COVID-19: Characteristics and Therapeutics

Rameswari Chilamakuri, Saurabh Agarwal, Rameswari Chilamakuri, Saurabh Agarwal

Abstract

Novel coronavirus (COVID-19 or 2019-nCoV or SARS-CoV-2), which suddenly emerged in December 2019 is still haunting the entire human race and has affected not only the healthcare system but also the global socioeconomic balances. COVID-19 was quickly designated as a global pandemic by the World Health Organization as there have been about 98.0 million confirmed cases and about 2.0 million confirmed deaths, as of January 2021. Although, our understanding of COVID-19 has significantly increased since its outbreak, and multiple treatment approaches and pharmacological interventions have been tested or are currently under development to mitigate its risk-factors. Recently, some vaccine candidates showed around 95% clinical efficacy, and now receiving emergency use approvals in different countries. US FDA recently approved BNT162 and mRNA-1273 vaccines developed by Pfizer/BioNTech and Moderna Inc. for emergency use and vaccination in the USA. In this review, we present a succinct overview of the SARS-CoV-2 virus structure, molecular mechanisms of infection, COVID-19 epidemiology, diagnosis, and clinical manifestations. We also systematize different treatment strategies and clinical trials initiated after the pandemic outbreak, based on viral infection and replication mechanisms. Additionally, we reviewed the novel pharmacological intervention approaches and vaccine development strategies against COVID-19. We speculate that the current pandemic emergency will trigger detailed studies of coronaviruses, their mechanism of infection, development of systematic drug repurposing approaches, and novel drug discoveries for current and future pandemic outbreaks.

Keywords: COVID-19; SARS-CoV-2; coronavirus; epidemiology; pandemic; spike protein; therapeutics; vaccine.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Structure and genomic organization of SARS-CoV-2. (A) Schematic representation of SARS-CoV-2 virus structure and the positions of spike glycoprotein, hemagglutinin-esterase, envelope, membrane, nucleocapsid, and RNA viral genome. (B) Genomic organization of SARS-CoV-2 representing ORF1a, ORF1B which encode for nonstructural proteins such as papain-like protease, 3CL-protease, RNA-dependent RNA polymerase, helicase, and endoribonuclease. Genes coding for spike (S), envelope (E), membrane (M), and nucleocapsid (N) proteins are also displayed. Ribosomal frameshift location between ORF1 and ORF2 is shown at the junction of ORF1/2. Genomic positions are shown with dashed lines followed by nucleotide position number in RNA viral genome. The box highlights the genomic organization of spike (S) gene showing distinct S1 and S2 subunits coding segments. (C) Schematic magnified representation of SARS-CoV-2 spike glycoprotein showing S1 and S2 subunits. (D) Crystallographic structure of SARS-CoV-2 spike glycoprotein adapted from PDB ID:6VXX. Receptor binding domain (RBD) representing ACE2 receptor binding site in human cells, N-terminal domain (NTD), fusion protein (FP), transmembrane anchor (T.A.), and intracellular tail (I.T.) protein domains are displayed.
Figure 2
Figure 2
Schematic representation of SARS-CoV-2 virus life cycle. Drugs targeting different steps of coronavirus entry and lifecycle in human cells are also shown.
Figure 3
Figure 3
Schematic representation of some ongoing strategies for SARS-CoV-2 vaccine and their respective mechanism of action.

References

    1. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses The species Severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 2020;5:536–544. doi: 10.1038/s41564-020-0695-z.
    1. Gralinski L.E., Menachery V.D. Return of the Coronavirus: 2019-nCoV. Viruses. 2020;12:135. doi: 10.3390/v12020135.
    1. Wiersinga W.J., Rhodes A., Cheng A.C., Peacock S.J., Prescott H.C. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): A Review. JAMA. 2020;324:782–793. doi: 10.1001/jama.2020.12839.
    1. Wang C., Horby P.W., Hayden F.G., Gao G.F. A novel coronavirus outbreak of global health concern. Lancet. 2020;395:470–473. doi: 10.1016/S0140-6736(20)30185-9.
    1. Fung T.S., Liu D.X. Human Coronavirus: Host-Pathogen Interaction. Annu. Rev. Microbiol. 2019;73:529–557. doi: 10.1146/annurev-micro-020518-115759.
    1. Harapan H., Itoh N., Yufika A., Winardi W., Keam S., Te H., Megawati D., Hayati Z., Wagner A.L., Mudatsir M. Coronavirus disease 2019 (COVID-19): A literature review. J. Infect. Public Health. 2020;13:667–673. doi: 10.1016/j.jiph.2020.03.019.
    1. Wu J., Li J., Zhu G., Zhang Y., Bi Z., Yu Y., Huang B., Fu S., Tan Y., Sun J., et al. Clinical Features of Maintenance Hemodialysis Patients with 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. Clin. J. Am. Soc. Nephrol. 2020;15:1139–1145. doi: 10.2215/CJN.04160320.
    1. Chan J.F., Yuan S., Kok K.H., To K.K., Chu H., Yang J., Xing F., Liu J., Yip C.C., Poon R.W., et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet. 2020;395:514–523. doi: 10.1016/S0140-6736(20)30154-9.
    1. Li H., Liu Z., Ge J. Scientific research progress of COVID-19/SARS-CoV-2 in the first five months. J. Cell Mol. Med. 2020;24:6558–6570. doi: 10.1111/jcmm.15364.
    1. Rimmer A. Covid-19: Doctors in final trimester of pregnancy should avoid direct patient contact. BMJ. 2020;368:m1173. doi: 10.1136/bmj.m1173.
    1. Holshue M.L., DeBolt C., Lindquist S., Lofy K.H., Wiesman J., Bruce H., Spitters C., Ericson K., Wilkerson S., Tural A., et al. First Case of 2019 Novel Coronavirus in the United States. N. Engl. J. Med. 2020;382:929–936. doi: 10.1056/NEJMoa2001191.
    1. Setti L., Passarini F., De Gennaro G., Barbieri P., Perrone M.G., Borelli M., Palmisani J., Di Gilio A., Piscitelli P., Miani A. Airborne Transmission Route of COVID-19: Why 2 Meters/6 Feet of Inter-Personal Distance Could Not Be Enough. Int. J. Environ. Res. Public Health. 2020;17:2932. doi: 10.3390/ijerph17082932.
    1. Acter T., Uddin N., Das J., Akhter A., Choudhury T.R., Kim S. Evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as coronavirus disease 2019 (COVID-19) pandemic: A global health emergency. Sci. Total Environ. 2020;730:138996. doi: 10.1016/j.scitotenv.2020.138996.
    1. Rehman S.U., Shafique L., Ihsan A., Liu Q. Evolutionary Trajectory for the Emergence of Novel Coronavirus SARS-CoV-2. Pathogens. 2020;9:240. doi: 10.3390/pathogens9030240.
    1. Hobman T.C., Mittal A., Manjunath K., Ranjan R.K., Kaushik S., Kumar S., Verma V. COVID-19 pandemic: Insights into structure, function, and hACE2 receptor recognition by SARS-CoV-2. PLoS Pathog. 2020;16 doi: 10.1371/journal.ppat.1008762.
    1. De Haan C.A., Kuo L., Masters P.S., Vennema H., Rottier P.J. Coronavirus particle assembly: Primary structure requirements of the membrane protein. J. Virol. 1998;72:6838–6850. doi: 10.1128/JVI.72.8.6838-6850.1998.
    1. Cui J., Li F., Shi Z.L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 2019;17:181–192. doi: 10.1038/s41579-018-0118-9.
    1. Andersen K.G., Rambaut A., Lipkin W.I., Holmes E.C., Garry R.F. The proximal origin of SARS-CoV-2. Nat. Med. 2020;26:450–452. doi: 10.1038/s41591-020-0820-9.
    1. Bar-On Y.M., Flamholz A., Phillips R., Milo R. SARS-CoV-2 (COVID-19) by the numbers. eLife. 2020;9 doi: 10.7554/eLife.57309.
    1. Liu Y., Liang C., Xin L., Ren X., Tian L., Ju X., Li H., Wang Y., Zhao Q., Liu H., et al. The development of Coronavirus 3C-Like protease (3CL(pro)) inhibitors from 2010 to 2020. Eur. J. Med. Chem. 2020;206:112711. doi: 10.1016/j.ejmech.2020.112711.
    1. Mousavizadeh L., Ghasemi S. Genotype and phenotype of COVID-19: Their roles in pathogenesis. J. Microbiol. Immunol. Infect. 2020 doi: 10.1016/j.jmii.2020.03.022.
    1. Mollaei H.R., Afshar A.A., Kalantar-Neyestanaki D., Fazlalipour M., Aflatoonian B. Comparison five primer sets from different genome region of COVID-19 for detection of virus infection by conventional RT-PCR. Iran. J. Microbiol. 2020;12:185–193. doi: 10.18502/ijm.v12i3.3234.
    1. Sanders W., Fritch E.J., Madden E.A., Graham R.L., Vincent H.A., Heise M.T., Baric R.S., Moorman N.J. Comparative analysis of coronavirus genomic RNA structure reveals conservation in SARS-like coronaviruses. BioRxiv. 2020 doi: 10.1101/2020.06.15.153197.
    1. Gussow A.B., Auslander N., Faure G., Wolf Y.I., Zhang F., Koonin E.V. Genomic determinants of pathogenicity in SARS-CoV-2 and other human coronaviruses. Proc. Natl. Acad. Sci. USA. 2020;117:15193–15199. doi: 10.1073/pnas.2008176117.
    1. Schoeman D., Fielding B.C. Coronavirus envelope protein: Current knowledge. Virol. J. 2019;16:69. doi: 10.1186/s12985-019-1182-0.
    1. Kim D., Lee J.Y., Yang J.S., Kim J.W., Kim V.N., Chang H. The Architecture of SARS-CoV-2 Transcriptome. Cell. 2020;181:914–921.e10. doi: 10.1016/j.cell.2020.04.011.
    1. Chen Y., Liu Q., Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J. Med. Virol. 2020;92:418–423. doi: 10.1002/jmv.25681.
    1. Li F. Structure, Function, and Evolution of Coronavirus Spike Proteins. Annu. Rev. Virol. 2016;3:237–261. doi: 10.1146/annurev-virology-110615-042301.
    1. Mercurio I., Tragni V., Busto F., De Grassi A., Pierri C.L. Protein structure analysis of the interactions between SARS-CoV-2 spike protein and the human ACE2 receptor: From conformational changes to novel neutralizing antibodies. Cell Mol. Life Sci. 2020 doi: 10.1007/s00018-020-03580-1.
    1. Mahmoud I.S., Jarrar Y.B., Alshaer W., Ismail S. SARS-CoV-2 entry in host cells-multiple targets for treatment and prevention. Biochimie. 2020;175:93–98. doi: 10.1016/j.biochi.2020.05.012.
    1. Xu H., Zhong L., Deng J., Peng J., Dan H., Zeng X., Li T., Chen Q. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int. J. Oral Sci. 2020;12:8. doi: 10.1038/s41368-020-0074-x.
    1. Chen Y., Guo Y., Pan Y., Zhao Z.J. Structure analysis of the receptor binding of 2019-nCoV. Biochem. Biophys. Res. Commun. 2020 doi: 10.1016/j.bbrc.2020.02.071.
    1. Hoffmann M., Kleine-Weber H., Schroeder S., Kruger N., Herrler T., Erichsen S., Schiergens T.S., Herrler G., Wu N.H., Nitsche A., et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181:271–280. doi: 10.1016/j.cell.2020.02.052.
    1. Harcourt J., Tamin A., Lu X., Kamili S., Sakthivel S.K., Murray J., Queen K., Tao Y., Paden C.R., Zhang J., et al. Severe Acute Respiratory Syndrome Coronavirus 2 from Patient with Coronavirus Disease, United States. Emerg. Infect. Dis. 2020;26:1266–1273. doi: 10.3201/eid2606.200516.
    1. Wang W., Tang J., Wei F. Updated understanding of the outbreak of 2019 novel coronavirus (2019-nCoV) in Wuhan, China. J. Med. Virol. 2020;92:441–447. doi: 10.1002/jmv.25689.
    1. Li T., Wei C., Li W., Hongwei F., Shi J. Beijing Union Medical College Hospital on “pneumonia of novel coronavirus infection” diagnosis and treatment proposal (V2.0) [(accessed on 20 January 2021)];Med. J. Peking Union Med. Coll. Hosp. 2020 Available online: .
    1. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. doi: 10.1016/S0140-6736(20)30183-5.
    1. Udugama B., Kadhiresan P., Kozlowski H.N., Malekjahani A., Osborne M., Li V.Y.C., Chen H., Mubareka S., Gubbay J.B., Chan W.C.W. Diagnosing COVID-19: The Disease and Tools for Detection. ACS Nano. 2020;14:3822–3835. doi: 10.1021/acsnano.0c02624.
    1. Ozma M.A., Maroufi P., Khodadadi E., Kose S., Esposito I., Ganbarov K., Dao S., Esposito S., Dal T., Zeinalzadeh E., et al. Clinical manifestation, diagnosis, prevention and control of SARS-CoV-2 (COVID-19) during the outbreak period. Infez. Med. 2020;28:153–165.
    1. Li X., Geng M., Peng Y., Meng L., Lu S. Molecular immune pathogenesis and diagnosis of COVID-19. J. Pharm. Anal. 2020;10:102–108. doi: 10.1016/j.jpha.2020.03.001.
    1. Li Y., Yao L., Li J., Chen L., Song Y., Cai Z., Yang C. Stability issues of RT-PCR testing of SARS-CoV-2 for hospitalized patients clinically diagnosed with COVID-19. J. Med. Virol. 2020;92:903–908. doi: 10.1002/jmv.25786.
    1. Xu Q., Liu H., Yuan P., Zhang X., Chen Q., Jiang X., Zhou Y. Development of a simplified RT-PCR without RNA isolation for rapid detection of RNA viruses in a single small brown planthopper (Laodelphax striatellus Fallen) Virol. J. 2017;14:90. doi: 10.1186/s12985-017-0732-6.
    1. Shyu D., Dorroh J., Holtmeyer C., Ritter D., Upendran A., Kannan R., Dandachi D., Rojas-Moreno C., Whitt S.P., Regunath H. Laboratory Tests for COVID-19: A Review of Peer-Reviewed Publications and Implications for Clinical UIse. Mo. Med. 2020;117:184–195.
    1. Carter L.J., Garner L.V., Smoot J.W., Li Y., Zhou Q., Saveson C.J., Sasso J.M., Gregg A.C., Soares D.J., Beskid T.R., et al. Assay Techniques and Test Development for COVID-19 Diagnosis. ACS Cent. Sci. 2020;6:591–605. doi: 10.1021/acscentsci.0c00501.
    1. Li Z., Yi Y., Luo X., Xiong N., Liu Y., Li S., Sun R., Wang Y., Hu B., Chen W., et al. Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis. J. Med. Virol. 2020 doi: 10.1002/jmv.25727.
    1. Jacofsky D., Jacofsky E.M., Jacofsky M. Understanding Antibody Testing for COVID-19. J. Arthroplast. 2020;35:S74–S81. doi: 10.1016/j.arth.2020.04.055.
    1. Dutta N.K., Mazumdar K., Gordy J.T. The Nucleocapsid Protein of SARS-CoV-2: A Target for Vaccine Development. J. Virol. 2020;94 doi: 10.1128/JVI.00647-20.
    1. Walls A.C., Park Y.J., Tortorici M.A., Wall A., McGuire A.T., Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020;181:281–292.e286. doi: 10.1016/j.cell.2020.02.058.
    1. Okba N.M.A., Muller M.A., Li W., Wang C., GeurtsvanKessel C.H., Corman V.M., Lamers M.M., Sikkema R.S., de Bruin E., Chandler F.D., et al. Severe Acute Respiratory Syndrome Coronavirus 2-Specific Antibody Responses in Coronavirus Disease Patients. Emerg. Infect. Dis. 2020;26:1478–1488. doi: 10.3201/eid2607.200841.
    1. Kilic T., Weissleder R., Lee H. Molecular and Immunological Diagnostic Tests of COVID-19: Current Status and Challenges. IScience. 2020;23:101406. doi: 10.1016/j.isci.2020.101406.
    1. Augustine R., Das S., Hasan A., Abdul Salam S., Augustine P., Dalvi Y.B., Varghese R., Primavera R., Yassine H.M., Thakor A.S., et al. Rapid Antibody-Based COVID-19 Mass Surveillance: Relevance, Challenges, and Prospects in a Pandemic and Post-Pandemic World. J. Clin. Med. 2020;9:3372. doi: 10.3390/jcm9103372.
    1. Faustini S.E., Jossi S.E., Perez-Toledo M., Shields A., Allen J.D., Watanabe Y., Newby M.L., Cook A., Willcox C.R., Salim M., et al. Detection of antibodies to the SARS-CoV-2 spike glycoprotein in both serum and saliva enhances detection of infection. MedRxiv. 2020 doi: 10.1101/2020.06.16.20133025.
    1. Prazuck T., Colin M., Giache S., Gubavu C., Seve A., Rzepecki V., Chevereau-Choquet M., Kiani C., Rodot V., Lionnet E., et al. Evaluation of performance of two SARS-CoV-2 Rapid IgM-IgG combined antibody tests on capillary whole blood samples from the fingertip. PLoS ONE. 2020;15:e0237694. doi: 10.1371/journal.pone.0237694.
    1. Weissleder R., Lee H., Ko J., Pittet M.J. COVID-19 diagnostics in context. Sci. Transl. Med. 2020:12. doi: 10.1126/scitranslmed.abc1931.
    1. Cheng M.P., Papenburg J., Desjardins M., Kanjilal S., Quach C., Libman M., Dittrich S., Yansouni C.P. Diagnostic Testing for Severe Acute Respiratory Syndrome-Related Coronavirus 2: A Narrative Review. Ann. Intern. Med. 2020;172:726–734. doi: 10.7326/M20-1301.
    1. Al-Tawfiq J.A., Memish Z.A. Diagnosis of SARS-CoV-2 infection based on CT scan vs RT-PCR: Reflecting on experience from MERS-CoV. J. Hosp. Infect. 2020;105:154–155. doi: 10.1016/j.jhin.2020.03.001.
    1. Li R.L., Chu S.G., Luo Y., Huang Z.H., Hao Y., Fan C.H. Atypical presentation of SARS-CoV-2 infection: A case report. World J. Clin. Cases. 2020;8:1265–1270. doi: 10.12998/wjcc.v8.i7.1265.
    1. Martinez R.M. Clinical Samples for SARS-CoV-2 Detection: Review of the Early Literature. Clin. Microbiol. Newsl. 2020;42:121–127. doi: 10.1016/j.clinmicnews.2020.07.001.
    1. Ye Z., Zhang Y., Wang Y., Huang Z., Song B. Chest CT manifestations of new coronavirus disease 2019 (COVID-19): A pictorial review. Eur. Radiol. 2020;30:4381–4389. doi: 10.1007/s00330-020-06801-0.
    1. Imai K., Tabata S., Ikeda M., Noguchi S., Kitagawa Y., Matuoka M., Miyoshi K., Tarumoto N., Sakai J., Ito T., et al. Clinical evaluation of an immunochromatographic IgM/IgG antibody assay and chest computed tomography for the diagnosis of COVID-19. J. Clin. Virol. 2020;128:104393. doi: 10.1016/j.jcv.2020.104393.
    1. Shah V.K., Firmal P., Alam A., Ganguly D., Chattopadhyay S. Overview of Immune Response during SARS-CoV-2 Infection: Lessons from the Past. Front. Immunol. 2020;11:1949. doi: 10.3389/fimmu.2020.01949.
    1. Eastman R.T., Roth J.S., Brimacombe K.R., Simeonov A., Shen M., Patnaik S., Hall M.D. Remdesivir: A Review of Its Discovery and Development Leading to Emergency Use Authorization for Treatment of COVID-19. ACS Cent. Sci. 2020;6:672–683. doi: 10.1021/acscentsci.0c00489.
    1. Zhang L., Zhou R. Structural Basis of the Potential Binding Mechanism of Remdesivir to SARS-CoV-2 RNA-Dependent RNA Polymerase. J. Phys. Chem. B. 2020;124:6955–6962. doi: 10.1021/acs.jpcb.0c04198.
    1. Yang K. What Do We Know About Remdesivir Drug Interactions? Clin. Transl. Sci. 2020;13:842–844. doi: 10.1111/cts.12815.
    1. Tchesnokov E.P., Feng J.Y., Porter D.P., Gotte M. Mechanism of Inhibition of Ebola Virus RNA-Dependent RNA Polymerase by Remdesivir. Viruses. 2019;11:326. doi: 10.3390/v11040326.
    1. Agostini M.L., Andres E.L., Sims A.C., Graham R.L., Sheahan T.P., Lu X., Smith E.C., Case J.B., Feng J.Y., Jordan R., et al. Coronavirus Susceptibility to the Antiviral Remdesivir (GS-5734) Is Mediated by the Viral Polymerase and the Proofreading Exoribonuclease. mBio. 2018;9 doi: 10.1128/mBio.00221-18.
    1. Pruijssers A.J., George A.S., Schafer A., Leist S.R., Gralinksi L.E., Dinnon K.H., 3rd, Yount B.L., Agostini M.L., Stevens L.J., Chappell J.D., et al. Remdesivir Inhibits SARS-CoV-2 in Human Lung Cells and Chimeric SARS-CoV Expressing the SARS-CoV-2 RNA Polymerase in Mice. Cell Rep. 2020;32:107940. doi: 10.1016/j.celrep.2020.107940.
    1. Ye W., Yao M., Dong Y., Ye C., Wang D., Liu H., Ma H., Zhang H., Qi L., Yang Y., et al. Remdesivir (GS-5734) Impedes Enterovirus Replication Through Viral RNA Synthesis Inhibition. Front. Microbiol. 2020;11:1105. doi: 10.3389/fmicb.2020.01105.
    1. Kiiza P., Mullin S., Teo K., Adhikari N.K.J., Fowler R.A. Treatment of Ebola-related critical illness. Intensive Care Med. 2020;46:285–297. doi: 10.1007/s00134-020-05949-z.
    1. Han Y., Wang Z., Ren J., Wei Z., Li J. Potential inhibitors for the novel coronavirus (SARS-CoV-2) Brief. Bioinform. 2020 doi: 10.1093/bib/bbaa209.
    1. Hussain N., Yoganathan A., Hewage S., Alom S., Harky A. The effect of antivirals on COVID-19: A systematic review. Expert Rev. Anti-Infect. 2020 doi: 10.1080/14787210.2021.1823832.
    1. Yamamoto V., Bolanos J.F., Fiallos J., Strand S.E., Morris K., Shahrokhinia S., Cushing T.R., Hopp L., Tiwari A., Hariri R., et al. COVID-19: Review of a 21st Century Pandemic from Etiology to Neuro-psychiatric Implications. J. Alzheimers Dis. 2020;77:459–504. doi: 10.3233/JAD-200831.
    1. Agrawal U., Raju R., Udwadia Z.F. Favipiravir: A new and emerging antiviral option in COVID-19. Med. J. Armed Forces India. 2020 doi: 10.1016/j.mjafi.2020.08.004.
    1. Coomes E.A., Haghbayan H. Favipiravir, an antiviral for COVID-19? J. Antimicrob. Chemother. 2020;75:2013–2014. doi: 10.1093/jac/dkaa171.
    1. Shannon A., Selisko B., Le N.T., Huchting J., Touret F., Piorkowski G., Fattorini V., Ferron F., Decroly E., Meier C., et al. Rapid incorporation of Favipiravir by the fast and permissive viral RNA polymerase complex results in SARS-CoV-2 lethal mutagenesis. Nat. Commun. 2020;11:4682. doi: 10.1038/s41467-020-18463-z.
    1. Fang Q.Q., Huang W.J., Li X.Y., Cheng Y.H., Tan M.J., Liu J., Wei H.J., Meng Y., Wang D.Y. Effectiveness of favipiravir (T-705) against wild-type and oseltamivir-resistant influenza B virus in mice. Virology. 2020;545:1–9. doi: 10.1016/j.virol.2020.02.005.
    1. Shiraki K., Daikoku T. Favipiravir, an anti-influenza drug against life-threatening RNA virus infections. Pharmthera. 2020;209:107512. doi: 10.1016/j.pharmthera.2020.107512.
    1. Hossen M.S., Barek M.A., Jahan N., Safiqul Islam M. A Review on Current Repurposing Drugs for the Treatment of COVID-19: Reality and Challenges. SN Compr. Clin. Med. 2020:1–13. doi: 10.1007/s42399-020-00485-9.
    1. Evans G.B., Tyler P.C., Schramm V.L. Immucillins in Infectious Diseases. ACS Infect. Dis. 2018;4:107–117. doi: 10.1021/acsinfecdis.7b00172.
    1. Taylor R., Kotian P., Warren T., Panchal R., Bavari S., Julander J., Dobo S., Rose A., El-Kattan Y., Taubenheim B., et al. BCX4430–A broad-spectrum antiviral adenosine nucleoside analog under development for the treatment of Ebola virus disease. J. Infect. Public Health. 2016;9:220–226. doi: 10.1016/j.jiph.2016.04.002.
    1. Keni R., Alexander A., Nayak P.G., Mudgal J., Nandakumar K. COVID-19: Emergence, Spread, Possible Treatments, and Global Burden. Front. Public Health. 2020;8:216. doi: 10.3389/fpubh.2020.00216.
    1. Zhu J.D., Meng W., Wang X.J., Wang H.C. Broad-spectrum antiviral agents. Front. Microbiol. 2015;6:517. doi: 10.3389/fmicb.2015.00517.
    1. Gong S., Su J., Yan X., Li F., Hu L., Liu S. Antiviral therapy for coronavirus disease 2019. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2020;45:598–602. doi: 10.11817/j.issn.1672-7347.2020.200211.
    1. Singh T.U., Parida S., Lingaraju M.C., Kesavan M., Kumar D., Singh R.K. Drug repurposing approach to fight COVID-19. Pharm. Rep. 2020 doi: 10.1007/s43440-020-00155-6.
    1. Vargas M., Servillo G., Einav S. Lopinavir/ritonavir for the treatment of SARS, MERS and COVID-19: A systematic review. Eur. Rev. Med. Pharm. Sci. 2020;24:8592–8605. doi: 10.26355/eurrev_202008_22659.
    1. Khalili J.S., Zhu H., Mak N.S.A., Yan Y., Zhu Y. Novel coronavirus treatment with ribavirin: Groundwork for an evaluation concerning COVID-19. J. Med. Virol. 2020;92:740–746. doi: 10.1002/jmv.25798.
    1. Wang X.X., Luo B.F., Jiang H.J., Cong X., Jin Q., Ma D.L., Wei L., Feng B. Recovery of natural killer cells is mainly in post-treatment period in chronic hepatitis C patients treated with sofosbuvir plus ledipasvir. World J. Gastroenterol. 2018;24:4554–4564. doi: 10.3748/wjg.v24.i40.4554.
    1. Horsley-Silva J.L., Vargas H.E. New Therapies for Hepatitis C Virus Infection. Gastroenterol. Hepatol. 2017;13:22–31.
    1. Elfiky A.A. Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study. Life Sci. 2020;253:117592. doi: 10.1016/j.lfs.2020.117592.
    1. Gupta R., Dhamija P. Sofosbuvir for COVID-19 infection: A potential candidate. Indian J. Pharm. 2020;52:232–233. doi: 10.4103/ijp.IJP_675_20.
    1. Wiemer A.J. Metabolic Efficacy of Phosphate Prodrugs and the Remdesivir Paradigm. ACS Pharm. Transl. Sci. 2020;3:613–626. doi: 10.1021/acsptsci.0c00076.
    1. Nourian A., Khalili H. Sofosbuvir as a potential option for the treatment of COVID-19. Acta Biomed. 2020;91:236–238. doi: 10.23750/abm.v91i2.9609.
    1. Dolan D., Ingham J., Baombe J. BET 1: Lopinavir-ritonavir and COVID-19. Emerg. Med. J. 2020;37:450–451. doi: 10.1136/emermed-2020-210221.2.
    1. Uzunova K., Filipova E., Pavlova V., Vekov T. Insights into antiviral mechanisms of remdesivir, lopinavir/ritonavir and chloroquine/hydroxychloroquine affecting the new SARS-CoV-2. Biomed. Pharm. 2020;131:110668. doi: 10.1016/j.biopha.2020.110668.
    1. Musarrat F., Chouljenko V., Dahal A., Nabi R., Chouljenko T., Jois S.D., Kousoulas K.G. The anti-HIV drug nelfinavir mesylate (Viracept) is a potent inhibitor of cell fusion caused by the SARSCoV-2 spike (S) glycoprotein warranting further evaluation as an antiviral against COVID-19 infections. J. Med. Virol. 2020 doi: 10.1002/jmv.25985.
    1. Rismanbaf A. Potential Treatments for COVID-19; a Narrative Literature Review. Arch. Acad. Emerg. Med. 2020;8:e29.
    1. Li G., De Clercq E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV) Nat. Rev. Drug Discov. 2020;19:149–150. doi: 10.1038/d41573-020-00016-0.
    1. Fintelman-Rodrigues N., Sacramento C.Q., Ribeiro Lima C., Souza da Silva F., Ferreira A.C., Mattos M., de Freitas C.S., Cardoso Soares V., da Silva Gomes Dias S., Temerozo J.R., et al. Atazanavir, alone or in combination with ritonavir, inhibits SARS-CoV-2 replication and pro-inflammatory cytokine production. Antimicrob. Agents Chemother. 2020 doi: 10.1128/AAC.00825-20.
    1. Chen J., Xia L., Liu L., Xu Q., Ling Y., Huang D., Huang W., Song S., Xu S., Shen Y., et al. Antiviral Activity and Safety of Darunavir/Cobicistat for the Treatment of COVID-19. Open Forum Infect. Dis. 2020;7:ofaa241. doi: 10.1093/ofid/ofaa241.
    1. Satarker S., Ahuja T., Banerjee M., Dogra S., Agarwal T. Hydroxychloroquine in COVID-19: Potential Mechanism of Action against SARS-CoV-2. Curr. Pharm. Rep. 2020:1–9. doi: 10.1007/s40495-020-00231-8.
    1. White N.J., Watson J.A., Hoglund R.M., Chan X.H.S., Cheah P.Y., Tarning J. COVID-19 prevention and treatment: A critical analysis of chloroquine and hydroxychloroquine clinical pharmacology. PLoS Med. 2020;17:e1003252. doi: 10.1371/journal.pmed.1003252.
    1. Wang M., Cao R., Zhang L., Yang X., Liu J., Xu M., Shi Z., Hu Z., Zhong W., Xiao G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30:269–271. doi: 10.1038/s41422-020-0282-0.
    1. Pal A., Pawar A., Goswami K., Sharma P., Prasad R. Hydroxychloroquine and Covid-19: A Cellular and Molecular Biology Based Update. Indian J. Clin. Biochem. 2020;35:274–284. doi: 10.1007/s12291-020-00900-x.
    1. Offerhaus J.A., Wilde A.A.M., Remme C.A. Prophylactic (hydroxy)chloroquine in COVID-19: Potential relevance for cardiac arrhythmia risk. Heart Rhythm. 2020;17:1480–1486. doi: 10.1016/j.hrthm.2020.07.001.
    1. Zang Y., Han X., He M., Shi J., Li Y. Hydroxychloroquine use and progression or prognosis of COVID-19: A systematic review and meta-analysis. Naunyn-Schmiedebergs’s Arch. Pharm. 2020 doi: 10.1007/s00210-020-01964-5.
    1. Lei Z.N., Wu Z.X., Dong S., Yang D.H., Zhang L., Ke Z., Zou C., Chen Z.S. Chloroquine and Hydroxychloroquine in the Treatment of Malaria and Repurposing in Treating COVID-19. Pharmthera. 2020:107672. doi: 10.1016/j.pharmthera.2020.107672.
    1. Vankadari N. Arbidol: A potential antiviral drug for the treatment of SARS-CoV-2 by blocking trimerization of the spike glycoprotein. Int. J. Antimicrob. Agents. 2020;56:105998. doi: 10.1016/j.ijantimicag.2020.105998.
    1. Boriskin Y.S., Pecheur E.I., Polyak S.J. Arbidol: A broad-spectrum antiviral that inhibits acute and chronic HCV infection. Virol. J. 2006;3:56. doi: 10.1186/1743-422X-3-56.
    1. Chen W., Yao M., Fang Z., Lv X., Deng M., Wu Z. A study on clinical effect of Arbidol combined with adjuvant therapy on COVID-19. J. Med. Virol. 2020 doi: 10.1002/jmv.26142.
    1. Zhang H., Penninger J.M., Li Y., Zhong N., Slutsky A.S. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020;46:586–590. doi: 10.1007/s00134-020-05985-9.
    1. Tu Y.F., Chien C.S., Yarmishyn A.A., Lin Y.Y., Luo Y.H., Lin Y.T., Lai W.Y., Yang D.M., Chou S.J., Yang Y.P., et al. A Review of SARS-CoV-2 and the Ongoing Clinical Trials. Int. J. Mol. Sci. 2020;21:2657. doi: 10.3390/ijms21072657.
    1. Bray M., Rayner C., Noel F., Jans D., Wagstaff K. Ivermectin and COVID-19: A report in Antiviral Research, widespread interest, an FDA warning, two letters to the editor and the authors’ responses. Antivir. Res. 2020;178:104805. doi: 10.1016/j.antiviral.2020.104805.
    1. Caly L., Druce J.D., Catton M.G., Jans D.A., Wagstaff K.M. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antivir. Res. 2020;178:104787. doi: 10.1016/j.antiviral.2020.104787.
    1. Simsek Yavuz S., Unal S. Antiviral treatment of COVID-19. Turk. J. Med. Sci. 2020;50:611–619. doi: 10.3906/sag-2004-145.
    1. Zhou Q., Chen V., Shannon C.P., Wei X.S., Xiang X., Wang X., Wang Z.H., Tebbutt S.J., Kollmann T.R., Fish E.N. Interferon-alpha2b Treatment for COVID-19. Front. Immunol. 2020;11:1061. doi: 10.3389/fimmu.2020.01061.
    1. Mary A., Henaut L., Schmit J.L., Lanoix J.P., Brazier M. Therapeutic Options for Coronavirus Disease 2019 (COVID-19)–Modulation of Type I Interferon Response as a Promising Strategy? Front. Public Health. 2020;8:185. doi: 10.3389/fpubh.2020.00185.
    1. Lee J.S., Shin E.C. The type I interferon response in COVID-19: Implications for treatment. Nat. Rev. Immunol. 2020 doi: 10.1038/s41577-020-00429-3.
    1. Benucci M., Giannasi G., Cecchini P., Gobbi F.L., Damiani A., Grossi V., Infantino M., Manfredi M. COVID-19 pneumonia treated with Sarilumab: A clinical series of eight patients. J. Med. Virol. 2020 doi: 10.1002/jmv.26062.
    1. Masia M., Fernandez-Gonzalez M., Padilla S., Ortega P., Garcia J.A., Agullo V., Garcia-Abellan J., Telenti G., Guillen L., Gutierrez F. Impact of interleukin-6 blockade with tocilizumab on SARS-CoV-2 viral kinetics and antibody responses in patients with COVID-19: A prospective cohort study. EBioMedicine. 2020;60:102999. doi: 10.1016/j.ebiom.2020.102999.
    1. Pereira M.R., Aversa M.M., Farr M.A., Miko B.A., Aaron J.G., Mohan S., Cohen D.J., Ali Husain S., Ratner L.E., Arcasoy S., et al. Tocilizumab for severe COVID-19 in solid organ transplant recipients: A matched case-control study. Am. J. Transpl. 2020 doi: 10.1111/ajt.16314.
    1. Dastan F., Saffaei A., Haseli S., Marjani M., Moniri A., Abtahian Z., Abedini A., Kiani A., Seifi S., Jammati H., et al. Promising effects of tocilizumab in COVID-19: A non-controlled, prospective clinical trial. Int. Immunopharmacol. 2020;88:106869. doi: 10.1016/j.intimp.2020.106869.
    1. Lipworth B.J., Chan R., Kuo C.R. Tocilizumab for severe COVID-19 pneumonia. Lancet Rheumatol. 2020 doi: 10.1016/S2665-9913(20)30283-6.
    1. Costela-Ruiz V.J., Illescas-Montes R., Puerta-Puerta J.M., Ruiz C., Melguizo-Rodriguez L. SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev. 2020 doi: 10.1016/j.cytogfr.2020.06.001.
    1. Fu B., Xu X., Wei H. Why tocilizumab could be an effective treatment for severe COVID-19? J. Transl. Med. 2020;18:164. doi: 10.1186/s12967-020-02339-3.
    1. Zhang X., Song K., Tong F., Fei M., Guo H., Lu Z., Wang J., Zheng C. First case of COVID-19 in a patient with multiple myeloma successfully treated with tocilizumab. Blood Adv. 2020;4:1307–1310. doi: 10.1182/bloodadvances.2020001907.
    1. Wu D., Yang X.O. TH17 responses in cytokine storm of COVID-19: An emerging target of JAK2 inhibitor Fedratinib. J. Microbiol. Immunol. Infect. 2020;53:368–370. doi: 10.1016/j.jmii.2020.03.005.
    1. Von Essen M.R., Sondergaard H.B., Petersen E.R.S., Sellebjerg F. IL-6, IL-12, and IL-23 STAT-Pathway Genetic Risk and Responsiveness of Lymphocytes in Patients with Multiple Sclerosis. Cells. 2019;8:285. doi: 10.3390/cells8030285.
    1. Bewersdorf J.P., Jaszczur S.M., Afifi S., Zhao J.C., Zeidan A.M. Beyond Ruxolitinib: Fedratinib and Other Emergent Treatment Options for Myelofibrosis. Cancer Manag. Res. 2019;11:10777–10790. doi: 10.2147/CMAR.S212559.
    1. Zhang X., Zhang Y., Qiao W., Zhang J., Qi Z. Baricitinib, a drug with potential effect to prevent SARS-COV-2 from entering target cells and control cytokine storm induced by COVID-19. Int. Immunopharmacol. 2020;86:106749. doi: 10.1016/j.intimp.2020.106749.
    1. Lo Caputo S., Corso G., Clerici M., Santantonio T.A. Baricitinib: A chance to treat COVID-19? J. Med. Virol. 2020 doi: 10.1002/jmv.26033.
    1. Jorgensen S.C.J., Tse C.L.Y., Burry L., Dresser L.D. Baricitinib: A Review of Pharmacology, Safety, and Emerging Clinical Experience in COVID-19. Pharmacotherapy. 2020;40:843–856. doi: 10.1002/phar.2438.
    1. Baladia E., Pizarro A.B., Ortiz-Munoz L., Rada G. Vitamin C for COVID-19: A living systematic review. Medwave. 2020;20:e7978. doi: 10.5867/medwave.2020.06.7978.
    1. Feyaerts A.F., Luyten W. Vitamin C as prophylaxis and adjunctive medical treatment for COVID-19? Nutrition. 2020;79–80:110948. doi: 10.1016/j.nut.2020.110948.
    1. Hemila H., Chalker E. Vitamin C as a Possible Therapy for COVID-19. Infect. Chemother. 2020;52:222–223. doi: 10.3947/ic.2020.52.2.222.
    1. Cheng R.Z. Can early and high intravenous dose of vitamin C prevent and treat coronavirus disease 2019 (COVID-19)? Med. Drug Discov. 2020;5:100028. doi: 10.1016/j.medidd.2020.100028.
    1. Mohan M., Cherian J.J., Sharma A. Exploring links between vitamin D deficiency and COVID-19. PLoS Pathog. 2020;16:e1008874. doi: 10.1371/journal.ppat.1008874.
    1. Teymoori-Rad M., Marashi S.M. Vitamin D and Covid-19: From potential therapeutic effects to unanswered questions. Rev. Med. Virol. 2020 doi: 10.1002/rmv.2159.
    1. Vyas N., Kurian S.J., Bagchi D., Manu M.K., Saravu K., Unnikrishnan M.K., Mukhopadhyay C., Rao M., Miraj S.S. Vitamin D in Prevention and Treatment of COVID-19: Current Perspective and Future Prospects. J. Am. Coll. Nutr. 2020:1–14. doi: 10.1080/07315724.2020.1806758.
    1. Acosta-Elias J., Espinosa-Tanguma R. The Folate Concentration and/or Folic Acid Metabolites in Plasma as Factor for COVID-19 Infection. Front. Pharm. 2020;11:1062. doi: 10.3389/fphar.2020.01062.
    1. Echeverria-Esnal D., Martin-Ontiyuelo C., Navarrete-Rouco M.E., De-Antonio Cusco M., Ferrandez O., Horcajada J.P., Grau S. Azithromycin in the treatment of COVID-19: A review. Expert Rev. Anti-Infect. 2020 doi: 10.1080/14787210.2020.1813024.
    1. Oldenburg C.E., Doan T. Azithromycin for severe COVID-19. Lancet. 2020 doi: 10.1016/S0140-6736(20)31863-8.
    1. Parra-Medina R., Sarmiento-Monroy J.C., Rojas-Villarraga A., Garavito E., Montealegre-Gomez G., Gomez-Lopez A. Colchicine as a possible therapeutic option in COVID-19 infection. Clin. Rheumatol. 2020;39:2485–2486. doi: 10.1007/s10067-020-05247-5.
    1. Schlesinger N., Firestein B.L., Brunetti L. Colchicine in COVID-19: An Old Drug, New Use. Curr. Pharm. Rep. 2020:1–9. doi: 10.1007/s40495-020-00225-6.
    1. Liu J., Zheng X., Huang Y., Shan H., Huang J. Successful use of methylprednisolone for treating severe COVID-19. J. Allergy Clin. Immunol. 2020;146:325–327. doi: 10.1016/j.jaci.2020.05.021.
    1. Wongrakpanich S., Wongrakpanich A., Melhado K., Rangaswami J. A Comprehensive Review of Non-Steroidal Anti-Inflammatory Drug Use in the Elderly. Aging Dis. 2018;9:143–150. doi: 10.14336/AD.2017.0306.
    1. Ekins S., Lane T.R., Madrid P.B. Tilorone: A Broad-Spectrum Antiviral Invented in the USA and Commercialized in Russia and beyond. Pharm. Res. 2020;37:71. doi: 10.1007/s11095-020-02799-8.
    1. Lane T.R., Massey C., Comer J.E., Anantpadma M., Freundlich J.S., Davey R.A., Madrid P.B., Ekins S. Repurposing the antimalarial pyronaridine tetraphosphate to protect against Ebola virus infection. PLoS Negl. Trop. Dis. 2019;13:e0007890. doi: 10.1371/journal.pntd.0007890.
    1. Nitulescu G.M., Paunescu H., Moschos S.A., Petrakis D., Nitulescu G., Ion G.N.D., Spandidos D.A., Nikolouzakis T.K., Drakoulis N., Tsatsakis A. Comprehensive analysis of drugs to treat SARSCoV2 infection: Mechanistic insights into current COVID19 therapies (Review) Int. J. Mol. Med. 2020;46:467–488. doi: 10.3892/ijmm.2020.4608.
    1. Seifirad S. Pirfenidone: A novel hypothetical treatment for COVID-19. Med. Hypotheses. 2020;144:110005. doi: 10.1016/j.mehy.2020.110005.
    1. Lin M.H., Moses D.C., Hsieh C.H., Cheng S.C., Chen Y.H., Sun C.Y., Chou C.Y. Disulfiram can inhibit MERS and SARS coronavirus papain-like proteases via different modes. Antivir. Res. 2018;150:155–163. doi: 10.1016/j.antiviral.2017.12.015.
    1. Sanchez-Pernaute O., Romero-Bueno F.I., Selva-O’Callaghan A. Why Choose Cyclosporin A as First-line Therapy in COVID-19 Pneumonia. Reum. Clin. 2020 doi: 10.1016/j.reuma.2020.03.001.
    1. Rubin R. Testing an Old Therapy against a New Disease: Convalescent Plasma for COVID-19. JAMA. 2020;323:2114–2117. doi: 10.1001/jama.2020.7456.
    1. Xi Y. Convalescent plasma therapy for COVID-19: A tried-and-true old strategy? Signal. Transduct. Target. Ther. 2020;5:203. doi: 10.1038/s41392-020-00310-8.
    1. Sullivan H.C., Roback J.D. Convalescent Plasma: Therapeutic Hope or Hopeless Strategy in the SARS-CoV-2 Pandemic. Transfus. Med. Rev. 2020 doi: 10.1016/j.tmrv.2020.04.001.
    1. Alghamdi A.N., Abdel-Moneim A.S. Convalescent Plasma: A Potential Life-Saving Therapy for Coronavirus Disease 2019 (COVID-19) Front. Public Health. 2020;8:437. doi: 10.3389/fpubh.2020.00437.
    1. Bakhtawar N., Usman M., Khan M.M.U. Convalescent Plasma Therapy and Its Effects on COVID-19 Patient Outcomes: A Systematic Review of Current Literature. Cureus. 2020;12:e9535. doi: 10.7759/cureus.9535.
    1. Yigenoglu T.N., Hacibekiroglu T., Berber I., Dal M.S., Basturk A., Namdaroglu S., Korkmaz S., Ulas T., Dal T., Erkurt M.A., et al. Convalescent plasma therapy in patients with COVID-19. J. Clin. Apher. 2020;35:367–373. doi: 10.1002/jca.21806.
    1. Van den Berg K., Vermeulen M., Glatt T.N., Wasserman S., Barrett C.L., Peter J., Brittain D., Louw V.J. COVID-19: Convalescent plasma as a potential therapy. S. Afr. Med. J. 2020;110:562–563.
    1. Duan K., Liu B., Li C., Zhang H., Yu T., Qu J., Zhou M., Chen L., Meng S., Hu Y., et al. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc. Natl. Acad. Sci. USA. 2020;117:9490–9496. doi: 10.1073/pnas.2004168117.
    1. Bennet B.M., Wolf J., Laureano R., Sellers R.S. Review of Current Vaccine Development Strategies to Prevent Coronavirus Disease 2019 (COVID-19) Toxicol. Pathol. 2020 doi: 10.1177/0192623320959090.
    1. Dutta A.K. Vaccine against Covid-19 Disease–Present Status of Development. Indian J. Pediatr. 2020;87:810–816. doi: 10.1007/s12098-020-03475-w.
    1. Ita K. Coronavirus Disease (COVID-19): Current Status and Prospects for Drug and Vaccine Development. Arch. Med. Res. 2020 doi: 10.1016/j.arcmed.2020.09.010.
    1. Kaur S.P., Gupta V. COVID-19 Vaccine: A comprehensive status report. Virus Res. 2020;288:198114. doi: 10.1016/j.virusres.2020.198114.
    1. Zhang C., Maruggi G., Shan H., Li J. Advances in mRNA Vaccines for Infectious Diseases. Front. Immunol. 2019;10:594. doi: 10.3389/fimmu.2019.00594.
    1. Xu S., Yang K., Li R., Zhang L. mRNA Vaccine Era-Mechanisms, Drug Platform and Clinical Prospection. Int. J. Mol. Sci. 2020;21:6582. doi: 10.3390/ijms21186582.
    1. Wang F., Kream R.M., Stefano G.B. An Evidence Based Perspective on mRNA-SARS-CoV-2 Vaccine Development. Med. Sci. Monit. 2020;26:e924700. doi: 10.12659/MSM.924700.
    1. Thanh Le T., Andreadakis Z., Kumar A., Gomez Roman R., Tollefsen S., Saville M., Mayhew S. The COVID-19 vaccine development landscape. Nat. Rev. Drug Discov. 2020;19:305–306. doi: 10.1038/d41573-020-00073-5.
    1. Hsieh C.L., Goldsmith J.A., Schaub J.M., DiVenere A.M., Kuo H.C., Javanmardi K., Le K.C., Wrapp D., Lee A.G., Liu Y., et al. Structure-based design of prefusion-stabilized SARS-CoV-2 spikes. Science. 2020;369:1501–1505. doi: 10.1126/science.abd0826.
    1. Corbett K.S., Flynn B., Foulds K.E., Francica J.R., Boyoglu-Barnum S., Werner A.P., Flach B., O’Connell S., Bock K.W., Minai M., et al. Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates. N. Engl. J. Med. 2020 doi: 10.1056/NEJMoa2024671.
    1. Walsh E.E., Frenck R.W., Jr., Falsey A.R., Kitchin N., Absalon J., Gurtman A., Lockhart S., Neuzil K., Mulligan M.J., Bailey R., et al. Safety and Immunogenicity of Two RNA-Based Covid-19 Vaccine Candidates. N. Engl. J. Med. 2020;383:2439–2450. doi: 10.1056/NEJMoa2027906.
    1. Bhagavathula A.S., Aldhaleei W.A., Rovetta A., Rahmani J. Vaccines and Drug Therapeutics to Lock Down Novel Coronavirus Disease 2019 (COVID-19): A Systematic Review of Clinical Trials. Cureus. 2020;12:e8342. doi: 10.7759/cureus.8342.
    1. Le T.T., Cramer J.P., Chen R., Mayhew S. Evolution of the COVID-19 vaccine development landscape. Nat. Rev. Drug Discov. 2020 doi: 10.1038/d41573-020-00151-8.
    1. Theobald N. Emerging vaccine delivery systems for COVID-19: Functionalised silica nanoparticles offer a potentially safe and effective alternative delivery system for DNA/RNA vaccines and may be useful in the hunt for a COVID-19 vaccine. Drug Discov. Today. 2020 doi: 10.1016/j.drudis.2020.06.020.
    1. Smith T.R.F., Patel A., Ramos S., Elwood D., Zhu X., Yan J., Gary E.N., Walker S.N., Schultheis K., Purwar M., et al. Immunogenicity of a DNA vaccine candidate for COVID-19. Nat. Commun. 2020;11:2601. doi: 10.1038/s41467-020-16505-0.
    1. Chugh H., Awasthi A., Agarwal Y., Gaur R.K., Dhawan G., Chandra R. A comprehensive review on potential therapeutics interventions for COVID-19. Eur. J. Pharm. 2020:173741. doi: 10.1016/j.ejphar.2020.173741.
    1. Dong Y., Dai T., Wei Y., Zhang L., Zheng M., Zhou F. A systematic review of SARS-CoV-2 vaccine candidates. Signal. Transduct. Target. Ther. 2020;5:237. doi: 10.1038/s41392-020-00352-y.
    1. Patel A., Walters J., Reuschel E.L., Schultheis K., Parzych E., Gary E.N., Maricic I., Purwar M., Eblimit Z., Walker S.N., et al. Intradermal-delivered DNA vaccine provides anamnestic protection in a rhesus macaque SARS-CoV-2 challenge model. BioRxiv. 2020 doi: 10.1101/2020.07.28.225649.
    1. Kochhar S., Salmon D.A. Planning for COVID-19 vaccines safety surveillance. Vaccine. 2020;38:6194–6198. doi: 10.1016/j.vaccine.2020.07.013.
    1. Shih H.I., Wu C.J., Tu Y.F., Chi C.Y. Fighting COVID-19: A quick review of diagnoses, therapies, and vaccines. Biomed. J. 2020 doi: 10.1016/j.bj.2020.05.021.
    1. van Riel D., de Wit E. Next-generation vaccine platforms for COVID-19. Nat. Mater. 2020;19:810–812. doi: 10.1038/s41563-020-0746-0.
    1. Chibber P., Haq S.A., Ahmed I., Andrabi N.I., Singh G. Advances in the possible treatment of COVID-19: A review. Eur. J. Pharm. 2020;883:173372. doi: 10.1016/j.ejphar.2020.173372.
    1. Funk C.D., Laferriere C., Ardakani A. A Snapshot of the Global Race for Vaccines Targeting SARS-CoV-2 and the COVID-19 Pandemic. Front. Pharm. 2020;11:937. doi: 10.3389/fphar.2020.00937.
    1. Folegatti P.M., Ewer K.J., Aley P.K., Angus B., Becker S., Belij-Rammerstorfer S., Bellamy D., Bibi S., Bittaye M., Clutterbuck E.A., et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: A preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet. 2020;396:467–478. doi: 10.1016/S0140-6736(20)31604-4.
    1. van Doremalen N., Lambe T., Spencer A., Belij-Rammerstorfer S., Purushotham J.N., Port J.R., Avanzato V.A., Bushmaker T., Flaxman A., Ulaszewska M., et al. ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2 pneumonia in rhesus macaques. Nature. 2020 doi: 10.1038/s41586-020-2608-y.
    1. Logunov D.Y., Dolzhikova I.V., Zubkova O.V., Tukhvatullin A.I., Shcheblyakov D.V., Dzharullaeva A.S., Grousova D.M., Erokhova A.S., Kovyrshina A.V., Botikov A.G., et al. Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: Two open, non-randomised phase 1/2 studies from Russia. Lancet. 2020 doi: 10.1016/S0140-6736(20)31866-3.
    1. Zhu F.C., Li Y.H., Guan X.H., Hou L.H., Wang W.J., Li J.X., Wu S.P., Wang B.S., Wang Z., Wang L., et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: A dose-escalation, open-label, non-randomised, first-in-human trial. Lancet. 2020;395:1845–1854. doi: 10.1016/S0140-6736(20)31208-3.
    1. Florindo H.F., Kleiner R., Vaskovich-Koubi D., Acurcio R.C., Carreira B., Yeini E., Tiram G., Liubomirski Y., Satchi-Fainaro R. Immune-mediated approaches against COVID-19. Nat. Nanotechnol. 2020;15:630–645. doi: 10.1038/s41565-020-0732-3.
    1. Poland G.A., Ovsyannikova I.G., Kennedy R.B. SARS-CoV-2 immunity: Review and applications to phase 3 vaccine candidates. Lancet. 2020;396:1595–1606. doi: 10.1016/S0140-6736(20)32137-1.
    1. Francis M.J. Recent Advances in Vaccine Technologies. Vet. Clin. N. Am. Small Anim. Pract. 2018;48:231–241. doi: 10.1016/j.cvsm.2017.10.002.
    1. Sahin U., Muik A., Derhovanessian E., Vogler I., Kranz L.M., Vormehr M., Baum A., Pascal K., Quandt J., Maurus D., et al. COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses. Nature. 2020;586:594–599. doi: 10.1038/s41586-020-2814-7.
    1. Mulligan M.J., Lyke K.E., Kitchin N., Absalon J., Gurtman A., Lockhart S., Neuzil K., Raabe V., Bailey R., Swanson K.A., et al. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature. 2020;586:589–593. doi: 10.1038/s41586-020-2639-4.
    1. Wang H., Zhang Y., Huang B., Deng W., Quan Y., Wang W., Xu W., Zhao Y., Li N., Zhang J., et al. Development of an Inactivated Vaccine Candidate, BBIBP-CorV, with Potent Protection against SARS-CoV-2. Cell. 2020;182:713–721.e719. doi: 10.1016/j.cell.2020.06.008.
    1. Xia S., Zhang Y., Wang Y., Wang H., Yang Y., Gao G.F., Tan W., Wu G., Xu M., Lou Z., et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: A randomised, double-blind, placebo-controlled, phase 1/2 trial. Lancet Infect. Dis. 2020 doi: 10.1016/S1473-3099(20)30831-8.
    1. Gupta P.K. New disease old vaccine: Is recombinant BCG vaccine an answer for COVID-19? Cell Immunol. 2020;356:104187. doi: 10.1016/j.cellimm.2020.104187.
    1. Toyoshima Y., Nemoto K., Matsumoto S., Nakamura Y., Kiyotani K. SARS-CoV-2 genomic variations associated with mortality rate of COVID-19. J. Hum. Genet. 2020 doi: 10.1038/s10038-020-0808-9.

Source: PubMed

3
Abonneren