Effect of High-Intensity Interval Training on Body Composition, Cardiorespiratory Fitness, Blood Pressure, and Substrate Utilization During Exercise Among Prehypertensive and Hypertensive Patients With Excessive Adiposity

Pedro Delgado-Floody, Mikel Izquierdo, Robinson Ramírez-Vélez, Felipe Caamaño-Navarrete, Roberto Moris, Daniel Jerez-Mayorga, David C Andrade, Cristian Álvarez, Pedro Delgado-Floody, Mikel Izquierdo, Robinson Ramírez-Vélez, Felipe Caamaño-Navarrete, Roberto Moris, Daniel Jerez-Mayorga, David C Andrade, Cristian Álvarez

Abstract

Regular exercise training is a recognized lifestyle strategy to lower resting blood pressure (BP), but little is known about substrate metabolism in population with high BP. Thus, the purpose of this study was to investigate the effects of 16-weeks of HIIT on body composition, BP, cardiorespiratory fitness by V . O2 max , and substrate utilization during exercise among prehypertensive and hypertensive patients with excessive adiposity. We also aimed to test the potential association between changes in cardiorespiratory fitness, substrate utilization during exercise and BP. Forty-two physically inactive overweight/obese participants participated in 16-weeks of HIIT intervention. The HIIT frequency was three times a week (work ratio 1:2:10, for interval cycling: rest period: repeated times; 80-100% of the maximum heart rate). Groups were distributed based on their baseline BP: HIIT-hypertensive (H-HTN: age 47.7 ± 12.0 years; body mass index [BMI] 30.3 ± 5.5 kg/m2; systolic [SBP]/diastolic BP [DBP] 151.6 ± 10/81.9 ± 4.2 mmHg), HIIT-pre-hypertensive (H-PreHTN: age 37.6 ± 12.0 years; BMI 31.9 ± 5.3 kg/m2; SBP/DBP 134.4 ± 3.2/74.9 ± 7.0 mmHg), and a normotensive control group (H-CG: age 40.7 ± 11.0 years; BMI 29.5 ± 4.2 kg/m2; SBP/DBP 117.0 ± 6.2/72.4 ± 4.1 mmHg). Anthropometry/body composition, BP, and metabolic substrate utilization during exercise (fat [FATox], carbohydrate [CHOox] oxidation, respiratory exchange ratio [RER], and V . O2 max), were measured before and after the 16-week HIIT intervention. Adjusted mixed linear models revealed a significant improved in V . O2 max were + 3.34 in the H-CG, + 3.63 in the H-PreHTN, and + 5.92 mL⋅kg-1⋅min-1, in the H-HTN group, however, the Time × Group interaction were not significant (p = 0.083). All the exercise types induced similar decreases on SBP (-8.70) in the H-HTN, (-7.14) in the H-CG, and (-5.11) mmHg in the H-PreHTN, as well as DBP levels (-5.43) mmHg in H-CG group (p = 0.032 vs. H-HTN group). At 16-week, no significant correlations were noted for the changes of blood pressure, cardiorespiratory fitness or exercise metabolism substrates outcomes. In conclusion, our results suggest that a 16-week HIIT-intervention improved V . O2 max and blood pressure BP, but these changes are independent of substrate utilization during exercise in normotensive and hypertensive participants with excessive adiposity.

Keywords: blood pressure; cardiorespiratory fitness; hypertension; metabolic flexibility; obesity.

Copyright © 2020 Delgado-Floody, Izquierdo, Ramírez-Vélez, Caamaño-Navarrete, Moris, Jerez-Mayorga, Andrade and Álvarez.

Figures

FIGURE 1
FIGURE 1
Flow-chart diagram.
FIGURE 2
FIGURE 2
Study protocol.
FIGURE 3
FIGURE 3
Maximum oxygen consumption (V.O2max), respiratory exchange ratio (RER), FATox and CHOox utilization during exercise measured by indirect calorimetry measured in healthy normotensive, prehypertensive, and hypertensive subjects. Panel (A) show absolute values of V.O2max, and Panel (B) show V.O2max in delta values pre-post 16-weeks HIIT intervention. Panel (C) show RER peak during exercise in delta values pre-post 16-weeks HIIT intervention. Panel (D) shows fat utilization during exercise in delta values pre-post 16-week high-intensity interval training (HIIT) intervention. Panel (E) shows CHO utilization during exercise in delta values pre-post 16-week HIIT intervention Groups are described as (H-CG) HIIT-normotensive control group, (H-PreHTN) HIIT-prehypertensive group, and (H-HTN) HIIT-hypertensive group. Within the mixed model, we calculated 95% Cis and P values for 3 prespecified intergroup contrasts and for change for all continuous variables within each group over time with adjustment for the baseline values, age, gender and BMI as covariates. A Sidack’s post hoc test was used for multiple comparisons. All results are presented as least-squares means with 95% confidence intervals (CIs).
FIGURE 4
FIGURE 4
Systolic (SBP) and diastolic blood pressure (DBP) in healthy normotensive, prehypertensive, and hypertensive subjects. Panel (A,C) show SBP and DBP delta changes in mean values from pre to post interventions groups. Panels (B,D) show show SBP and DBP according with each pre-post individual change, and by the old traditional cut-off point from Chobanian et al. (2003) (continuous, very intermittent, and less intermittent black lines) of blood pressure diagnosed ranged in green, cream, and red boxes, right side (B,D), as well as showing the new cut-off from Whelton et al. (2018) from the AHA 2017, (B,D), left side. Groups are described as (H-CG) HIIT-normotensive control group, (H-PreHTN) HIIT-prehypertensive group, and (H-HTN) HIIT-hypertensive group.
FIGURE 5
FIGURE 5
Correlations among the delta of fat (ΔFATox), delta of carbohydrate (ΔCHOox) oxidation, and delta of respiratory exchange ratio (ΔRER) with the delta of systolic (ΔSystolic BP), and diastolic (ΔDiastolic BP). Panel (A) show correlation ΔFATox with ΔSystolic BP. Panel (B) show correlation ΔCHOox with ΔDiastolic BP. Panel (C) show correlation ΔCHOox with ΔSystolic BP. Panel (D) show correlation ΔFATox with ΔDiastolic BP. Panel (E) show correlation ΔRER with ΔSystolic BP. Panel (F) show correlation ΔRER with ΔDiastolic BP. Groups are described as (H-CG) HIIT-normotensive control group, (H-PreHTN) HIIT-prehypertensive group, and (H-HTN) HIIT-hypertensive group. β = Standardized coefficients beta with adjustment for the age, gender and BMI as covariates. Both ΔFATox and ΔCHOox are expressed in %, respiratory exchange ratio (RER).

References

    1. Achten J., Gleeson M., Jeukendrup A. E. (2002). Determination of the exercise intensity that elicits maximal fat oxidation. Med. Sci. Sports Exerc. 34 92–97. 10.1097/00005768-200201000-00015
    1. Álvarez C., Ramírez-Campillo R., Cristi-Montero C., Ramírez-Vélez R., Izquierdo M. (2018). Prevalence of Non-responders for blood pressure and cardiometabolic risk factors among prehypertensive women after long-term high-intensity interval training. Front. Physiol. 9:1443. 10.3389/fphys.2018.01443
    1. Astorino T. A., Schubert M. M. (2018). Changes in fat oxidation in response to various regimes of high intensity interval training (HIIT). Eur. J. Appl. Physiol. 118 51–63. 10.1007/s00421-017-3756-0
    1. Åstrand P.-O., Rodahl K., Dahl H. A., Strømme S. B. (2003). Textbook of Work Physiology: Physiological Bases of Exercise. Champaign, IL: Human Kinetics.
    1. Augeri A. L., Tsongalis G. J., Van Heest J. L., Maresh C. M., Thompson P. D., Pescatello L. S. (2009). The endothelial nitric oxide synthase −786 T> C polymorphism and the exercise-induced blood pressure and nitric oxide responses among men with elevated blood pressure. Atherosclerosis 204 e28–e34.
    1. Birjandi S. C., Saghebjoo M., Hedayati M. (2016). Effect of high intensity interval training and L-Arginine supplementation on serum levels of fibroblast growth factor 21 and atrial natriuretic peptide in overweight and obese young men. J. Birjand Univ. Med. Sci. 23 211–221.
    1. Birk G. K., Dawson E. A., Atkinson C., Haynes A., Cable N. T., Thijssen D. H., et al. (2012). Brachial artery adaptation to lower limb exercise training: role of shear stress. J. Appl. Physiol. 112 1653–1658. 10.1152/japplphysiol.01489.2011
    1. Boutcher S. H. (2010). High-intensity intermittent exercise and fat loss. J. Obes. 2011:868305.
    1. Buemann B., Astrup A., Christensen N. J. (1992). Three months aerobic training fails to affect 24-hour energy expenditure in weight-stable, post-obese women. Int. J. Obes. Relat. Metab Disord. 16 809–816.
    1. Cade R., Mars D., Wagemaker H., Zauner C., Packer D., Privette M., et al. (1984). Effect of aerobic exercise training on patients with systemic arterial hypertension. Am. J. Med. 77 785–790. 10.1016/0002-9343(84)90513-8
    1. Cano-Montoya J., Ramírez-Campillo R., Calles F. S., Izquierdo M., Fritz Silva N., Álvarez C. (2018). Ejercicio físico en pacientes con diabetes e hipertensión: prevalencia de respondedores y no respondedores para mejorar factores de riesgo cardiometabólicos. Rev. Méd. Chile 146 693–701. 10.4067/s0034-98872018000600693
    1. Cano-Montoya J., Ramírez-Campillo R., Martínez C., Sade-Calles F., Salas-Parada A., Álvarez C. (2016). Interacción entre terapia hipotensiva y terapia con ejercicio físico requiere regulación farmacológica en pacientes hipertensos. Rev. Med. Chile 144 143–152.
    1. Cao L., Jiang Y., Li Q., Wang J., Tan S. (2019). Exercise training at maximal fat oxidation intensity for overweight or obese older women: A randomized study. J. Sports Sci. Med. 18 413–418.
    1. Chobanian A. V., Bakris G. L., Black H. R., Cushman W. C., Green L. A., Izzo J. L., et al. (2003). Seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure. Hypertension 42 1206–1252. 10.1161/01.hyp.0000107251.49515.c2
    1. Costa E. C., Hay J. L., Kehler D. S., Boreskie K. F., Arora R. C., Umpierre D., et al. (2018). Effects of high-intensity interval training versus moderate-intensity continuous training on blood pressure in adults with pre-to established hypertension: a systematic review and meta-analysis of randomized trials. Sports Med. 48 2127–2142. 10.1007/s40279-018-0944-y
    1. Delgado-Floody P., Álvarez C., Lusa-Cadore E., Flores-Opazo M., Caamaño-Navarrete F., Izquierdo M. (2019). Preventing metabolic syndrome in morbid obesity with resistance training: reporting interindividual variability. Nutrit. Metab. Cardiovasc. Dis. 29 1368–1381. 10.1016/j.numecd.2019.07.002
    1. Diaz-Martinez X., Petermann F., Leiva A., Garrido-Mendez A., Salas-Bravo C., Martínez M., et al. (2018). Association of physical inactivity with obesity, diabetes, hypertension and metabolic syndrome in the chilean population. Rev. Med. Chile 146 585–595.
    1. Eriksson J., Tuominen J., Valle T., Sundberg S., Sovijärvi A., Lindholm H., et al. (1998). Aerobic endurance exercise or circuit-type resistance training for individuals with impaired glucose tolerance? Horm. Metab. Res. 30 37–41. 10.1055/s-2007-978828
    1. Fagard R. H., Cornelissen V. A. (2007). Effect of exercise on blood pressure control in hypertensive patients. Eur. J. Cardiovasc. Prevent. Rehabil. 14 12–17. 10.1097/hjr.0b013e3280128bbb
    1. Falqui V., Viazzi F., Leoncini G., Ratto E., Parodi A., Conti N., et al. (2007). Blood pressure load, vascular permeability and target organ damage in primary hypertension. J. Nephrol. 20 S63–S67.
    1. Faul F., Erdfelder E., Lang A.-G., Buchner A. (2007). G∗ Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 39 175–191. 10.3758/bf03193146
    1. Feihl F. O., Liaudet L., Waeber B., Levy B. I. (2006). Hypertension: a disease of the microcirculation? Hypertension 48 1012–1017. 10.1161/01.hyp.0000249510.20326.72
    1. Friedlander A. L., Casazza G. A., Horning M. A., Usaj A., Brooks G. A. (1999). Endurance training increases fatty acid turnover, but not fat oxidation, in young men. J. Appl. Physiol. 86 2097–2105. 10.1152/jappl.1999.86.6.2097
    1. Gibala M. J., Little J. P., Macdonald M. J., Hawley J. A. (2012). Physiological adaptations to low-volume, high-intensity interval training in health and disease. J. Physiol. 590 1077–1084. 10.1113/jphysiol.2011.224725
    1. Goodpaster B. H., Wolfe R. R., Kelley D. E. (2002). Effects of obesity on substrate utilization during exercise. Obes Res. 10 575–584. 10.1038/oby.2002.78
    1. Guimaraes G. V., Ciolac E. G., Carvalho V. O., D’avila V. M., Bortolotto L. A., Bocchi E. A. (2010). Effects of continuous vs. interval exercise training on blood pressure and arterial stiffness in treated hypertension. Hypertens. Res. 33 627–632. 10.1038/hr.2010.42
    1. Halliwill J. R. (2001). Mechanisms and clinical implications of post-exercise hypotension in humans. Exerc. Sport Sci. Rev. 29 65–70. 10.1249/00003677-200104000-00005
    1. Hoppeler H., Weibel E. (1998). Limits for oxygen and substrate transport in mammals. J. Exper. Biol. 201 1051–1064.
    1. Jurio-Iriarte B., Maldonado-Martín S. (2019). Effects of different exercise training programs on cardiorespiratory fitness in overweight/obese adults with hypertension: a pilot study. Health Promot. Pract. 20 390–400. 10.1177/1524839918774310
    1. Kanaley J. A., Cryer P. E., Jensen M. D. (1993). Fatty acid kinetic responses to exercise. Effects of obesity, body fat distribution, and energy-restricted diet. J. Clin. Invest. 92 255–261. 10.1172/JCI116559
    1. Kempen K. P., Saris W. H., Westerterp K. R. (1995). Energy balance during an 8-wk energy-restricted diet with and without exercise in obese women. Am. J. Clin. Nutr. 62 722–729. 10.1093/ajcn/62.4.722
    1. Kissane R. W., Egginton S. (2019). Exercise-mediated angiogenesis. Curr. Opin. Physiol. 10, 193–201. 10.1016/j.cophys.2019.06.005
    1. Kodama S., Saito K., Tanaka S., Maki M., Yachi Y., Asumi M., et al. (2009). Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. JAMA 301 2024–2035. 10.1001/jama.2009.681
    1. Lewington S., Clarke R., Qizilbash N., Peto R., Collins R., Gnant M. (2002). Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 360 1903–1913. 10.1016/s0140-6736(02)11911-8
    1. Low D. A., Shibasaki M., Davis S. L., Keller D. M., Crandall C. G. (2007). Does local heating-induced nitric oxide production attenuate vasoconstrictor responsiveness to lower body negative pressure in human skin? J. Appl. Physiol. 102 1839–1843. 10.1152/japplphysiol.01181.2006
    1. Mancilla R., Torres P., Alvarez C., Schifferli I., Sapunar J., Diaz E. (2014). High intensity interval training improves glycemic control and aerobic capacity in glucose intolerant patients. Rev. Med. Chil. 142 34–39.
    1. McGilvery R. W., Goldstein G. (1983). Biochemistry, A Functional Approach, Philadelphia, PA: Saunders College Publishing.
    1. Molmen-Hansen H. E., Stolen T., Tjonna A. E., Aamot I. L., Ekeberg I. S., Tyldum G. A., et al. (2012). Aerobic interval training reduces blood pressure and improves myocardial function in hypertensive patients. Eur. J. Prevent. Cardiol. 19 151–160. 10.1177/1741826711400512
    1. Neubauer S. (2007). The failing heart—an engine out of fuel. New Engl. J. Med. 356 1140–1151. 10.1056/nejmra063052
    1. O’Donovan G., Blazevich A. J., Boreham C., Cooper A. R., Crank H., Ekelund U., et al. (2010). The ABC of Physical Activity for health: a consensus statement from the british association of sport and exercise sciences. J. Sports Sci. 28 573–591. 10.1080/02640411003671212
    1. Olea M. A., Mancilla R., Martínez S., Díaz E. (2017). Entrenamiento interválico de alta intensidad contribuye a la normalización de la hipertensión arterial. Rev. Méd. Chile 145 1154–1159. 10.4067/s0034-98872017000901154
    1. Pedralli M. L., Marschner R. A., Kollet D. P., Neto S. G., Eibel B., Tanaka H., et al. (2020). Different exercise training modalities produce similar endothelial function improvements in individuals with prehypertension or hypertension: a randomized clinical trial Exercise, endothelium and blood pressure. Sci. Rep. 10 1–9. 10.1113/jphysiol.2004.068197
    1. Pescatello L. S., Macdonald H. V., Lamberti L., Johnson B. T. (2015). Exercise for hypertension: a prescription update integrating existing recommendations with emerging research. Curr. Hypert. Rep. 17 1–10.
    1. Petermann F., Duran E., Labraña A., Martínez M., Leiva A., Garrido-Méndez A., et al. (2017). Risk factors associated with hypertension. Analysis of the 2009-2010 Chilean health survey. Rev. Med. Chile 145 996–1004.
    1. Ramírez-Vélez R., Hernández-Quiñones P. A., Tordecilla-Sanders A., Álvarez C., Ramírez-Campillo R., Izquierdo M., et al. (2019). Effectiveness of HIIT compared to moderate continuous training in improving vascular parameters in inactive adults. Lipids Health Dis. 18:42. 10.1186/s12944-019-0981-z
    1. Ramos J. S., Dalleck L. C., Tjonna A. E., Beetham K. S., Coombes J. S. (2015). The impact of high-intensity interval training versus moderate-intensity continuous training on vascular function: a systematic review and meta-analysis. Sports Med. 45 679–692. 10.1007/s40279-015-0321-z
    1. Romijn J., Coyle E. F., Sidossis L., Zhang X., Wolfe R. (1995). Relationship between fatty acid delivery and fatty acid oxidation during strenuous exercise. J. Appl. Physiol. 79 1939–1945. 10.1152/jappl.1995.79.6.1939
    1. Russo A., Di Gaetano C., Cugliari G., Matullo G. (2018). Advances in the genetics of hypertension: the effect of rare variants. Intern. J. Mol. Sci. 19:688. 10.3390/ijms19030688
    1. Serón P., Muñoz S., Lanas F. (2010). Nivel de actividad física medida a través del cuestionario internacional de actividad física en población Chilena. Rev. Méd. Chile 138 1232–1239.
    1. Soltani M., Aghaei Bahmanbeglou N., Ahmadizad S. (2019). High-intensity interval training irrespective of its intensity improves markers of blood fluidity in hypertensive patients. Clin. Exper. Hypert. 42 309–314. 10.1080/10641963.2019.1649687
    1. van Aggel-Leijssen D. P., Saris W. H., Hul G. B., van Baak M. A. (2001). Short-term effects of weight loss with or without low-intensity exercise training on fat metabolism in obese men. Am. J. Clin. Nutr. 73 523–531. 10.1093/ajcn/73.3.523
    1. van Baak M. A. (1999). Exercise training and substrate utilisation in obesity. Int. J. Obes. Relat. Metab Disord. 23 S11–S17. 10.1038/sj.ijo.0800879
    1. Whelton P. K., Carey R. M., Aronow W. S., Casey D. E., Jr, Collins K. J., Himmelfarb C. D., et al. (2018). 2017-ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American college of cardiology/American heart association task force on clinical practice guidelines. Hypertension 71 e136–e139. 10.1161/HYP.0000000000000066
    1. Yannoutsos A., Levy B. I., Safar M. E., Slama G., Blacher J. (2014). Pathophysiology of hypertension: interactions between macro and microvascular alterations through endothelial dysfunction. J. Hypert. 32 216–224. 10.1097/hjh.0000000000000021

Source: PubMed

3
Abonneren