Effects of a new flavonoid and Myo-inositol supplement on some biomarkers of cardiovascular risk in postmenopausal women: a randomized trial

Rosario D'Anna, Angelo Santamaria, Maria Letizia Cannata, Maria Lieta Interdonato, Grazia Maria Giorgianni, Roberta Granese, Francesco Corrado, Alessandra Bitto, Rosario D'Anna, Angelo Santamaria, Maria Letizia Cannata, Maria Lieta Interdonato, Grazia Maria Giorgianni, Roberta Granese, Francesco Corrado, Alessandra Bitto

Abstract

Background and Aim. Cardiovascular risk is increased in women with menopause and metabolic syndrome. Aim of this study was to test the effect of a new supplement formula, combining cocoa polyphenols, myo-inositol, and soy isoflavones, on some biomarkers of cardiovascular risk in postmenopausal women with metabolic syndrome. Methods and Results. A total of 60 women were enrolled and randomly assigned (n = 30 per group) to receive the supplement (NRT: 30 mg of cocoa polyphenols, 80 mg of soy isoflavones, and 2 gr of myo-inositol), or placebo for 6 months. The study protocol included three visits (baseline, 6, and 12 months) for the evaluation of glucose, triglycerides, and HDL-cholesterol (HDL-C), adiponectin, visfatin, resistin, and bone-specific alkaline phosphatase (bone-ALP). At 6 months, a significant difference between NRT and placebo was found for glucose (96 ± 7 versus 108 ± 10 mg/dL), triglycerides (145 ± 14 versus 165 ± 18 mg/dL), visfatin (2.8 ± 0.8 versus 3.7 ± 1.1 ng/mL), resistin (27 ± 7 versus 32 ± 8 µg/L), and b-ALP (19 ± 7 versus 15 ± 5 µg/mL). No difference in HDL-C concentrations nor in adiponectin levels between groups was reported at 6 months. Conclusions. The supplement used in this study improves most of the biomarkers linked to metabolic syndrome. This Trial is registered with NCT01400724.

Figures

Figure 1
Figure 1
Study flow chart.
Figure 2
Figure 2
Glucose, triglycerides and HDL-cholesterol blood levels through the study. *P < 0.05 versus basal.
Figure 3
Figure 3
Adiponectin, visfatin, resistin, and bone-ALP blood levels through the study. *P < 0.05 versus basal; §P < 0.05 versus placebo.

References

    1. World Health Organization. The Global Burden of Disease: 2004 Update. Geneva, Switzerland: World Health Organization; 2008.
    1. Isomaa B, Almgren P, Tuomi T, et al. Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care. 2001;24(4):683–689.
    1. O'Toole TE, Conklin DJ, Bhatnagar A. Environmental risk factors for heart disease. Reviews on Environmental Health. 2008;23(3):167–202.
    1. Dauchet L, Amouyel P, Dallongeville J. Fruit and vegetable consumption and risk of stroke: a meta-analysis of cohort studies. Neurology. 2005;65(8):1193–1197.
    1. Jia L, Liu X, Bai YY, et al. Short-term effect of cocoa product consumption on lipid profile: a meta-analysis of randomized controlled trials. The American Journal of Clinical Nutrition. 2010;92(1):218–225.
    1. Desch S, Schmidt J, Kobler D, et al. Effect of cocoa products on blood pressure: systematic review and meta-analysis. The American Journal of Hypertension. 2010;23(1):97–103.
    1. Whelton PK, He J, Appel LJ, et al. Primary prevention of hypertension: clinical and public health advisory from the National High Blood Pressure Education Program. Journal of the American Medical Association. 2002;288(15):1882–1888.
    1. Hermann F, Spieker LE, Ruschitzka F, et al. Dark chocolate improves endothelial and platelet function. Heart. 2006;92(1):119–120.
    1. Atteritano M, Marini H, Minutoli L, et al. Effects of the phytoestrogen genistein on some predictors of cardiovascular risk in osteopenic, postmenopausal women: a two-year randomized, double-blind, placebo-controlled study. Journal of Clinical Endocrinology and Metabolism. 2007;92(8):3068–3075.
    1. Giordano D, Corrado F, Santamaria A, et al. Effects of myo-inositol supplementation in postmenopausal women with metabolic syndrome: a perspective, randomized, placebo-controlled study. Menopause. 2011;18(1):102–104.
    1. Santamaria A, Giordano D, Corrado F, et al. One-year effects of myo-inositol supplementation in postmenopausal women with metabolic syndrome. Climacteric. 2012;15(5):490–495.
    1. Saltiel AR. Second messengers of insulin action. Diabetes Care. 1990;13(3):244–256.
    1. Marini H, Minutoli L, Polito F, et al. Effects of the phytoestrogen genistein on bone metabolism in osteopenic postmenopausal women: a randomized trial. Annals of Internal Medicine. 2007;146(12):839–847.
    1. Squadrito F, Marini H, Bitto A, et al. Genistein in the metabolic syndrome: results of a randomized clinical trial. Journal of Clinical Endocrinology and Metabolism. 2013;98(8):3366–3374.
    1. Grundy SM, Cleeman JI, Daniels SR, et al. Diagnosis and management of the metabolic syndrome: an American heart association/national heart, lung, and blood institute scientific statement. Circulation. 2005;112(17):2735–2752.
    1. Sarriá B, Martínez-López S, Sierra-Cinos JL, García-Diz L, Mateos R, Bravo L. Regular consumption of a cocoa product improves the cardiometabolic profile in healthy and moderately hypercholesterolaemic adults. The British Journal of Nutrition. 2014;111(1):122–134.
    1. Nogueira LDP, Knibel MP, Torres MRSG, Nogueira Neto JF, Sanjuliani AF. Consumption of high-polyphenol dark chocolate improves endothelial function in individuals with stage 1 hypertension and excess body weight. International Journal of Hypertension. 2012;2012:9 pages.147321
    1. Yamauchi T, Kamon J, Waki H, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nature Medicine. 2001;7(8):941–946.
    1. Catalano PM, Hoegh M, Minium J, et al. Adiponectin in human pregnancy: implications for regulation of glucose and lipid metabolism. Diabetologia. 2006;49(7):1677–1685.
    1. Henneman P, Janssens ACJW, Zillikens MC, et al. Menopause impacts the relation of plasma adiponectin levels with the metabolic syndrome. Journal of Internal Medicine. 2010;267(4):402–409.
    1. Grassi D, Lippi C, Necozione S, Desideri G, Ferri C. Short-term administration of dark chocolate is followed by a significant increase in insulin sensitivity and a decrease in blood pressure in healthy persons. The American Journal of Clinical Nutrition. 2005;81(3):611–614.
    1. Karim M, McCormick K, Tissa Kappagoda C. Effects of cocoa extracts on endothelium-dependent relaxation. Journal of Nutrition. 2000;130(8S, supplement):2105S–2108S.
    1. McTernan CL, McTernan PG, Harte AL, Levick PL, Barnett AH, Kumar S. Resistin, central obesity, and type 2 diabetes. The Lancet. 2002;359(9300):46–47.
    1. Steppan CM, Bailey ST, Bhat S, et al. The hormone resistin links obesity to diabetes. Nature. 2001;409(6818):307–312.
    1. Malo E, Ukkola O, Jokela M, et al. Resistin is an indicator of the metabolic syndrome according to five different definitions in the Finnish health 2000 survey. Metabolic Syndrome and Related Disorders. 2011;9(3):203–210.
    1. Chang Y, Chang D, Lin K, Shin S, Lee Y. Visfatin in overweight/obesity, type 2 diabetes mellitus, insulin resistance, metabolic syndrome and cardiovascular diseases: a meta-analysis and systemic review. Diabetes/Metabolism Research and Reviews. 2011;27(6):515–527.
    1. Kim J, Kim S, Im J, Lee D. The relationship between visfatin and metabolic syndrome in postmenopausal women. Maturitas. 2010;67(1):67–71.
    1. Ross PD, Knowlton W. Rapid bone loss is associated with increased levels of biochemical markers. Journal of Bone and Mineral Research. 1998;13(2):297–302.
    1. Marini H, Bitto A, Altavilla D, et al. Breast safety and efficacy of genistein aglycone for postmenopausal bone loss: a follow-up study. Journal of Clinical Endocrinology and Metabolism. 2008;93(12):4787–4796.
    1. Dai Z, Chung SK, Miao D, Lau KS, Chan AWH, Kung AWC. Sodium/myo-inositol cotransporter 1 and myo-inositol are essential for osteogenesis and bone formation. Journal of Bone and Mineral Research. 2011;26(3):582–590.

Source: PubMed

3
Abonneren