Oxygen-Carrying Micro/Nanobubbles: Composition, Synthesis Techniques and Potential Prospects in Photo-Triggered Theranostics

Muhammad Saad Khan, Jangsun Hwang, Kyungwoo Lee, Yonghyun Choi, Kyobum Kim, Hyung-Jun Koo, Jong Wook Hong, Jonghoon Choi, Muhammad Saad Khan, Jangsun Hwang, Kyungwoo Lee, Yonghyun Choi, Kyobum Kim, Hyung-Jun Koo, Jong Wook Hong, Jonghoon Choi

Abstract

Microbubbles and nanobubbles (MNBs) can be prepared using various shells, such as phospholipids, polymers, proteins, and surfactants. MNBs contain gas cores due to which they are echogenic and can be used as contrast agents for ultrasonic and photoacoustic imaging. These bubbles can be engineered in various sizes as vehicles for gas and drug delivery applications with novel properties and flexible structures. Hypoxic areas in tumors develop owing to an imbalance of oxygen supply and demand. In tumors, hypoxic regions have shown more resistance to chemotherapy, radiotherapy, and photodynamic therapies. The efficacy of photodynamic therapy depends on the effective accumulation of photosensitizer drug in tumors and the availability of oxygen in the tumor to generate reactive oxygen species. MNBs have been shown to reverse hypoxic conditions, degradation of hypoxia inducible factor 1α protein, and increase tissue oxygen levels. This review summarizes the synthesis methods and shell compositions of micro/nanobubbles and methods deployed for oxygen delivery. Methods of functionalization of MNBs, their ability to deliver oxygen and drugs, incorporation of photosensitizers and potential application of photo-triggered theranostics, have also been discussed.

Keywords: microbubbles; nanobubbles; oxygen delivery; photoacoustic imaging; reactive oxygen species (ROS); ultrasonic imaging.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Schematic of micro/nanobubbles (MNBs), and their functionalization. This figure has been adapted from various studies [22,47,49,55,56].
Figure 2
Figure 2
Oxygen delivery mechanism of MNBs: (A) MNB disruption using ultrasound and (B) diffusion of oxygen across the concentration gradient.
Figure 3
Figure 3
Potential of oxygen-containing MNBs for photoacoustic imaging and photodynamic therapy.

References

    1. Vaupel P. The role of hypoxia-induced factors in tumor progression. Oncologist. 2004;9:10–17. doi: 10.1634/theoncologist.9-90005-10.
    1. Fix S.M., Borden M.A., Dayton P.A. Therapeutic gas delivery via microbubbles and liposomes. J. Control. Release. 2015;209:139–149. doi: 10.1016/j.jconrel.2015.04.027.
    1. Eisenbrey J.R., Albala L., Kramer M.R., Daroshefski N., Brown D., Liu J.-B., Stanczak M., O’Kane P., Forsberg F., Wheatley M.A. Development of an ultrasound sensitive oxygen carrier for oxygen delivery to hypoxic tissue. Int. J. Pharm. 2015;478:361–367. doi: 10.1016/j.ijpharm.2014.11.023.
    1. Razorenova O.V., Giaccia A.J. The Tumor Microenvironment. Springer; Berlin/Heidelberg, Germany: 2010. Hypoxia, gene expression, and metastasis; pp. 43–58.
    1. Kwan J.J., Kaya M., Borden M.A., Dayton P.A. Theranostic oxygen delivery using ultrasound and microbubbles. Theranostics. 2012;2:1174–1184. doi: 10.7150/thno.4410.
    1. Avci P., Erdem S.S., Hamblin M.R. Photodynamic therapy: One step ahead with self-assembled nanoparticles. J. Biomed. Nanotechonol. 2014;10:1937–1952. doi: 10.1166/jbn.2014.1953.
    1. Fuchs J., Thiele J. The role of oxygen in cutaneous photodynamic therapy. Free Radic. Biol. Med. 1998;24:835–847. doi: 10.1016/S0891-5849(97)00370-5.
    1. Legband N.D., Feshitan J.A., Borden M.A., Terry B.S. Evaluation of peritoneal microbubble oxygenation therapy in a rabbit model of hypoxemia. Trans. Biomed. Eng. 2015;62:1376–1382. doi: 10.1109/TBME.2015.2388611.
    1. Matsuki N., Ishikawa T., Ichiba S., Shiba N., Ujike Y., Yamaguchi T. Oxygen supersaturated fluid using fine micro/nanobubbles. Int. J. Nanomed. 2014;9:4495. doi: 10.2147/IJN.S68840.
    1. Kheir J.N., Scharp L.A., Borden M.A., Swanson E.J., Loxley A., Reese J.H., Black K.J., Velazquez L.A., Thomson L.M., Walsh B.K., et al. Oxygen gas-filled microparticles provide intravenous oxygen delivery. Sci. Transl. Med. 2012;4:140ra188. doi: 10.1126/scitranslmed.3003679.
    1. Feshitan J.A., Legband N.D., Borden M.A., Terry B.S. Systemic oxygen delivery by peritoneal perfusion of oxygen microbubbles. Biomaterials. 2014;35:2600–2606. doi: 10.1016/j.biomaterials.2013.12.070.
    1. Kheir J.N., Polizzotti B.D., Thomson L.M., O’Connell D.W., Black K.J., Lee R.W., Wilking J.N., Graham A.C., Bell D.C., McGowan F.X. Bulk manufacture of concentrated oxygen gas-filled microparticles for intravenous oxygen delivery. Adv. Healthc. Mater. 2013;2:1131–1141. doi: 10.1002/adhm.201200350.
    1. Bisazza A., Giustetto P., Rolfo A., Caniggia I., Balbis S., Guiot C., Cavalli R. Microbubble-mediated oxygen delivery to hypoxic tissues as a new therapeutic device; Proceedings of the 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; Vancouver, BC, Canada. 20–25 August 2008.
    1. Seekell R.P., Lock A.T., Peng Y., Cole A.R., Perry D.A., Kheir J.N., Polizzotti B.D. Oxygen delivery using engineered microparticles. Proc. Nat. Acad. Sci. USA. 2016;113:12380–12385. doi: 10.1073/pnas.1608438113.
    1. Owen J., McEwan C., Nesbitt H., Bovornchutichai P., Averre R., Borden M., McHale A.P., Callan J.F., Stride E. Reducing tumour hypoxia via oral administration of oxygen nanobubbles. PLoS ONE. 2016;11:e0168088. doi: 10.1371/journal.pone.0168088.
    1. Yang C., Xiao H., Sun Y., Zhu L., Gao Y., Kwok S., Wang Z., Tang Y. Lipid microbubbles as ultrasound-stimulated oxygen carriers for controllable oxygen release for tumor reoxygenation. Ultrasound Med. Biol. 2018;44:416–425. doi: 10.1016/j.ultrasmedbio.2017.08.1883.
    1. Stride E., Edirisinghe M. Novel microbubble preparation technologies. Soft Matter. 2008;4:2350–2359. doi: 10.1039/b809517p.
    1. Mayer C.R., Geis N.A., Katus H.A., Bekeredjian R. Ultrasound targeted microbubble destruction for drug and gene delivery. Expert Opin. Drug Deliv. 2008;5:1121–1138. doi: 10.1517/17425247.5.10.1121.
    1. Qin S., Caskey C.F., Ferrara K.W. Ultrasound contrast microbubbles in imaging and therapy: Physical principles and engineering. Phys. Med. Biol. 2009;54:R27. doi: 10.1088/0031-9155/54/6/R01.
    1. Khan M.S., Hwang J., Seo Y., Shin K., Lee K., Park C., Choi Y., Hong J.W., Choi J. Engineering oxygen nanobubbles for the effective reversal of hypoxia. Artif. Cells Nanomed. Biotechnol. 2018;23:1–10. doi: 10.1080/21691401.2018.1492420.
    1. Liu Y., Miyoshi H., Nakamura M. Encapsulated ultrasound microbubbles: Therapeutic application in drug/gene delivery. J. Control. Release. 2006;114:89–99. doi: 10.1016/j.jconrel.2006.05.018.
    1. Cavalli R., Soster M., Argenziano M. Nanobubbles: A promising efficienft tool for therapeutic delivery. Ther. Deliv. 2016;7:117–138. doi: 10.4155/tde.15.92.
    1. Huynh E., Jin C.S., Wilson B.C., Zheng G. Aggregate enhanced trimodal porphyrin shell microbubbles for ultrasound, photoacoustic, and fluorescence imaging. Bioconjug. Chem. 2014;25:796–801. doi: 10.1021/bc5000725.
    1. Wilson K.E., Wang T.Y., Willmann J.K. Acoustic and photoacoustic molecular imaging of cancer. J. Nucl. Med. 2013;54:1851. doi: 10.2967/jnumed.112.115568.
    1. Dixon A.J., Hu S., Klibanov A.L., Hossack J.A. Oscillatory dynamics and in vivo photoacoustic imaging performance of plasmonic nanoparticle-coated microbubbles. Small. 2015;11:3066–3077. doi: 10.1002/smll.201403398.
    1. Bhandari P., Wang X., Irudayaraj J. Oxygen nanobubble tracking by light scattering in single cells and tissues. ACS Nano. 2017;11:2682–2688. doi: 10.1021/acsnano.6b07478.
    1. Bhandari P.N., Cui Y., Elzey B.D., Goergen C.J., Long C.M., Irudayaraj J. Oxygen nanobubbles revert hypoxia by methylation programming. Sci. Rep. 2017;7:9268. doi: 10.1038/s41598-017-08988-7.
    1. Xu R.X. Multifunctional microbubbles and nanobubbles for photoacoustic imaging. Contrast Media Mol. Imaging. 2011;6:401–411. doi: 10.1002/cmmi.442.
    1. Tinkov S., Bekeredjian R., Winter G., Coester C. Microbubbles as ultrasound triggered drug carriers. J. Pharm. Sci. 2009;98:1935–1961. doi: 10.1002/jps.21571.
    1. Cavalli R., Bisazza A., Lembo D. Micro-and nanobubbles: A versatile non-viral platform for gene delivery. Int. J. Pharm. 2013;456:437–445. doi: 10.1016/j.ijpharm.2013.08.041.
    1. Zhou M., Cavalieri F., Caruso F., Ashokkumar M. Confinement of acoustic cavitation for the synthesis of protein-shelled nanobubbles for diagnostics and nucleic acid delivery. ACS Macro Lett. 2012;1:853–856. doi: 10.1021/mz3002534.
    1. Yin T., Wang P., Zheng R., Zheng B., Cheng D., Zhang X., Shuai X. Nanobubbles for enhanced ultrasound imaging of tumors. Int. J. Nanomed. 2012;7:895.
    1. Xing Z., Wang J., Ke H., Zhao B., Yue X., Dai Z., Liu J. The fabrication of novel nanobubble ultrasound contrast agent for potential tumor imaging. Nanotechnology. 2010;21:145607. doi: 10.1088/0957-4484/21/14/145607.
    1. Wu H., Rognin N.G., Krupka T.M., Solorio L., Yoshiara H., Guenette G., Sanders C., Kamiyama N., Exner A.A. Acoustic characterization and pharmacokinetic analyses of new nanobubble ultrasound contrast agents. Ultrasound Med. Biol. 2013;39:2137–2146. doi: 10.1016/j.ultrasmedbio.2013.05.007.
    1. Wang Y., Li X., Zhou Y., Huang P., Xu Y. Preparation of nanobubbles for ultrasound imaging and intracelluar drug delivery. Int. J. Pharm. 2010;384:148–153. doi: 10.1016/j.ijpharm.2009.09.027.
    1. Pitt W.G., Husseini G.A., Staples B.J. Ultrasonic drug delivery—A general review. Expert Opin. Drug Deliv. 2004;1:37–56. doi: 10.1517/17425247.1.1.37.
    1. Koshiyama K., Wada S. Collapse of a lipid-coated nanobubble and subsequent liposome formation. Sci. Rep. 2016;6:28164. doi: 10.1038/srep28164.
    1. Yoon Y.I., Kwon Y.-S., Cho H.-S., Heo S.-H., Park K.S., Park S.G., Lee S.-H., Hwang S.I., Kim Y.I., Jae H.J. Ultrasound-mediated gene and drug delivery using a microbubble-liposome particle system. Theranostics. 2014;4:1133. doi: 10.7150/thno.9945.
    1. Swanson E.J., Mohan V., Kheir J., Borden M.A. Phospholipid-stabilized microbubble foam for injectable oxygen delivery. Langmuir. 2010;26:15726–15729. doi: 10.1021/la1029432.
    1. SWANSON E.J., BORDEN M.A. Injectable oxygen delivery based on protein-shelled microbubbles. Nano Life. 2010;1:215–218. doi: 10.1142/S1793984410000195.
    1. Gerber F., Waton G., Krafft M.P., Vandamme T.F. Long lived microbubbles for oxygen delivery. Artif. Cells Blood Substit. Biotechnol. 2007;35:119–124. doi: 10.1080/10731190600974939.
    1. Polizzotti B.D., Polizzotti B.D., Thomson L.M., O’Connell D.W., McGowan F.X., Kheir J.N. Optimization and characterization of stable lipid-based, oxygen-filled microbubbles by mixture design. J. Biomed. Mater. Res. Part B Appl. Biomater. 2014;102:1148–1156. doi: 10.1002/jbm.b.33096.
    1. Xu Q., Nakajima M., Liu Z., Shiina T. Biosurfactants for microbubble preparation and application. Int. J. Mol. Sci. 2011;12:462–475. doi: 10.3390/ijms12010462.
    1. Kelkar S.S., Reineke T.M. Theranostics: Combining imaging and therapy. Bioconjug. Chem. 2011;22:1879–1903. doi: 10.1021/bc200151q.
    1. Rai P., Mallidi S., Zheng X., Rahmanzadeh R., Mir Y., Elrington S., Khurshid A., Hasan T. Development and applications of photo-triggered theranostic agents. Adv. Drug Deliv. Rev. 2010;62:1094–1124. doi: 10.1016/j.addr.2010.09.002.
    1. Menon J.U., Jadeja P., Tambe P., Vu K., Yuan B., Nguyen K.T. Nanomaterials for photo-based diagnostic and therapeutic applications. Theranostics. 2013;3:152. doi: 10.7150/thno.5327.
    1. Hernot S., Klibanov A.L. Microbubbles in ultrasound-triggered drug and gene delivery. Adv. Drug Deliv. Rev. 2008;60:1153–1166. doi: 10.1016/j.addr.2008.03.005.
    1. Matsuki N., Ichiba S., Ishikawa T., Nagano O., Takeda M., Ujike Y., Yamaguchi T. Blood oxygenation using microbubble suspensions. Eur. Biophys. J. 2012;41:571–578. doi: 10.1007/s00249-012-0811-y.
    1. Unger E.C., Porter T., Culp W., Labell R., Matsunaga T., Zutshi R. Therapeutic applications of lipid-coated microbubbles. Adv. Drug Deliv. Rev. 2004;56:1291–1314. doi: 10.1016/j.addr.2003.12.006.
    1. Li F., Mei H., Gao Y., Xie X., Nie H., Li T., Zhang H., Jia L. Co-delivery of oxygen and erlotinib by aptamer-modified liposomal complexes to reverse hypoxia-induced drug resistance in lung cancer. Biomaterials. 2017;145:56–71. doi: 10.1016/j.biomaterials.2017.08.030.
    1. Geers B., Lentacker I., Sanders N.N., Demeester J., Meairs S., De Smedt S.C. Self-assembled liposome-loaded microbubbles: The missing link for safe and efficient ultrasound triggered drug-delivery. J. Control. Release. 2011;152:249–256. doi: 10.1016/j.jconrel.2011.02.024.
    1. Dijkmans P.A., Juffermans L.J., Musters R.J., van Wamel A., ten Cate F.J., van Gilst W., Visser C.A., de Jong N., Kamp O. Microbubbles and ultrasound: From diagnosis to therapy. Eur. J. Echocardiogr. 2004;5:245–256. doi: 10.1016/j.euje.2004.02.001.
    1. McEwan C., Owen J., Stride E., Fowley C., Nesbitt H., Cochrane D., Coussios C.C., Borden M., Nomikou N., McHale A.P., et al. Oxygen carrying microbubbles for enhanced sonodynamic therapy of hypoxic tumours. J. Control. Release. 2015;203:51–56. doi: 10.1016/j.jconrel.2015.02.004.
    1. Martin K.H., Dayton P.A. Current status and prospects for microbubbles in ultrasound theranostics. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2013;5:329–345. doi: 10.1002/wnan.1219.
    1. Unger E.C., Hersh E., Vannan M., Matsunaga T.O., McCreery T. Local drug and gene delivery through microbubbles. Prog. Cardiovasc. Dis. 2001;44:45–54. doi: 10.1053/pcad.2001.26443.
    1. Unger E.C., Matsunaga T.O., McCreery T., Schumann P., Sweitzer R., Quigley R. Therapeutic applications of microbubbles. Eur. J. Radiol. 2002;42:160–168. doi: 10.1016/S0720-048X(01)00455-7.
    1. Lee M., Lee E.Y., Lee D., Park B.J. Stabilization and fabrication of microbubbles: Applications for medical purposes and functional materials. Soft Matter. 2015;11:2067–2079. doi: 10.1039/C5SM00113G.
    1. Ferrara K., Pollard R., Borden M. Ultrasound microbubble contrast agents: Fundamentals and application to gene and drug delivery. Annu. Rev. Biomed. Eng. 2007;9:415–447. doi: 10.1146/annurev.bioeng.8.061505.095852.
    1. Kiessling F., Huppert J., Palmowski M. Functional and molecular ultrasound imaging: Concepts and contrast agents. Curr. Med. Chem. 2009;16:627–642. doi: 10.2174/092986709787458470.
    1. Bjerknes K., Sontum P., Smistad G., Agerkvist I. Preparation of polymeric microbubbles: Formulation studies and product characterisation. Int. J. Pharm. 1997;158:129–136. doi: 10.1016/S0378-5173(97)00228-7.
    1. Li J., Wang X., Zhang T., Wang C., Huang Z., Luo X., Deng Y. A review on phospholipids and their main applications in drug delivery systems. Asian J. Pharm. Sci. 2015;10:81–98. doi: 10.1016/j.ajps.2014.09.004.
    1. Sirsi S., Borden M. Microbubble compositions, properties and biomedical applications. Bubble Sci. Eng. Technol. 2009;1:3–17. doi: 10.1179/175889709X446507.
    1. Kwan J.J., Borden M.A. Lipid monolayer collapse and microbubble stability. Adv. Colloid Interface Sci. 2012;183:82–99. doi: 10.1016/j.cis.2012.08.005.
    1. Nakamura K., Yamashita K., Itoh Y., Yoshino K., Nozawa S., Kasukawa H. Comparative studies of polyethylene glycol-modified liposomes prepared using different peg-modification methods. BBA Biomembr. 2012;1818:2801–2807. doi: 10.1016/j.bbamem.2012.06.019.
    1. Abou-Saleh R.H., Swain M., Evans S.D., Thomson N.H. Poly (ethylene glycol) lipid-shelled microbubbles: Abundance, stability, and mechanical properties. Langmuir. 2014;30:5557–5563. doi: 10.1021/la404804u.
    1. Harris J.M., Chess R.B. Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov. 2003;2:214. doi: 10.1038/nrd1033.
    1. Torchilin V.P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov. 2005;4:145. doi: 10.1038/nrd1632.
    1. Tsutsui J.M., Xie F., Porter R.T. The use of microbubbles to target drug delivery. Cardiovasc. Ultrasound. 2004;2:23. doi: 10.1186/1476-7120-2-23.
    1. Cavalieri F., Ashokkumar M., Grieser F., Caruso F. Ultrasonic synthesis of stable, functional lysozyme microbubbles. Langmuir. 2008;24:10078–10083. doi: 10.1021/la801093q.
    1. Upadhyay A., Dalvi S.V., Gupta G., Khanna N. Effect of pegylation on performance of protein microbubbles and its comparison with lipid microbubbles. Mater. Sci. Eng. C. 2017;71:425–430. doi: 10.1016/j.msec.2016.10.021.
    1. Cavalieri F., Finelli I., Tortora M., Mozetic P., Chiessi E., Polizio F., Brismar T.B., Paradossi G. Polymer microbubbles as diagnostic and therapeutic gas delivery device. Chem. Mater. 2008;20:3254–3258. doi: 10.1021/cm703702d.
    1. Cavalli R., Bisazza A., Giustetto P., Civra A., Lembo D., Trotta G., Guiot C., Trotta M. Preparation and characterization of dextran nanobubbles for oxygen delivery. Int. J. Pharm. 2009;381:160–165. doi: 10.1016/j.ijpharm.2009.07.010.
    1. Xiong X., Zhao F., Shi M., Yang H., Liu Y. Polymeric microbubbles for ultrasonic molecular imaging and targeted therapeutics. J. Biomater. Sci. Polym. Ed. 2011;22:417–428. doi: 10.1163/092050610X540440.
    1. Chen C.C., Borden M.A. The role of poly (ethylene glycol) brush architecture in complement activation on targeted microbubble surfaces. Biomaterials. 2011;32:6579–6587. doi: 10.1016/j.biomaterials.2011.05.027.
    1. Juffermans L., Dijkmans P., Musters R., van Wamel A., Bouakaz A., Ten Cate F., Deelman L., Visser C., de Jong N., Kamp O. Local drug and gene delivery through microbubbles and ultrasound. Neth. Heart J. 2004;12:394.
    1. Riess J.G. Understanding the fundamentals of perfluorocarbons and perfluorocarbon emulsions relevant to in vivo oxygen delivery. Artif. Cells Blood Substit. Biotechnol. 2005;33:47–63. doi: 10.1081/BIO-200046659.
    1. Zhao W., Hu X., Duan J., Liu T., Liu M., Dong Y. Oxygen release from nanobubbles adsorbed on hydrophobic particles. Chem. Phys. Lett. 2014;608:224–228. doi: 10.1016/j.cplett.2014.05.079.
    1. Zhang S., Hosaka M., Yoshihara T., Negishi K., Iida Y., Tobita S., Takeuchi T. Phosphorescent light–emitting iridium complexes serve as a hypoxia-sensing probe for tumor imaging in living animals. Cancer Res. 2010;70:4490–4498. doi: 10.1158/0008-5472.CAN-09-3948.
    1. Volkmer E., Drosse I., Otto S., Stangelmayer A., Stengele M., Kallukalam B.C., Mutschler W., Schieker M. Hypoxia in static and dynamic 3d culture systems for tissue engineering of bone. Tissue Eng. Part A. 2008;14:1331–1340. doi: 10.1089/ten.tea.2007.0231.
    1. Iijima M., Gombodorj N., Tachibana Y., Tachibana K., Yokobori T., Honma K., Nakano T., Asao T., Kuwahara R., Aoyama K. Development of single nanometer-sized ultrafine oxygen bubbles to overcome the hypoxia-induced resistance to radiation therapy via the suppression of hypoxia-inducible factor-1α. Int. J. Oncol. 2018;52:679–686. doi: 10.3892/ijo.2018.4248.
    1. Klibanov A.L. Preparation of targeted microbubbles: Ultrasound contrast agents for molecular imaging. Med. Biol. Eng. Comput. 2009;47:875–882. doi: 10.1007/s11517-009-0498-0.
    1. Sun J., Yin M., Zhu S., Liu L., Zhu Y., Wang Z., Xu R.X., Chang S. Ultrasound-mediated destruction of oxygen and paclitaxel loaded lipid microbubbles for combination therapy in hypoxic ovarian cancer cells. Ultrason. Sonochem. 2016;28:319–326. doi: 10.1016/j.ultsonch.2015.08.009.
    1. Wigerup C., Påhlman S., Bexell D. Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer. Pharmacol. Ther. 2016;164:152–169. doi: 10.1016/j.pharmthera.2016.04.009.
    1. Rapisarda A., Melillo G. Combination strategies targeting hypoxia inducible factor 1 (hif-1) for cancer therapy. Tumor Microenviron. 2010:3–21.
    1. Ziello J.E., Jovin I.S., Huang Y. Hypoxia-inducible factor (hif)-1 regulatory pathway and its potential for therapeutic intervention in malignancy and ischemia. Yale J. Biol. Med. 2007;80:51.
    1. Melillo G. Inhibiting hypoxia-inducible factor 1 for cancer therapy. Mol. Cancer Res. 2006;4:601–605. doi: 10.1158/1541-7786.MCR-06-0235.
    1. Ji Z., Yang G., Shahzidi S., Tkacz-Stachowska K., Suo Z., Nesland J.M., Peng Q. Induction of hypoxia-inducible factor-1alpha overexpression by cobalt chloride enhances cellular resistance to photodynamic therapy. Cancer Lett. 2006;244:182–189. doi: 10.1016/j.canlet.2005.12.010.
    1. Malda J., Klein T.J., Upton Z. The roles of hypoxia in the in vitro engineering of tissues. Tissue Eng. 2007;13:2153–2162. doi: 10.1089/ten.2006.0417.
    1. Semenza G.L. Targeting hif-1 for cancer therapy. Nat. Rev. Cancer. 2003;3:721–732. doi: 10.1038/nrc1187.
    1. Cavalli R., Bisazza A., Rolfo A., Balbis S., Madonnaripa D., Caniggia I., Guiot C. Ultrasound-mediated oxygen delivery from chitosan nanobubbles. Int. J. Pharm. 2009;378:215–217. doi: 10.1016/j.ijpharm.2009.05.058.
    1. Luo T., Sun J., Zhu S., He J., Hao L., Xiao L., Zhu Y., Wang Q., Pan X., Wang Z. Ultrasound-mediated destruction of oxygen and paclitaxel loaded dual-targeting microbubbles for intraperitoneal treatment of ovarian cancer xenografts. Cancer Lett. 2017;391:1–11. doi: 10.1016/j.canlet.2016.12.032.
    1. Shi J., Kantoff P.W., Wooster R., Farokhzad O.C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer. 2017;17:20. doi: 10.1038/nrc.2016.108.
    1. Bertrand N., Wu J., Xu X., Kamaly N., Farokhzad O.C. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev. 2014;66:2–25. doi: 10.1016/j.addr.2013.11.009.
    1. Ignee A., Atkinson N.S., Schuessler G., Dietrich C.F. Ultrasound contrast agents. Endosc. Ultrasound. 2016;5:355. doi: 10.4103/2303-9027.193594.
    1. Goren D., Horowitz A.T., Tzemach D., Tarshish M., Zalipsky S., Gabizon A. Nuclear delivery of doxorubicin via folate-targeted liposomes with bypass of multidrug-resistance efflux pump. Clin. Cancer Res. 2000;6:1949–1957.
    1. Kiessling F., Fokong S., Koczera P., Lederle W., Lammers T. Ultrasound microbubbles for molecular diagnosis, therapy, and theranostics. J. Nucl. Med. 2012;53:345. doi: 10.2967/jnumed.111.099754.
    1. Escoffre J., Piron J., Novell A., Bouakaz A. Doxorubicin delivery into tumor cells with ultrasound and microbubbles. Mol. Pharm. 2011;8:799–806. doi: 10.1021/mp100397p.
    1. Luke G.P., Yeager D., Emelianov S.Y. Biomedical applications of photoacoustic imaging with exogenous contrast agents. Ann. Biomed. Eng. 2012;40:422–437. doi: 10.1007/s10439-011-0449-4.
    1. Mallidi S., Luke G.P., Emelianov S. Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance. Trends Biotechnol. 2011;29:213–221. doi: 10.1016/j.tibtech.2011.01.006.
    1. Mallidi S., Watanabe K., Timerman D., Schoenfeld D., Hasan T. Prediction of tumor recurrence and therapy monitoring using ultrasound-guided photoacoustic imaging. Theranostics. 2015;5:289. doi: 10.7150/thno.10155.
    1. Dove J.D., Murray T.W., Borden M.A. Enhanced photoacoustic response with plasmonic nanoparticle-templated microbubbles. Soft Matter. 2013;9:7743–7750. doi: 10.1039/c3sm51690c.
    1. Kim C., Qin R., Xu J.S., Wang L.V., Xu R. Multifunctional microbubbles and nanobubbles for photoacoustic and ultrasound imaging. J. Biomed. Opt. 2010;15:010510. doi: 10.1117/1.3302808.
    1. McEwan C., Fowley C., Nomikou N., McCaughan B., McHale A.P., Callan J.F. Polymeric microbubbles as delivery vehicles for sensitizers in sonodynamic therapy. Langmuir. 2014;30:14926–14930. doi: 10.1021/la503929c.
    1. Huynh E., Leung B.Y., Helfield B.L., Shakiba M., Gandier J.A., Jin C.S., Master E.R., Wilson B.C., Goertz D.E., Zheng G. In situ conversion of porphyrin microbubbles to nanoparticles for multimodality imaging. Nat. Nanotechnol. 2015;10:325–332. doi: 10.1038/nnano.2015.25.
    1. Wilson B.C., Patterson M.S. The physics, biophysics and technology of photodynamic therapy. Phys. Med. Biol. 2008;53:R61. doi: 10.1088/0031-9155/53/9/R01.
    1. Dolmans D.E., Fukumura D., Jain R.K. Photodynamic therapy for cancer. Nat. Rev. Cancer. 2003;3:380. doi: 10.1038/nrc1071.
    1. Costley D., Mc Ewan C., Fowley C., McHale A.P., Atchison J., Nomikou N., Callan J.F. Treating cancer with sonodynamic therapy: A review. Int. J. Hyperth. 2015;31:107–117. doi: 10.3109/02656736.2014.992484.
    1. Chouikrat R., Seve A., Vanderesse R., Benachour H., Barberi-Heyob M., Richeter S., Raehm L., Durand J.-O., Verelst M., Frochot C. Non polymeric nanoparticles for photodynamic therapy applications: Recent developments. Curr. Med. Chem. 2012;19:781–792. doi: 10.2174/092986712799034897.
    1. Jerjes W., Upile T., Hamdoon Z., Nhembe F., Bhandari R., Mackay S., Shah P., Mosse C.A., Brookes J.A., Morley S., et al. Ultrasound-guided photodynamic therapy for deep seated pathologies: Prospective study. Lasers Surg. Med. 2009;41:612–621. doi: 10.1002/lsm.20853.
    1. Ai X., Mu J., Xing B. Recent advances of light-mediated theranostics. Theranostics. 2016;6:2439. doi: 10.7150/thno.16088.
    1. Derycke A.S., de Witte P.A. Liposomes for photodynamic therapy. Adv. Drug Deliv. Rev. 2004;56:17–30. doi: 10.1016/j.addr.2003.07.014.

Source: PubMed

3
Abonneren