Gait Recovery with an Overground Powered Exoskeleton: A Randomized Controlled Trial on Subacute Stroke Subjects

Franco Molteni, Eleonora Guanziroli, Michela Goffredo, Rocco Salvatore Calabrò, Sanaz Pournajaf, Marina Gaffuri, Giulio Gasperini, Serena Filoni, Silvano Baratta, Daniele Galafate, Domenica Le Pera, Placido Bramanti, Marco Franceschini, On Behalf Of Italian Eksogait Study Group, Franco Molteni, Eleonora Guanziroli, Michela Goffredo, Rocco Salvatore Calabrò, Sanaz Pournajaf, Marina Gaffuri, Giulio Gasperini, Serena Filoni, Silvano Baratta, Daniele Galafate, Domenica Le Pera, Placido Bramanti, Marco Franceschini, On Behalf Of Italian Eksogait Study Group

Abstract

Background: Overground Robot-Assisted Gait Training (o-RAGT) provides intensive gait rehabilitation. This study investigated the efficacy of o-RAGT in subacute stroke subjects, compared to conventional gait training.

Methods: A multicenter randomized controlled trial was conducted on 75 subacute stroke subjects (38 in the Experimental Group (EG) and 37 in the Control Group (CG)). Both groups received 15 sessions of gait training (5 sessions/week for 60 min) and daily conventional rehabilitation. The subjects were assessed at the beginning (T1) and end (T2) of the training period with the primary outcome of a 6 Minutes Walking Test (6MWT), the Modified Ashworth Scale of the Affected lower Limb (MAS-AL), the Motricity Index of the Affected lower Limb (MI-AL), the Trunk Control Test (TCT), Functional Ambulation Classification (FAC), a 10 Meters Walking Test (10MWT), the modified Barthel Index (mBI), and the Walking Handicap Scale (WHS).

Results: The 6MWT increased in both groups, which was confirmed by both frequentist and Bayesian analyses. Similar outcomes were registered in the MI-AL, 10MWT, mBI, and MAS-AL. The FAC and WHS showed a significant number of subjects improving in functional and community ambulation in both groups at T2.

Conclusions: The clinical effects of o-RAGT were similar to conventional gait training in subacute stroke subjects. The results obtained in this study are encouraging and suggest future clinical trials on the topic.

Keywords: exoskeleton device; neurologic gait disorders; rehabilitation; robot-assisted gait training; stroke.

Conflict of interest statement

The authors certify that there is no conflict of interest with any financial organization or with the Ekso Bionics regarding the material discussed in the manuscript.

Figures

Figure 1
Figure 1
Flowchart.
Figure 2
Figure 2
6MWT distance comparison of the scores at T1 and T2. The p-value and the Bayes Factor (BF) of the intragroup effects are shown.
Figure 3
Figure 3
Motricity Index of the affected lower Limb (MI-AL) comparison of the scores at T1 and T2. The p-value and the BF of the intragroup effects are shown.
Figure 4
Figure 4
Trunk Control Test (TCT) comparison of the scores at T1 and T2. The p-value and the BF of the intragroup effects are shown.
Figure 5
Figure 5
10MWT velocity comparison of the scores at T1 and T2. The p-value and the BF of the intragroup effects are shown.
Figure 6
Figure 6
Modified Barthel Index (mBI) comparison of the scores at T1 and T2. The p-value and the BF of the intragroup effects are shown.
Figure 7
Figure 7
Percentage of subjects in each FAC category (0 = subject cannot walk; 1 = subject requires physical assistance from one person and contacts are continuous; 2 = subject requires physical assistance as in the previous category, but contact is intermittent or light; 3 = subject requires verbal supervision or standby help from one person without physical contact; 4 = subject can walk independently on level ground but requires help on stairs, slopes, or uneven surfaces; 5 = subject can walk independently anywhere) in both the EG and the CG at T1 and T2.
Figure 8
Figure 8
Percentage of subjects in each WHS category (1 = physiological gait; 2 = indoor gait with limitations; 3 = indoor gait without limitations; 4 = community ambulation with major limitations; 5 = community ambulation with some limitations; 6 = community ambulation without limitations) in both the EG and the CG at T1 and T2.

References

    1. Hong E. Comparison of quality of life according to community walking in stroke patients. J. Phys. Ther. Sci. 2015;27:2391–2393. doi: 10.1589/jpts.27.2391.
    1. Seccia R., Boresta M., Fusco F., Tronci E., Di Gemma E., Palagi L., Mangone M., Agostini F., Bernetti A., Santilli V., et al. Data of patients undergoing rehabilitation programs. Data Brief. 2020;30:105419. doi: 10.1016/j.dib.2020.105419.
    1. Louie D.R., Eng J.J. Powered robotic exoskeletons in post-stroke rehabilitation of gait: A scoping review. J. Neuroeng. Rehabil. 2016;13:53. doi: 10.1186/s12984-016-0162-5.
    1. Molteni F., Gasperini G., Cannaviello G., Guanziroli E. Exoskeleton and end-effector robots for upper and lower limbs rehabilitation: Narrative review. PmR. 2018;10:174–188. doi: 10.1016/j.pmrj.2018.06.005.
    1. Peters S., Handy T.C., Lakhani B., Boyd L.A., Garland S.J. Motor and visuospatial attention and motor planning after stroke: Considerations for the rehabilitation of standing balance and gait. Phys. Ther. 2015;95:1423–1432. doi: 10.2522/ptj.20140492.
    1. Pons J.L. Rehabilitation exoskeletal robotics. IEEE Eng. Med. Biol. Mag. 2010;29:57–63. doi: 10.1109/MEMB.2010.936548.
    1. Bruni M.F., Melegari C., De Cola M.C., Bramanti A., Bramanti P., Calabrò R.S. What does best evidence tell us about robotic gait rehabilitation in stroke patients: A systematic review and meta-analysis. J. Clin. Neurosci. 2018;48:11–17. doi: 10.1016/j.jocn.2017.10.048.
    1. Hsu C.Y., Cheng Y.H., Lai C.H., Lin Y.N. Clinical non-superiority of technology-assisted gait training with body weight support in patients with subacute stroke: A meta-analysis. Ann. Phys. Rehabil. Med. 2019;63:535–542. doi: 10.1016/j.rehab.2019.09.009.
    1. Mehrholz J., Thomas S., Werner C., Kugler J., Pohl M., Elsner B. Electromechanical-assisted training for walking after stroke. Cochrane Database Syst. Rev. 2017;10:CD006185. doi: 10.1002/14651858.cd006185.pub5.
    1. Capecci M., Pournajaf S., Galafate D., Sale P., Le Pera D., Goffredo M., de Pandis F.M., Andrenelli E., Pennacchioni M., Ceravolo M.G., et al. Clinical effects of robot-assisted gait training and treadmill training for Parkinson’s disease. A randomized controlled trial. Ann. Phys. Rehabil. Med. 2019;62:303–312. doi: 10.1016/j.rehab.2019.06.016.
    1. Aprile I., Iacovelli C., Goffredo M., Cruciani A., Galli M., Simbolotti C., Pecchioli C., Padua L., Galafate D., Pournajaf S., et al. Efficacy of end-effector robot-assisted gait training in subacute stroke patients: Clinical and gait outcomes from a pilot bi-centre study. Neurorehabilitation. 2019;45:201–212. doi: 10.3233/NRE-192778.
    1. Morone G., Paolucci S., Cherubini A., De Angelis D., Venturiero V., Coiro P., Iosa M. Robot-assisted gait training for stroke patients: Current state of the art and perspectives of robotics. Neuropsychiatr. Dis. Treat. 2017;13:1303–1311. doi: 10.2147/NDT.S114102.
    1. Calabrò R.S., Naro A., Russo M., Bramanti P., Carioti L., Balletta T., Buda A., Manuli A., Filoni S., Bramanti A. Shaping neuroplasticity by using powered exoskeletons in patients with stroke: A randomized clinical trial. J. Neuroeng. Rehabil. 2018;15:35. doi: 10.1186/s12984-018-0377-8.
    1. Rojek A., Mika A., Oleksy Ł., Stolarczyk A., Kielnar R. Effects of Exoskeleton Gait Training on Balance; Load Distribution; and Functional Status in Stroke: A Randomized Controlled Trial. Front. Neurol. 2020;10:1344. doi: 10.3389/fneur.2019.01344.
    1. Lee H.-J., Lee S.-H., Seo K., Lee M., Chang W.H., Choi B.-O., Ryu G.-H., Kim Y.-H. Training for walking efficiency with a wearable hip-assist robot in patients with stroke: A pilot randomized controlled trial. Stroke. 2019;50:3545–3552. doi: 10.1161/STROKEAHA.119.025950.
    1. Goffredo M., Iacovelli C., Russo E., Pournajaf S., Di Blasi C., Galafate D., Pellicciari L., Agosti M., Filoni S., Aprile I., et al. Stroke Gait Rehabilitation: A Comparison of End-Effector; Overground Exoskeleton; and Conventional Gait Training. Appl. Sci. 2019;9:2627. doi: 10.3390/app9132627.
    1. Cirstea C.M. Are Wearable Robots Effective for Gait Recovery after Stroke? Stroke. 2019;50:3337–3338. doi: 10.1161/STROKEAHA.119.026548.
    1. Nolan K.J., Karunakaran K.K., Chervin K., Monfett M.R., Bapineedu R.K., Jasey N.N., Oh-Park M. Robotic Exoskeleton Gait Training During Acute Stroke Inpatient Rehabilitation. Front. Neurorobotics. 2020;14:581815. doi: 10.3389/fnbot.2020.581815.
    1. Wall A., Borg J., Vreede K., Palmcrantz S. A randomized controlled study incorporating an electromechanical gait machine; The Hybrid Assistive Limb; In gait training of patients with severe limitations in walking in the subacute phase after stroke. PLoS ONE. 2020;15:e0229707. doi: 10.1371/journal.pone.0229707.
    1. Gasperini G., Gaffuri M., Guanziroli E., Goffredo M., Puornajaf S., Galafate D., Russo E., Filoni S., Franceschini M., Molteni F. Recovery of gait function with a wearable powered exoskeleton in sub-acute stroke patients using SEMG for fine tuning: Preliminary results. Ann. Phys. Rehabil. Med. 2018;61:e93. doi: 10.1016/j.rehab.2018.05.198.
    1. Molteni F., Gasperini G., Gaffuri M., Colombo M., Giovanzana C., Lorenzon C., Farina N., Cannaviello G., Scarano S., Proserpio D., et al. Wearable robotic exoskeleton for overground gait training in sub-acute and chronic hemiparetic stroke patients: Preliminary results. Eur. J. Phys. Rehabil. Med. 2017;53:676–684.
    1. Goffredo M., Guanziroli E., Pournajaf S., Gaffuri M., Gasperini G., Filoni S., Baratta S., Damiani C., Franceschini M., Molteni F., et al. Overground wearable powered exoskeleton for gait training in subacute stroke subjects: Clinical and gait assessments. Eur. J. Phys. Rehabil. Med. 2019;55:710–721. doi: 10.23736/S1973-9087.19.05574-6.
    1. Gandolla M., Guanziroli E., D’Angelo A., Cannaviello G., Molteni F., Pedrocchi A. Automatic Setting Procedure for Exoskeleton-Assisted Overground Gait: Proof of Concept on Stroke Population. Front Neurorobot. 2018;19:10. doi: 10.3389/fnbot.2018.00010.
    1. Bohannon R.W., Smith M.B. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys. Ther. 1987;67:206–207. doi: 10.1093/ptj/67.2.206.
    1. Dadgoo M., Salehi M. Test-retest reliability of Motricity Index strength assessments for lower extremity in post stroke hemiparesis. Med. J. Islam. Repub. Iran. 2012;26:27–30.
    1. Franchignoni F.P., Tesio L., Ricupero C., Martino M.T. Trunk control test as an early predictor of stroke rehabilitation outcome. Stroke. 1997;28:1382–1385. doi: 10.1161/01.STR.28.7.1382.
    1. Holden M.K., Gill K.M., Magliozzi M.R., Nathan J., Piehl-Baker L. Clinical gait assessment in the neurologically impaired. Reliability and meaningfulness. Phys. Ther. 1984;64:35–40. doi: 10.1093/ptj/64.1.35.
    1. Tyson S., Connell L. The psychometric properties and clinical utility of measures of walking and mobility in neurological conditions: A systematic review. Clin. Rehabil. 2009;23:1018–1033. doi: 10.1177/0269215509339004.
    1. Perera S., Mody S.H., Woodman R.C., Studenski S.A. Meaningful change and responsiveness in common physical performance measures in older adults. J. Am. Geriatr. Soc. 2006;54:743–749. doi: 10.1111/j.1532-5415.2006.00701.x.
    1. Hsueh I.P., Lin J.H., Jeng J.S., Hsieh C.L. Comparison of the psychometric characteristics of the functional independence measure; 5 item Barthel index; And 10 item Barthel index in patients with stroke. J. Neurol. Neurosurg. Psychiatry. 2002;73:188–190. doi: 10.1136/jnnp.73.2.188.
    1. Perry J., Garrett M., Gronley J.K., Mulroy S.J. Classification of walking handicap in the stroke population. Stroke. 1995;26:982–989. doi: 10.1161/01.STR.26.6.982.
    1. Mazzoleni S., Turchetti G., Palla I., Posteraro F., Dario P. Acceptability of robotic technology in neuro-rehabilitation: Preliminary results on chronic stroke patients. Comput. Methods Programs Biomed. 2014;116:116–122. doi: 10.1016/j.cmpb.2013.12.017.
    1. Lee S.Y., Song X.Y. Evaluation of the Bayesian and Maximum Likelihood Approaches in Analyzing Structural Equation Models with Small Sample Sizes. Multivar. Behav. Res. 2004;39:653–686. doi: 10.1207/s15327906mbr3904_4.
    1. Hox J., Van de Schoot R., Matthijsse S. How few countries will do? Comparative survey analysis from a Bayesian perspective. Surv. Res. Methods. 2012;6:87–93.
    1. Lee M.D., Wagenmakers E.-J. Bayesian Cognitive Modeling: A Practical Course. Cambridge University Press; Cambridge, UK: 2013.
    1. Franceschini M., Mazzoleni S., Goffredo M., Pournajaf S., Galafate D., Criscuolo S., Agosti M., Posteraro F. Upper limb robot-assisted rehabilitation versus physical therapy on subacute stroke patients: A follow-up study. J. Bodyw. Mov. Ther. 2019;24:194–198. doi: 10.1016/j.jbmt.2019.03.016.
    1. Pournajaf S., Goffredo M., Agosti M., Massucci M., Ferro S., Franceschini M. Community ambulation of stroke survivors at 6 months follow-up: An observational study on sociodemographic and sub-acute clinical indicators. Eur. J. Phys. Rehabil. Med. 2019;55:433–441. doi: 10.23736/S1973-9087.18.05489-8.
    1. Wang S.-B., Wang Y.-Y., Zhang Q.-E., Wu S.-L., Ng C.H., Ungvari G.S., Chen L., Wang C., Jia F., Xiang Y.-T. Cognitive behavioral therapy for post-stroke depression: A meta-analysis. J. Affect. Disord. 2018;235:589–596. doi: 10.1016/j.jad.2018.04.011.
    1. Giusino D., Fraboni F., Rainieri G., De Angelis M., Tria A., La Bara L.M.A., Pietrantoni L. International Conference on Human Interaction and Emerging Technologies. Springer; Cham, Germany: 2020. Human Factors in Interfaces for Rehabilitation-Assistive Exoskeletons: A Critical Review and Research Agenda; pp. 356–362.
    1. Esquenazi A., Lee S., Wikoff A., Packel A., Toczylowski T., Feeley J. A Comparison of Locomotor Therapy Interventions: Partial-Body Weight−Supported Treadmill; Lokomat; and G-EO Training in People with Traumatic Brain Injury. PMR. 2017;9:839–846. doi: 10.1016/j.pmrj.2016.12.010.
    1. Goffredo M., Infarinato F., Pournajaf S., Romano P., Ottaviani M., Pellicciari L., Galafate D., Gabbani D., Gison A., Franceschini M. Barriers to sEMG Assessment During Overground Robot-Assisted Gait Training in Subacute Stroke Patients. Front. Neurol. 2020;11:1263. doi: 10.3389/fneur.2020.564067.

Source: PubMed

3
Abonneren