Trans-retinal cellular imaging with multimodal adaptive optics

Zhuolin Liu, Johnny Tam, Osamah Saeedi, Daniel X Hammer, Zhuolin Liu, Johnny Tam, Osamah Saeedi, Daniel X Hammer

Abstract

Adaptive optics (AO), when coupled to different imaging modalities, has enabled resolution of various cell types across the entire retinal depth in the living human eye. Extraction of information from retinal cells is optimal when their optical properties, structure, and physiology are matched to the unique capabilities of each imaging modality. Despite the earlier success of multimodal AO (mAO) approaches, the full capabilities of the individual imaging modalities were often diminished rather than enhanced when integrated into multimodal platforms. Furthermore, many mAO designs added unnecessary complexity, making clinical translation difficult. In this study, we present a novel mAO system that combines two complementary approaches, scanning laser ophthalmoscopy (SLO) and optical coherence tomography (OCT), in one instrument using a simplified optical design, flexible alternation of scanning modes, and independent focus control. The mAO system imaging performance was demonstrated by visualization of cells in their mosaic arrangement across the full depth of the retina in three human subjects, including microglia, nerve fiber bundles, retinal ganglion cells and axons, and capillaries in the inner retina and foveal cones, peripheral rods, and retinal pigment epithelial cells in the outer retina. Multimodal AO is a powerful tool to capture the most complete picture of retinal health.

Keywords: (010.1080) Active or adaptive optics; (110.4500) Optical coherence tomography; (170.3880) Medical and biological imaging; (170.4460) Ophthalmic optics and devices.

Conflict of interest statement

The authors declare that there are no conflicts of interest related to this article.

Figures

Fig. 1
Fig. 1
Schematic of the FDA mAO retinal imaging system (flattened for clarity). AL: adaptive lens, APD: avalanche photodiode, D1-3: dichroic beamsplitters, DG: diffraction grating, DM: deformable mirror, Gh, Gv: galvanometer scanners, I: iris, P: pinhole, PBS: pellicle beamsplitter, RSh: resonant scanner, SHWS: Shack-Hartmann Wavefront Sensor, SM1-8: spherical mirrors, TS: translation stage.
Fig. 2
Fig. 2
Slow scan mode for simultaneous SLO/OCT imaging. The SLO raster and OCT B-Scan are acquired simultaneously with Gv scanner.
Fig. 3
Fig. 3
Predicted system optical performance. PSF spot diagrams at the retina (left) with flattened DM. The solid circles denote diffraction-limited blur size. Beam displacement at DM and eye pupil planes (right) for ± 1.8° vertical (V) and horizontal (H) scans. Dashed line represents lenslet pitch at DM and eye pupil planes.
Fig. 4
Fig. 4
Cellular structures of the center macula using AOSLO. (A) Red square in subject S2 denotes location imaged with AOSLO. (B) Montage of the macula vessels by 3x3 overlapping 2° FOV AOSLO videos reveals both the big blood vessels and smallest capillaries. (*) denotes the center of FAZ. Scale bar in (B) also applies to (C). The photoreceptor mosaic in (C) was generated by shifting the system focus to the photoreceptor layer, and 1 airy disc pinhole was used for confocal imaging. Cones at foveal center labeled as yellow box in (C) is showed in zoomed in view in (D). Simultaneous collected AOOCT single B-Scan shows distinct retinal layers in (E). The OCT image is displayed in logarithmic scale. Keys: ILM: inner limiting membrane; NFL: nerve fiber layer; GCL: ganglion cell layer; IPL: inner plexiform layer; INL: inner nuclear layer; OPL: outer plexiform layer; ONL: outer nuclear layer; ELM: external limiting membrane; IS/OS: inner segment/ outer segment junction; COST: cone outer segment tip; and RPE: retinal pigment epithelium.
Fig. 5
Fig. 5
Foveal cone mosaics from three subjects imaged with AOSLO. Cones are resolved across the fovea in all three subjects (top row). Cones are identified with semi-automatic software and the resultant cone locations (dots) and Voronoi maps calculated (second row).
Fig. 6
Fig. 6
Photoreceptor mosaics in peripheral retina using AOSLO. (A) Red square at 7.5°-10° temporal to the fovea in subject S2 denotes location imaged with AOSLO. (B) Montage of the cone and rods by 4x4 overlapping 0.75° FOV AOSLO videos. (C) Simultaneous collected AOOCT B-Scan at the same patch of retina indicated as green dashed line in (B) shows paired hyper-reflections that originate from the segments of the photoreceptors in the outer retina. Photoreceptor mosaics at single location (12° temporal retina) (D) in S1, and (E) in S3. Scale bar in (D) also applies for (E). AOSLO images are displayed with logarithmic intensity, and the AOOCT B-scan is displayed with linear scale.
Fig. 7
Fig. 7
Simultaneous imaging with independent focus control of the FDA mAO system (Visualization 2and Visualization 3) on subject S2 at 4° inferior and temporal to the fovea shows cellular details across the thickness of retina. (A) Simultaneous AOSLO and AOOCT focus controlled by DM, and (B) independent AOSLO focus control by AL. White arrows indicate the estimated focus plane in depth.
Fig. 8
Fig. 8
AOOCT cross-sectional and en face images extracted from the photoreceptor-RPE complex in S1 at 7° temporal retina. Total 40 volumes are averaged. (A) Averaged B-scan and corresponding A-scan profile reveal distinct reflectance bands corresponding to IS/OS, COST, ROST, and RPE layers. En face projection shows mosaic of (B) cones, and (C) RPEs. The cell locations were identified in (D) where yellow dots denote cone centers and cyan denotes the RPE Voronio map. Nonlinear scanner artifact is not corrected in (B)-(D). (E) 2-D power spectra of (B) and (C) are superimposed and color coded (cones: yellow; RPE cells: cyan).
Fig. 9
Fig. 9
Inner retina cells and structures imaged with averaged of 154 AOOCT volumes (Visualization 4). (A) Three-dimensional perspective of a registered and averaged AOOCT volume at 12° temporal to the fovea in subject S1, where green dashed line denotes corresponding cross-section shown in (B). Red arrow indicates same GCL soma in B and E. Scale bar in C also applies to D–E. (C) Star-like microglial cells sparsely cover the surface of the ILM. (D) A complex web of nerve fiber bundles of varying size project across the NFL. Some have a diameter as large as 30 μm (blue arrow). Others are as small as 3 μm (green arrow), which matches the known caliber of a single large GC axon. GCL somas appear between the overlying bundles (black arrow). (E) A mosaic of GCL somas of varying size tile the layer. Red arrow points to a large soma, thought to be a parasol RGC. Additional projection views of capillary networks are showed in (F and G) at IPL-INL and INL-OPL layer respectively. (H) Composition of (C, E-G) with segmented features of interest shows the spatial arrangement of retinal structure at different depths.

References

    1. Liang J., Williams D. R., Miller D. T., “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997).10.1364/JOSAA.14.002884
    1. Williams D. R., “Imaging single cells in the living retina,” Vision Res. 51(13), 1379–1396 (2011).10.1016/j.visres.2011.05.002
    1. Jonnal R. S., Kocaoglu O. P., Zawadzki R. J., Liu Z., Miller D. T., Werner J. S., “A review of adaptive optics optical coherence tomography: Technical advances, scientific applications, and the future,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT51–OCT68 (2016).10.1167/iovs.16-19103
    1. Pircher M., Zawadzki R. J., “Review of adaptive optics OCT (AO-OCT): Principles and applications for retinal imaging [Invited],” Biomed. Opt. Express 8(5), 2536–2562 (2017).10.1364/BOE.8.002536
    1. Morgan J. I., Dubra A., Wolfe R., Merigan W. H., Williams D. R., “In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic,” Invest. Ophthalmol. Vis. Sci. 50(3), 1350–1359 (2009).10.1167/iovs.08-2618
    1. Scoles D., Sulai Y. N., Dubra A., “In vivo dark-field imaging of the retinal pigment epithelium cell mosaic,” Biomed. Opt. Express 4(9), 1710–1723 (2013).10.1364/BOE.4.001710
    1. Liu Z., Kocaoglu O. P., Miller D. T., “3d imaging of retinal pigment epithelial cells in the living human retina,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT533 (2016).10.1167/iovs.16-19106
    1. Tam J., Liu J., Dubra A., Fariss R., “In vivo imaging of the human retinal pigment epithelial mosaic using adaptive optics enhanced indocyanine green ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 57(10), 4376–4384 (2016).10.1167/iovs.16-19503
    1. Liu T., Jung H., Liu J., Droettboom M., Tam J., “Noninvasive near infrared autofluorescence imaging of retinal pigment epithelial cells in the human retina using adaptive optics,” Biomed. Opt. Express 8(10), 4348–4360 (2017).10.1364/BOE.8.004348
    1. Dubra A., Sulai Y., Norris J. L., Cooper R. F., Dubis A. M., Williams D. R., Carroll J., “Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express 2(7), 1864–1876 (2011).10.1364/BOE.2.001864
    1. Merino D., Duncan J. L., Tiruveedhula P., Roorda A., “Observation of cone and rod photoreceptors in normal subjects and patients using a new generation adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express 2(8), 2189–2201 (2011).10.1364/BOE.2.002189
    1. Wells-Gray E. M., Choi S. S., Bries A., Doble N., “Variation in rod and cone density from the fovea to the mid-periphery in healthy human retinas using adaptive optics scanning laser ophthalmoscopy,” Eye (Lond.) 30(8), 1135–1143 (2016).10.1038/eye.2016.107
    1. Felberer F., Kroisamer J. S., Baumann B., Zotter S., Schmidt-Erfurth U., Hitzenberger C. K., Pircher M., “Adaptive optics SLO/OCT for 3D imaging of human photoreceptors in vivo,” Biomed. Opt. Express 5(2), 439–456 (2014).10.1364/BOE.5.000439
    1. Scoles D., Sulai Y. N., Langlo C. S., Fishman G. A., Curcio C. A., Carroll J., Dubra A., “In vivo imaging of human cone photoreceptor inner segments,” Invest. Ophthalmol. Vis. Sci. 55(7), 4244–4251 (2014).10.1167/iovs.14-14542
    1. Scoles D., Higgins B. P., Cooper R. F., Dubis A. M., Summerfelt P., Weinberg D. V., Kim J. E., Stepien K. E., Carroll J., Dubra A., “Microscopic inner retinal hyper-reflective phenotypes in retinal and neurologic disease,” Invest. Ophthalmol. Vis. Sci. 55(7), 4015–4029 (2014).10.1167/iovs.14-14668
    1. Kurokawa K., Liu Z., Miller D. T., “Adaptive optics optical coherence tomography angiography for morphometric analysis of choriocapillaris [Invited],” Biomed. Opt. Express 8(3), 1803–1822 (2017).10.1364/BOE.8.001803
    1. Salas M., Augustin M., Ginner L., Kumar A., Baumann B., Leitgeb R., Drexler W., Prager S., Hafner J., Schmidt-Erfurth U., Pircher M., “Visualization of micro-capillaries using optical coherence tomography angiography with and without adaptive optics,” Biomed. Opt. Express 8(1), 207–222 (2017).10.1364/BOE.8.000207
    1. Miller D. T., Kocaoglu O. P., Wang Q., Lee S., “Adaptive optics and the eye (super resolution OCT),” Eye (Lond.) 25(3), 321–330 (2011).10.1038/eye.2011.1
    1. Tam J., Martin J. A., Roorda A., “Noninvasive visualization and analysis of parafoveal capillaries in humans,” Invest. Ophthalmol. Vis. Sci. 51(3), 1691–1698 (2010).10.1167/iovs.09-4483
    1. Chui T. Y., Vannasdale D. A., Burns S. A., “The use of forward scatter to improve retinal vascular imaging with an adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express 3(10), 2537–2549 (2012).10.1364/BOE.3.002537
    1. Rossi E. A., Granger C. E., Sharma R., Yang Q., Saito K., Schwarz C., Walters S., Nozato K., Zhang J., Kawakami T., Fischer W., Latchney L. R., Hunter J. J., Chung M. M., Williams D. R., “Imaging individual neurons in the retinal ganglion cell layer of the living eye,” Proc. Natl. Acad. Sci. U.S.A. 114(3), 586–591 (2017).10.1073/pnas.1613445114
    1. Liu Z., Kurokawa K., Zhang F., Lee J. J., Miller D. T., “Imaging and quantifying ganglion cells and other transparent neurons in the living human retina,” Proc. Natl. Acad. Sci. U.S.A. 114(48), 12803–12808 (2017).10.1073/pnas.1711734114
    1. Kocaoglu O. P., Cense B., Jonnal R. S., Wang Q., Lee S., Gao W., Miller D. T., “Imaging retinal nerve fiber bundles using optical coherence tomography with adaptive optics,” Vision Res. 51(16), 1835–1844 (2011).10.1016/j.visres.2011.06.013
    1. Huang G., Gast T. J., Burns S. A., “In vivo adaptive optics imaging of the temporal raphe and its relationship to the optic disc and fovea in the human retina,” Invest. Ophthalmol. Vis. Sci. 55(9), 5952–5961 (2014).10.1167/iovs.14-14893
    1. Jian Y., Lee S., Ju M. J., Heisler M., Ding W., Zawadzki R. J., Bonora S., Sarunic M. V., “Lens-based wavefront sensorless adaptive optics swept source oct,” Sci. Rep. 6(1), 27620 (2016).10.1038/srep27620
    1. Hammer D. X., Ferguson R. D., Bigelow C. E., Iftimia N. V., Ustun T. E., Burns S. A., “Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging,” Opt. Express 14(8), 3354–3367 (2006).10.1364/OE.14.003354
    1. Burns S. A., Tumbar R., Elsner A. E., Ferguson D., Hammer D. X., “Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope,” J. Opt. Soc. Am. A 24(5), 1313–1326 (2007).10.1364/JOSAA.24.001313
    1. Zhang J., Yang Q., Saito K., Nozato K., Williams D. R., Rossi E. A., “An adaptive optics imaging system designed for clinical use,” Biomed. Opt. Express 6(6), 2120–2137 (2015).10.1364/BOE.6.002120
    1. Sun L. W., Johnson R. D., Williams V., Summerfelt P., Dubra A., Weinberg D. V., Stepien K. E., Fishman G. A., Carroll J., “Multimodal imaging of photoreceptor structure in choroideremia,” PLoS One 11(12), e0167526 (2016).10.1371/journal.pone.0167526
    1. Zawadzki R. J., Jones S. M., Pilli S., Balderas-Mata S., Kim D. Y., Olivier S. S., Werner J. S., “Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging,” Biomed. Opt. Express 2(6), 1674–1686 (2011).10.1364/BOE.2.001674
    1. Hammer D. X., Ferguson R. D., Mujat M., Patel A., Plumb E., Iftimia N., Chui T. Y., Akula J. D., Fulton A. B., “Multimodal adaptive optics retinal imager: Design and performance,” J. Opt. Soc. Am. A 29(12), 2598–2607 (2012).10.1364/JOSAA.29.002598
    1. Meadway A., Girkin C. A., Zhang Y., “A dual-modal retinal imaging system with adaptive optics,” Opt. Express 21(24), 29792–29807 (2013).10.1364/OE.21.029792
    1. Mujat M., Patel A., Iftimia N., Ferguson D., “Compact adaptive optics line scanning retinal imager; closer to the clinic,” Proc. SPIE 8930, 89301B (2014).10.1117/12.2040261
    1. Salas M., Drexler W., Levecq X., Lamory B., Ritter M., Prager S., Hafner J., Schmidt-Erfurth U., Pircher M., “Multi-modal adaptive optics system including fundus photography and optical coherence tomography for the clinical setting,” Biomed. Opt. Express 7(5), 1783–1796 (2016).10.1364/BOE.7.001783
    1. Merino D., Dainty C., Bradu A., Podoleanu A. G., “Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy,” Opt. Express 14(8), 3345–3353 (2006).10.1364/OE.14.003345
    1. Pircher M., Zawadzki R. J., Evans J. W., Werner J. S., Hitzenberger C. K., “Simultaneous imaging of human cone mosaic with adaptive optics enhanced scanning laser ophthalmoscopy and high-speed transversal scanning optical coherence tomography,” Opt. Lett. 33(1), 22–24 (2008).10.1364/OL.33.000022
    1. Dubra A., Sulai Y., “Reflective afocal broadband adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express 2(6), 1757–1768 (2011).10.1364/BOE.2.001757
    1. Wells-Gray E. M., Choi S. S., Zawadzki R. J., Finn S. C., Greiner C., Werner J. S., Doble N., “Volumetric imaging of rod and cone photoreceptor structure with a combined adaptive optics-optical coherence tomography-scanning laser ophthalmoscope,” J. Biomed. Opt. 23(03), 1–15 (2018).10.1117/1.JBO.23.3.036003
    1. Atchison D. A., Smith G., “Chromatic dispersions of the ocular media of human eyes,” J. Opt. Soc. Am. A 22(1), 29–37 (2005).10.1364/JOSAA.22.000029
    1. Agrawal A., Pfefer T. J., Woolliams P. D., Tomlins P. H., Nehmetallah G., “Methods to assess sensitivity of optical coherence tomography systems,” Biomed. Opt. Express 8(2), 902–917 (2017).10.1364/BOE.8.000902
    1. ANSI, Z136.1 – 2014. American National Standard for Safe Use of Lasers. Orlando, FL: Laser Institute of America; (2014).
    1. Liu Z., Kurokawa K., Zhang F., Miller D. T., “Characterizing motility dynamics in human rpe cells,” Ophthalmic Technologies XXVII 10045, 1004515 (2017).10.1117/12.2256144
    1. Dubra A., Harvey Z., Registration of 2D Images From Fast Scanning Ophthalmic instruments (Springer, Berlin, Heidelberg: 2010).
    1. Agemy S. A., Scripsema N. K., Shah C. M., Chui T., Garcia P. M., Lee J. G., Gentile R. C., Hsiao Y. S., Zhou Q., Ko T., Rosen R. B., “Retinal vascular perfusion density mapping using optical coherence tomography angiography in normals and diabetic retinopathy patients,” Retina 35(11), 2353–2363 (2015).10.1097/IAE.0000000000000862
    1. Curcio C. A., Sloan K. R., Kalina R. E., Hendrickson A. E., “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990).10.1002/cne.902920402
    1. Alpern M., Ching C. C., Kitahara K., “The directional sensitivity of retinal rods,” J. Physiol. 343(1), 577–592 (1983).10.1113/jphysiol.1983.sp014911
    1. Staurenghi G., Sadda S., Chakravarthy U., Spaide R. F., International Nomenclature for Optical Coherence Tomography , “Proposed lexicon for anatomic landmarks in normal posterior segment spectral-domain optical coherence tomography: the in*oct consensus,” Ophthalmology 121(8), 1572–1578 (2014).10.1016/j.ophtha.2014.02.023
    1. Curcio C. A., Allen K. A., “Topography of ganglion cells in human retina,” J. Comp. Neurol. 300(1), 5–25 (1990).10.1002/cne.903000103
    1. Laforest T., Carpentras D., Künzi M., Kowalczuk L., Behar-Cohen F., Moser C., “A new microscopy for imaging retinal cells,” (2017).
    1. Chui T. Y., Gast T. J., Burns S. A., “Imaging of vascular wall fine structure in the human retina using adaptive optics scanning laser ophthalmoscopy,” Invest. Ophthalmol. Vis. Sci. 54(10), 7115–7124 (2013).10.1167/iovs.13-13027
    1. LaRocca F., Nankivil D., DuBose T., Toth C. A., Farsiu S., Izatt J. A., “In vivo cellular-resolution retinal imaging in infants and children using an ultracompact handheld probe,” Nat. Photonics 10(9), 580–584 (2016).10.1038/nphoton.2016.141
    1. Rossi E. A., Rangel-Fonseca P., Parkins K., Fischer W., Latchney L. R., Folwell M. A., Williams D. R., Dubra A., Chung M. M., “In vivo imaging of retinal pigment epithelium cells in age related macular degeneration,” Biomed. Opt. Express 4(11), 2527–2539 (2013).10.1364/BOE.4.002527
    1. Roorda A., Zhang Y., Duncan J. L., “High-resolution in vivo imaging of the RPE mosaic in eyes with retinal disease,” Invest. Ophthalmol. Vis. Sci. 48(5), 2297–2303 (2007).10.1167/iovs.06-1450
    1. Adie S. G., Graf B. W., Ahmad A., Carney P. S., Boppart S. A., “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. U.S.A. 109(19), 7175–7180 (2012).10.1073/pnas.1121193109
    1. Hillmann D., Spahr H., Pfäffle C., Sudkamp H., Franke G., Hüttmann G., “In vivo optical imaging of physiological responses to photostimulation in human photoreceptors,” Proc. Natl. Acad. Sci. U.S.A. 113(46), 13138–13143 (2016).10.1073/pnas.1606428113
    1. South F. A., Kurokawa K., Liu Z., Liu Y.-Z., Miller D. T., Boppart S. A., “Combined hardware and computational optical wavefront correction,” Biomed. Opt. Express 9(6), 2562–2574 (2018).10.1364/BOE.9.002562
    1. Gorczynska I., Migacz J. V., Jonnal R., Zawadzki R. J., Poddar R., Werner J. S., “Imaging of the human choroid with a 1.7 MHZ a-scan rate FDML swept source OCT system,” Proc. SPIE 10045, 1004510 (2017).

Source: PubMed

3
Abonneren