05.009
    1. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29: e45 10.1093/nar/29.9.e45
    1. Beau-Faller M, Ruppert A-M, Voegeli A-C, Neuville A, Meyer N, Guerin E, et al. MET gene copy number in non-small cell lung cancer: molecular analysis in a targeted tyrosine kinase inhibitor naïve cohort. J Thorac Oncol. 2008;3: 331–9. 10.1097/JTO.0b013e318168d9d4
    1. Gruber K, Kohlhäufl M, Friedel G, Ott G, Kalla C. A Novel, Highly Sensitive ALK Antibody 1A4 Facilitates Effective Screening for ALK Rearrangements in Lung Adenocarcinomas by Standard Immunohistochemistry. J Thorac Oncol. 2015;10: 713–716. 10.1097/JTO.0000000000000427
    1. Leighl NB, Rekhtman N, Biermann WA, Huang J, Mino-Kenudson M, Ramalingam SS, et al. Molecular Testing for Selection of Patients With Lung Cancer for Epidermal Growth Factor Receptor and Anaplastic Lymphoma Kinase Tyrosine Kinase Inhibitors: American Society of Clinical Oncology Endorsement of the College of American Pathologists/Internat. J Clin Oncol. 2014;32: 3673–3679. 10.1200/JCO.2014.57.3055
    1. Shan L, Lian F, Guo L, Yang X, Ying J, Lin D. Combination of conventional immunohistochemistry and qRT-PCR to detect ALK rearrangement. Diagn Pathol. Diagnostic Pathology; 2014;9: 3 10.1186/1746-1596-9-3
    1. Dimou A, Harrington K, Syrigos KN. From the bench to bedside: biological and methodology considerations for the future of companion diagnostics in nonsmall cell lung cancer. Patholog Res Int. 2011;2011: 312346 10.4061/2011/312346
    1. Cortes-Funes H, Gomez C, Rosell R, Valero P, Garcia-Giron C, Velasco A, et al. Epidermal growth factor receptor activating mutations in Spanish gefitinib-treated non-small-cell lung cancer patients. Ann Oncol. 2005;16: 1081–1086. 10.1093/annonc/mdi221
    1. Rosell R, Moran T, Queralt C, Porta R, Cardenal F, Camps C, et al. Screening for epidermal growth factor receptor mutations in lung cancer. N Engl J Med. 2009;361: 958–967. 10.1056/NEJMoa0904554
    1. Leary AF, De Castro DG, Nicholson AG, Ashley S, Wotherspoon A, O’Brien MER, et al. Establishing an EGFR mutation screening service for non-small cell lung cancer—Sample quality criteria and candidate histological predictors. Eur J Cancer. 2012;48: 61–67. 10.1016/j.ejca.2011.09.022
    1. Hantson I, Dooms C, Verbeken E, Vandenberghe P, Vliegen L, Roskams T, et al. Performance of standard procedures in detection of EGFR mutations in daily practice in advanced NSCLC patients selected according to the ESMO guideline: a large Caucasian cohort study. Transl Respir Med. 2014;2: 9 10.1186/s40247-014-0009-0
    1. Herreros-Villanueva M, Rodrigo M, Claver M, Muñiz P, Lastra E, García-Girón C, et al. KRAS, BRAF, EGFR and HER2 gene status in a Spanish population of colorectal cancer. Mol Biol Rep. 2011;38: 1315–1320. 10.1007/s11033-010-0232-x
    1. Li C, Hao L, Li Y, Wang S, Chen H, Zhang L, et al. Prognostic value analysis of mutational and clinicopathological factors in non-small cell lung cancer. PLoS One. 2014;9: e107276 10.1371/journal.pone.0107276
    1. Zhang X, Chang A. Molecular predictors of EGFR-TKI sensitivity in advanced non-small cell lung cancer. Int J Med Sci. 2008;5: 209–217.
    1. Sun P-L, Seol H, Lee HJ, Yoo SB, Kim H, Xu X, et al. High incidence of EGFR mutations in Korean men smokers with no intratumoral heterogeneity of lung adenocarcinomas: correlation with histologic subtypes, EGFR/TTF-1 expressions, and clinical features. J Thorac Oncol. 2012;7: 323–30. 10.1097/JTO.0b013e3182381515
    1. Lynch T, Bell D, Sordella R, Gurubhagavatula S, Okimoto R, Brannigan B, et al. Activating Mutations in the Epidermal Growth Factor Receptor Underlying Responsiveness of Non–Small-Cell Lung Cancer to Gefitinib. N Engl J Med. 2004;350: 2129–2139.
    1. Paez JG, Jänne PA, Lee JC, Tracy S, Greulich H, Gabriel S, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004;304: 1497–1500. 10.1126/science.1099314
    1. Vincenten J, Smit EF, Vos W, Grünberg K, Postmus PE, Heideman DAM, et al. Negative NKX2-1 (TTF-1) as temporary surrogate marker for treatment selection during EGFR-mutation analysis in patients with non-small-cell lung cancer. J Thorac Oncol. 2012;7: 1522–7. 10.1097/JTO.0b013e3182635a91
    1. Garassino MC, Marabese M, Rusconi P, Rulli E, Martelli O, Farina G, et al. Different types of K-Ras mutations could affect drug sensitivity and tumour behaviour in non-small-cell lung cancer. Ann Oncol. 2011;22: 235–7. 10.1093/annonc/mdq680
    1. Cardarella S, Ortiz TM, Joshi VA, Butaney M, Jackman DM, Kwiatkowski DJ, et al. The Introduction of Systematic Genomic Testing for Patients with Non-Small-Cell Lung Cancer. J Thorac Oncol. 2012;7: 1767–1774. 10.1097/JTO.0b013e3182745bcb
    1. Ihle NT, Byers LA, Kim ES, Saintigny P, Lee JJ, Blumenschein GR, et al. Effect of KRAS oncogene substitutions on protein behavior: Implications for signaling and clinical outcome. J Natl Cancer Inst. 2012;104: 228–239. 10.1093/jnci/djr523
    1. Karachaliou N, Mayo C, Costa C, Magrí I, Gimenez-Capitan A, Molina-Vila MA, et al. KRAS mutations in lung cancer. Clin Lung Cancer. 2013;14: 205–14. 10.1016/j.cllc.2012.09.007
    1. Carpeño JDC, Belda-Iniesta C. KRAS mutant NSCLC, a new opportunity for the synthetic lethality therapeutic approach. Transl Lung Cancer Res 2013;2: 142–151. 10.3978/j.issn.2218-6751.2013.02.07
    1. Paik PK, Arcila ME, Fara M, Sima CS, Miller VA, Kris MG, et al. Clinical characteristics of patients with lung adenocarcinomas harboring BRAF mutations. J Clin Oncol. 2011;29: 2046–2051. 10.1200/JCO.2010.33.1280
    1. Marchetti A, Felicioni L, Malatesta S, Grazia Sciarrotta M, Guetti L, Chella A, et al. Clinical Features and Outcome of Patients With Non-Small-Cell Lung Cancer Harboring BRAF Mutations. J Clin Oncol. 2011;29: 3574–3579. 10.1200/JCO.2011.35.9638
    1. Cardarella S, Ogino A, Nishino M, Butaney M, Shen J, Lydon C, et al. Clinical, pathologic, and biologic features associated with BRAF mutations in non-small cell lung cancer. Clin Cancer Res. 2013;19: 4532–40. 10.1158/1078-0432.CCR-13-0657
    1. Li S, Li L, Zhu Y, Huang C, Qin Y, Liu H, et al. Coexistence of EGFR with KRAS, or BRAF, or PIK3CA somatic mutations in lung cancer: a comprehensive mutation profiling from 5125 Chinese cohorts. Br J Cancer. 2014;110: 2812–20. 10.1038/bjc.2014.210
    1. Ohashi K, Sequist LV, Arcila ME, Lovly CM, Chen X, Rudin CM, et al. NIH Public Access. 2013;19: 2584–2591. 10.1158/1078-0432
    1. Kawano O, Sasaki H, Endo K, Suzuki E, Haneda H, Yukiue H, et al. PIK3CA mutation status in Japanese lung cancer patients. Lung Cancer. 2006;54: 209–215. 10.1016/j.lungcan.2006.07.006
    1. Ludovini V, Bianconi F, Pistola L, Minotti V, Chiari R, Colella R, et al. Optimization of patient selection for EGFR-TKIs in advanced non-small cell lung cancer by combined analysis of KRAS, PIK3CA, MET, and non-sensitizing EGFR mutations. Cancer Chemother Pharmacol. 2012;69: 1289–1299. 10.1007/s00280-012-1829-7
    1. Serizawa M, Koh Y, Kenmotsu H, Isaka M, Murakami H, Akamatsu H, et al. Assessment of mutational profile of Japanese lung adenocarcinoma patients by multitarget assays: a prospective, single-institute study. Cancer. 2014;120: 1471–81. 10.1002/cncr.28604
    1. Yamamoto H, Shigematsu H, Nomura M, Lockwood WW, Sato M, Okumura N, et al. PIK3CA mutations and copy number gains in human lung cancers. Cancer Res. 2008;68: 6913–6921. 10.1158/0008-5472.CAN-07-5084
    1. Janku F, Wheler JJ, Naing A, Falchook GS, Hong DS, Stepanek VM, et al. PIK3CA mutation H1047R is associated with response to PI3K/AKT/mTOR signaling pathway inhibitors in early-phase clinical trials. Cancer Res. 2013;73: 276–84. 10.1158/0008-5472.CAN-12-1726
    1. Engelman JA, Chen L, Tan X, Crosby K, Guimaraes AR, Upadhyay R, et al. Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat Med. 2008;14: 1351–1356. 10.1038/nm.1890
    1. Han C-B, Ma J-T, Li F, Zhao J-Z, Jing W, Zhou Y, et al. EGFR and KRAS mutations and altered c-Met gene copy numbers in primary non-small cell lung cancer and associated stage N2 lymph node-metastasis. Cancer Lett. Elsevier Ireland Ltd; 2012;314: 63–72. 10.1016/j.canlet.2011.09.012
    1. Cai Y-R, Zhang H-Q, Zhang Z-D, Mu J, Li Z-H. Detection of MET and SOX2 amplification by quantitative real-time PCR in non-small cell lung carcinoma. Oncol Lett. 2011;2: 257–264. 10.3892/ol.2010.229
    1. Bean J, Brennan C, Shih J-Y, Riely G, Viale A, Wang L, et al. MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc Natl Acad Sci U S A. 2007;104: 20932–7. 10.1073/pnas.0710370104
    1. Kubo T, Yamamoto H, Lockwood WW, Valencia I, Soh J, Peyton M, et al. MET gene amplification or EGFR mutation activate MET in lung cancers untreated with EGFR tyrosine kinase inhibitors. Int J Cancer. 2009;124: 1778–84. 10.1002/ijc.24150
    1. Okuda K, Sasaki H, Yukiue H, Yano M, Fujii Y. Met gene copy number predicts the prognosis for completely resected non-small cell lung cancer. Cancer Sci. 2008;99: 2280–5. 10.1111/j.1349-7006.2008.00916.x
    1. Cappuzzo F, Marchetti A, Skokan M, Rossi E, Gajapathy S, Felicioni L, et al. Increased MET gene copy number negatively affects survival of surgically resected non-small-cell lung cancer patients. J Clin Oncol. 2009;27: 1667–1674. 10.1200/JCO.2008.19.1635
    1. Go H, Jeon YK, Park HJ, Sung S-W, Seo J-W, Chung DH. High MET gene copy number leads to shorter survival in patients with non-small cell lung cancer. J Thorac Oncol. 2010;5: 305–313. 10.1097/JTO.0b013e3181ce3d1d
    1. Shaw AT, Yeap BY, Mino-Kenudson M, Digumarthy SR, Costa DB, Heist RS, et al. Clinical features and outcome of patients with non-small-cell lung cancer who harbor EML4-ALK. J Clin Oncol. 2009;27: 4247–4253. doi:JCO.2009.22.6993 [pii]\r 10.1200/JCO.2009.22.6993
    1. Li Y, Pan Y, Wang R, Sun Y, Hu H, Shen X, et al. ALK-Rearranged Lung Cancer in Chinese: A Comprehensive Assessment of Clinicopathology, IHC, FISH and RT-PCR. PLoS One. 2013;8: 1–8. 10.1371/journal.pone.0069016
    1. Wang Y, Wang S, Xu S, Qu J, Liu B. Clinicopathologic Features of Patients with Non-Small Cell Lung Cancer Harboring the EML4-ALK Fusion Gene: A Meta-Analysis. PLoS One. 2014;9: e110617 10.1371/journal.pone.0110617

Source: PubMed

3
Abonneren