A functional magnetic resonance imaging investigation of prefrontal cortex deep transcranial magnetic stimulation efficacy in adults with attention deficit/hyperactive disorder: A double blind, randomized clinical trial

Maya Bleich-Cohen, Guy Gurevitch, Noa Carmi, Mordekhay Medvedovsky, Noa Bregman, Naomi Nevler, Karin Elman, Amit Ginou, Abraham Zangen, Elissa L Ash, Maya Bleich-Cohen, Guy Gurevitch, Noa Carmi, Mordekhay Medvedovsky, Noa Bregman, Naomi Nevler, Karin Elman, Amit Ginou, Abraham Zangen, Elissa L Ash

Abstract

ADHD is one of the most prevalent neurocognitive disorders. Deep Transcranial Magnetic Stimulation (dTMS) is a non-invasive neuromodulation tool that holds promise in treatment of neurocognitive disorders. Hypoactivity of the prefrontal cortex (PFC) has been observed in ADHD. This study examined the clinical, cognitive, and neural effects of dTMS to the PFC in adults with ADHD by using functional magnetic resonance imaging (fMRI). High frequency repetitive dTMS was applied to either the right or left PFC in 62 adults with ADHD in a randomized, double blind, placebo controlled protocol with 3 study groups: 2 treatment arms (rPFC, or lPFC) and a Sham arm. The study included 15 dTMS/cognitive training treatment sessions. Clinical effects were assessed with the Conners Adult ADHD Rating Scale (CAARS) self-report and the Clinical Global Impression score (CGI) as primary outcome measures. Self-report/observer questionnaires and computerized cognitive testing were also performed to assess clinical and cognitive effects. Neural effects were assessed with fMRI using working-memory (WM) and resting-state paradigms. While the study did not show improvement in the primary endpoints, significant improvements were observed in the CAARS (self-report) inattention/memory sub-scale, as well as increased activations in the rDLPFC, right parietal-cortex and right insula/IFG during WM conditions after treatment in the right stimulation group. Increased rDLPFC activation was associated with larger symptom improvement in the right stimulation group. This study indicates that dTMS is effective in modulating attention related brain networks, and is a feasible technique that may improve attention symptoms in adults with ADHD.

Trial registration: ClinicalTrials.gov NCT01196910.

Keywords: ADHD; Inattention; PFC; Working-memory; dTMS; fMRI.

Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.

Figures

Fig. 1
Fig. 1
(A) A time line of the study protocol. (B) Electric field distribution maps at 120% RMT of the right, left and sham H6 coils targeting PFC.
Fig. 2
Fig. 2
Clinical sub-scales. A line chart depicting the change from baseline scores of the two treatment groups (Right stimulation in red; left stimulation in blue) and Sham group (green) across time (Screening, visit 15, visit 16 and visit 17) of the (A) CAARS (observer) total subscale (B) CAARS (self-report) total subscale and (C) CAARS (self-report) inattention/memory subscale. Error bars represent standard errors. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 3
Fig. 3
Right DLPFC activation before and after treatment phase during the WM task. (a) Sagittal slice showing brain region of interest located in the right DLPFC (purple). The bar graph presents the brain activation (beta values) from right DLPFC in the three groups across conditions before (full bars) and after (clear bars) the 3 weeks of treatment. * P < 0.05. (b) Significant correlation r = 0.43, (P < 0.05) between activation change in the right DLPFC following treatment and improvement in inattention symptoms score shown in the right PFC stimulation group. DLPFC, Dorsolateral Prefrontal Cortex. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 4
Fig. 4
Right IPs activation before and after treatment phase during the WM task. Sagittal slice showing brain region of interest located in the right IPs (cyan). The bar graph presents the brain activation (beta values) from right IPs in the three groups across conditions before (full bars) and after (clear bars) following the 3 weeks of treatment. * P < 0.05 t. IPs, Intra Parietal sulcus. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 5
Fig. 5
Right IFG/ant. Insula activation before and after treatment phase during the WM task. Sagittal slice showing brain region of interest located in the right IFG/ant. Insula (light blue). The bar graph presents the brain activation from right IFG/ant. Insula in the three groups across conditions before (full bars) and after (clear bars) following the 3 weeks of treatment. * P < 0.05. IFG, Inferior Frontal Gyrus, ant., anterior. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 6
Fig. 6
Connectivity between mPFC & Right and Left Middle Insula during the WM task. Axial slice showing increased functional connectivity between mPFC (yellow) and the right & left middle insula (orange). The image was thresholded at q < 0.05, FDR corrected. Extracted beta values from the right middle insula (the left bar graph) and from the left middle insula (the right bar graph) showed that the treatment specifically enhanced mPFC-bilateral middle insula functional connectivity only for the right PFC stimulation group (in red). * P < 0.05; ** P < 0.005. Error bars represent standard errors. mPFC, medial prefrontal cortex. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 7
Fig. 7
Connectivity between mPFC & PCC during Resting State. Axial slice showing the seed region, mPFC (in yellow) and in midsagittal view increased functional connectivity with the PCC (orange). The image was thresholded at q < 0.05, FDR corrected. Extracted beta values from the PCC showed that the treatment specifically enhanced mPFC-PCC functional connectivity only for the right PFC stimulation group (in red). * P < 0.01; ** P < 0.005. Error bars represent standard errors. PCC, posterior cingulate cortex. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

References

    1. Alderson R.M., Kasper L.J., Hudec K.L., Patros C.H.G. Attention-deficit/hyperactivity disorder (ADHD) and working memory in adults: A meta-analytic review. Neuropsychology. 2013;27:287–302. doi: 10.1037/a0032371.
    1. Alyagon U., Shahar H., Hadar A., Barnea-Ygael N., Lazarovits A., Shalev H., Zangen A. Alleviation of ADHD symptoms by non-invasive right prefrontal stimulation is correlated with EEG activity. NeuroImage: Clinical. 2020;26 doi: 10.1016/j.nicl.2020.102206.
    1. American Psychiatric Association, 2013. Diagnostic and Statistical Manual of Mental Disorders (DSM-5®). American Psychiatric Pub..
    1. Barkley R.A. Guilford Press; 2011. Barkley Adult ADHD Rating Scale-IV (BAARS-IV)
    1. Beck A.T. An Inventory for Measuring Depression. Arch. Gen. Psychiatry. 1961;4:561. doi: 10.1001/archpsyc.1961.01710120031004.
    1. Berman S.M., Kuczenski R., McCracken J.T., London E.D. “Potential adverse effects of amphetamine treatment on brain and behavior: A review”: Corrigendum. Mol. Psychiatry. 2010;15:1121. doi: 10.1038/mp.2010.39.
    1. Bloch Y., Harel E.V., Aviram S., Govezensky J., Ratzoni G., Levkovitz Y. Positive effects of repetitive transcranial magnetic stimulation on attention in ADHD Subjects: A randomized controlled pilot study. The World J. Biol. Psych. 2010;11:755–758. doi: 10.3109/15622975.2010.484466.
    1. Boonstra A.M., Oosterlaan J., Sergeant J.A., Buitelaar J.K. Executive functioning in adult ADHD: a meta-analytic review. Psychol. Med. 2005;35:1097–1108. doi: 10.1017/S003329170500499X.
    1. Booth J.R., Burman D.D., Meyer J.R., Lei Z., Trommer B.L., Davenport N.D., Li W., Parrish T.B., Gitelman D.R., Mesulam M.M. Larger deficits in brain networks for response inhibition than for visual selective attention in attention deficit hyperactivity disorder (ADHD) J. Child Psychol. Psychiatry. 2005;46:94–111. doi: 10.1111/j.1469-7610.2004.00337.x.
    1. Brod M., Johnston J., Able S., Swindle R. Validation of the Adult Attention-Deficit/Hyperactivity Disorder Quality-of-Life Scale (AAQoL): A Disease-Specific Quality-of-Life Measure. Qual Life Res. 2006;15:117–129. doi: 10.1007/s11136-005-8325-z.
    1. Bush G. Cingulate, Frontal, and Parietal Cortical Dysfunction in Attention-Deficit/Hyperactivity Disorder. Biological Psychiatry, Prefrontal Cortical Circuits Regulating Attention, Behavior and Emotion. 2011;69:1160–1167. doi: 10.1016/j.biopsych.2011.01.022.
    1. Bush G. Attention-deficit/hyperactivity disorder and attention networks. Neuropsychopharmacol. 2010;35:278–300. doi: 10.1038/npp.2009.120.
    1. Carmi L., Alyagon U., Barnea-Ygael N., Zohar J., Dar R., Zangen A. Clinical and electrophysiological outcomes of deep TMS over the medial prefrontal and anterior cingulate cortices in OCD patients. Brain Stimulation. 2018;11:158–165. doi: 10.1016/j.brs.2017.09.004.
    1. Casey B.J., Castellanos F.X., Giedd J.N., Marsh W.L., Hamburger S.D., Schubert A.B., Vauss Y.C., Vaituzis A.C., Dickstein D.P., Sarfatti S.E., Rapoport J.L. Implication of right frontostriatal circuitry in response inhibition and attention-deficit/hyperactivity disorder. J. Am. Acad. Child Adolesc. Psychiatry. 1997;36:374–383. doi: 10.1097/00004583-199703000-00016.
    1. Castellanos F.X., Giedd J.N., Marsh W.L., Hamburger S.D., Vaituzis A.C., Dickstein D.P., Sarfatti S.E., Vauss Y.C., Snell J.W., Lange N., Kaysen D., Krain A.L., Ritchie G.F., Rajapakse J.C., Rapoport J.L. Quantitative Brain Magnetic Resonance Imaging in Attention-Deficit Hyperactivity Disorder. Arch Gen Psychiatry. 1996;53:607–616. doi: 10.1001/archpsyc.1996.01830070053009.
    1. Castellanos F.X., Margulies D.S., Kelly C., Uddin L.Q., Ghaffari M., Kirsch A., Shaw D., Shehzad Z., Di Martino A., Biswal B., Sonuga-Barke E.J.S., Rotrosen J., Adler L.A., Milham M.P. Cingulate-Precuneus Interactions: A New Locus of Dysfunction in Adult Attention-Deficit/Hyperactivity Disorder. Biological Psychiatry, Impulse Control: Aggression, Addiction, and Attention Deficits. 2008;63:332–337. doi: 10.1016/j.biopsych.2007.06.025.
    1. Coghill D.R., Rhodes S.M., Matthews K. The Neuropsychological Effects of Chronic Methylphenidate on Drug-Naive Boys with Attention-Deficit/Hyperactivity Disorder. Biological Psychiatry, Autism and Attention Deficit Hyperactivity Disorder. 2007;62:954–962. doi: 10.1016/j.biopsych.2006.12.030.
    1. Conners C.K., Erhardt D., Epstein J.N., Parker J.D.A., Sitarenios G., Sparrow E. Self-ratings of ADHD symptoms in adults I: Factor structure and normative data. J Atten Disord. 1999;3:141–151. doi: 10.1177/108705479900300303.
    1. Cortese S., Kelly C., Chabernaud C., Proal E., Di Martino A., Milham M.P., Castellanos F.X. Toward Systems Neuroscience of ADHD: A Meta-Analysis of 55 fMRI Studies. AJP. 2012;169:1038–1055. doi: 10.1176/appi.ajp.2012.11101521.
    1. Deng Z.-D., Lisanby S.H., Peterchev A.V. Electric field depth–focality tradeoff in transcranial magnetic stimulation: Simulation comparison of 50 coil designs. Brain Stimulation. 2013;6:1–13. doi: 10.1016/j.brs.2012.02.005.
    1. Duncan J., Owen A.M. Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci. 2000;23:475–483. doi: 10.1016/S0166-2236(00)01633-7.
    1. Escribano B., Medina-Fernandez F., Caballero-Villarraso J., Feijoo M., Aguera E., Tunez I. Effects and Therapeutic Use of TMS in Psychiatric Disorders: An Evidence-Based Review. Neuropsychiatry. 2019;9:2140–2160. doi: 10.4172/Neuropsychiatry.1000560.
    1. Ferrin M., Taylor E. Child and caregiver issues in the treatment of attention deficit–hyperactivity disorder: education, adherence and treatment choice. Future Neurology. 2011;6:399–413. doi: 10.2217/fnl.11.5.
    1. Filipek P.A., Semrud-Clikeman M., Steingard R.J., Renshaw P.F., Kennedy D.N., Biederman J. Volumetric MRI analysis comparing subjects having attention-deficit hyperactivity disorder with normal controls. Neurology. 1997;48:589–601. doi: 10.1212/WNL.48.3.589.
    1. Fuermaier, A.B.M., Tucha, L., Koerts, J., Aschenbrenner, S., Kaunzinger, I., Hauser, J., Weisbrod, M., Lange, K.W., Tucha, O., 2015. Cognitive impairment in adult ADHD—Perspective matters! Neuropsychology 29. .
    1. Gilam G., Lin T., Raz G., Azrielant S., Fruchter E., Ariely D., Hendler T. Neural substrates underlying the tendency to accept anger-infused ultimatum offers during dynamic social interactions. NeuroImage. 2015;120:400–411. doi: 10.1016/j.neuroimage.2015.07.003.
    1. Ginsberg Y., Quintero J., Anand E., Casillas M., Upadhyaya H.P. Underdiagnosis of Attention-Deficit/Hyperactivity Disorder in Adult Patients: A Review of the Literature. Prim Care Companion CNS Disord. 2014;16 doi: 10.4088/PCC.13r01600.
    1. Gioia G.A., Isquith P.K. Behavior Rating Inventory for Executive Functions. In: Kreutzer J.S., DeLuca J., Caplan B., editors. Encyclopedia of Clinical Neuropsychology. Springer; New York, New York, NY: 2011. pp. 372–376.
    1. Hart H., Radua J., Nakao T., Mataix-Cols D., Rubia K. Meta-analysis of Functional Magnetic Resonance Imaging Studies of Inhibition and Attention in Attention-deficit/Hyperactivity Disorder: Exploring Task-Specific, Stimulant Medication, and Age Effects. JAMA Psychiatry. 2013;70:185–198. doi: 10.1001/jamapsychiatry.2013.277.
    1. Lefaucheur J.-P., André-Obadia N., Antal A., Ayache S.S., Baeken C., Benninger D.H., Cantello R.M., Cincotta M., de Carvalho M., De Ridder D., Devanne H., Di Lazzaro V., Filipović S.R., Hummel F.C., Jääskeläinen S.K., Kimiskidis V.K., Koch G., Langguth B., Nyffeler T., Oliviero A., Padberg F., Poulet E., Rossi S., Rossini P.M., Rothwell J.C., Schönfeldt-Lecuona C., Siebner H.R., Slotema C.W., Stagg C.J., Valls-Sole J., Ziemann U., Paulus W., Garcia-Larrea L. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS) Clin. Neurophysiol. 2014;125:2150–2206. doi: 10.1016/j.clinph.2014.05.021.
    1. Lei D., Du M., Wu M., Chen T., Huang X., Du X., Bi F., Kemp G.J., Gong Q. Functional MRI reveals different response inhibition between adults and children with ADHD. Neuropsychology. 2015;29:874–881. doi: 10.1037/neu0000200.
    1. Levkovitz Y., Harel E.V., Roth Y., Braw Y., Most D., Katz L.N., Sheer A., Gersner R., Zangen A. Deep transcranial magnetic stimulation over the prefrontal cortex: Evaluation of antidepressant and cognitive effects in depressive patients. Brain Stimulation. 2009;2:188–200. doi: 10.1016/j.brs.2009.08.002.
    1. Levkovitz Y., Isserles M., Padberg F., Lisanby S.H., Bystritsky A., Xia G., Tendler A., Daskalakis Z.J., Winston J.L., Dannon P., Hafez H.M., Reti I.M., Morales O.G., Schlaepfer T.E., Hollander E., Berman J.A., Husain M.M., Sofer U., Stein A., Adler S., Deutsch L., Deutsch F., Roth Y., George M.S., Zangen A. Efficacy and safety of deep transcranial magnetic stimulation for major depression: a prospective multicenter randomized controlled trial. World Psychiatry. 2015;14:64–73. doi: 10.1002/wps.20199.
    1. McCarthy H., Skokauskas N., Frodl T. Identifying a consistent pattern of neural function in attention deficit hyperactivity disorder: a meta-analysis. Psychol. Med. 2014;44:869–880. doi: 10.1017/S0033291713001037.
    1. Mostert J.C., Onnink A.M.H., Klein M., Dammers J., Harneit A., Schulten T., van Hulzen K.J.E., Kan C.C., Slaats-Willemse D., Buitelaar J.K., Franke B., Hoogman M. Cognitive heterogeneity in adult attention deficit/hyperactivity disorder: A systematic analysis of neuropsychological measurements. Eur. Neuropsychopharmacol. 2015;25:2062–2074. doi: 10.1016/j.euroneuro.2015.08.010.
    1. Norman L.J., Carlisi C., Lukito S., Hart H., Mataix-Cols D., Radua J., Rubia K. Structural and Functional Brain Abnormalities in Attention-Deficit/Hyperactivity Disorder and Obsessive-Compulsive Disorder: A Comparative Meta-analysis. JAMA Psychiatry. 2016;73:815–825. doi: 10.1001/jamapsychiatry.2016.0700.
    1. Pelham W.E., Foster E.M., Robb J.A. The Economic Impact of Attention-Deficit/Hyperactivity Disorder in Children and Adolescents. J Pediatr Psychol. 2007;32:711–727. doi: 10.1093/jpepsy/jsm022.
    1. Posner J., Park C., Wang Z. Connecting the Dots: A Review of Resting Connectivity MRI Studies in Attention-Deficit/Hyperactivity Disorder. Neuropsychol Rev. 2014;24:3–15. doi: 10.1007/s11065-014-9251-z.
    1. Posner M.I., Petersen S.E. The Attention System of the Human Brain. Annu. Rev. Neurosci. 1990;13:25–42. doi: 10.1146/annurev.ne.13.030190.000325.
    1. Rohlf H., Jucksch V., Gawrilow C., Huss M., Hein J., Lehmkuhl U., Salbach-Andrae H. Set shifting and working memory in adults with attention-deficit/hyperactivity disorder. J Neural Transm. 2012;119:95–106. doi: 10.1007/s00702-011-0660-3.
    1. Rubia K., Overmeyer S., Taylor E., Brammer M., Williams S.C.R., Simmons A., Bullmore E.T. Hypofrontality in Attention Deficit Hyperactivity Disorder During Higher-Order Motor Control: A Study With Functional MRI. AJP. 1999;156:891–896. doi: 10.1176/ajp.156.6.891.
    1. Saad J.F., Griffiths K.R., Korgaonkar M.S. A Systematic Review of Imaging Studies in the Combined and Inattentive Subtypes of Attention Deficit Hyperactivity Disorder. Front. Integr. Neurosci. 2020;14 doi: 10.3389/fnint.2020.00031.
    1. Salehinejad M.A., Wischnewski M., Nejati V., Vicario C.M., Nitsche M.A. Transcranial direct current stimulation in attention-deficit hyperactivity disorder: A meta-analysis of neuropsychological deficits. PLoS ONE. 2019;14 doi: 10.1371/journal.pone.0215095.
    1. Schutter D.J.L.G., van Honk J. A Standardized Motor Threshold Estimation Procedure for Transcranial Magnetic Stimulation Research. The Journal of ECT. 2006;22:176. doi: 10.1097/01.yct.0000235924.60364.27.
    1. Schweiger A., Abramovitch A., Doniger G.M., Simon E.S. A clinical construct validity study of a novel computerized battery for the diagnosis of ADHD in young adults. J. Clin. Exp. Neuropsychol. 2007;29:100–111. doi: 10.1080/13803390500519738.
    1. Silvanto J., Pascual-Leone A. State-Dependency of Transcranial Magnetic Stimulation. Brain Topogr. 2008;21:1. doi: 10.1007/s10548-008-0067-0.
    1. Simon V., Czobor P., Bálint S., Mészáros Á., Bitter I. Prevalence and correlates of adult attention-deficit hyperactivity disorder: meta-analysis. The British Journal of Psychiatry. 2009;194:204–211. doi: 10.1192/bjp.bp.107.048827.
    1. Simonsmeier B.A., Grabner R.H., Hein J., Krenz U., Schneider M. Electrical brain stimulation (tES) improves learning more than performance: A meta-analysis. Neurosci. Biobehav. Rev. 2018;84:171–181. doi: 10.1016/j.neubiorev.2017.11.001.
    1. Skodzik T., Holling H., Pedersen A. Long-Term Memory Performance in Adult ADHD: A Meta-Analysis. J Atten Disord. 2017;21:267–283. doi: 10.1177/1087054713510561.
    1. Sripada C., Kessler D., Fang Y., Welsh R.C., Kumar K.P., Angstadt M. Disrupted network architecture of the resting brain in attention-deficit/hyperactivity disorder. Hum. Brain Mapp. 2014;35:4693–4705. doi: 10.1002/hbm.22504.
    1. Stavro G.M., Ettenhofer M.L., Nigg J.T. Executive functions and adaptive functioning in young adult attention-deficit/hyperactivity disorder | Journal of the International Neuropsychological Society | Cambridge Core. JINS. 2007;13 doi: 10.1017/S1355617707070348.
    1. Stern A., Malik E., Pollak Y., Bonne O., Maeir A. The Efficacy of Computerized Cognitive Training in Adults With ADHD: A Randomized Controlled Trial. J Atten Disord. 2016;20:991–1003. doi: 10.1177/1087054714529815.
    1. Thickbroom G.W. Transcranial magnetic stimulation and synaptic plasticity: experimental framework and human models. Exp Brain Res. 2007;180:583–593. doi: 10.1007/s00221-007-0991-3.
    1. Tortella, G., Casati, R., Aparicio, L.V.M., Mantovani, A., Senço, N., D’Urso, G., Brunelin, J., Guarienti, F., Selingardi, P.M.L., Muszkat, D., Junior, B. de S.P., Valiengo, L., Moffa, A.H., Simis, M., Borrione, L., Brunoni, A.R., 2015. Transcranial direct current stimulation in psychiatric disorders. World J Psychiatry 5, 88–102. .
    1. Tortella G., Selingardi P.M., Moreno M.L., Veronezi B.P., Brunoni A.R. Does non-invasive brain stimulation improve cognition in major depressive disorder? A systematic review. CNS Neurol. Disord. Drug Targets. 2014;13:1759–1769. doi: 10.2174/1871527313666141130224431.
    1. Treasure T., MacRae K.D. Minimisation: the platinum standard for trials?: Randomisation doesn’t guarantee similarity of groups; minimisation does. BMJ. 1998;317:362–363. doi: 10.1136/bmj.317.7155.362.
    1. Uddin L.Q., Kelly A.M.C., Biswal B.B., Margulies D.S., Shehzad Z., Shaw D., Ghaffari M., Rotrosen J., Adler L.A., Castellanos F.X., Milham M.P. Network homogeneity reveals decreased integrity of default-mode network in ADHD. J. Neurosci. Methods. 2008;169:249–254. doi: 10.1016/j.jneumeth.2007.11.031.
    1. Wasserstein J., Stefanatos G.A. The Right Hemisphere and Psychopathology. J. Am. Acad. Psychoanal. 2000;28:371–395. doi: 10.1521/jaap.1.2000.28.2.371.
    1. Weaver L., Rostain A.L., Mace W., Akhtar U., Moss E., O’Reardon J.P. Transcranial Magnetic Stimulation (TMS) in the Treatment of Attention-Deficit/Hyperactivity Disorder in Adolescents and Young Adults: A Pilot Study. J. ECT. 2012;28:98. doi: 10.1097/YCT.0b013e31824532c8.
    1. Westwood S.J., Radua J., Rubia K. Noninvasive brain stimulation in children and adults with attention-deficit/hyperactivity disorder: a systematic review and meta-analysis. J. Psychiatry Neurosci. 2020;20
    1. Willcutt E.G., Nigg J.T., Pennington B.F., Solanto M.V., Rohde L.A., Tannock R., Loo S.K., Carlson C.L., McBrunett K., Lahey B.B. Validity of DSM-IV attention–deficit/hyperactivity disorder symptom dimensions and subtypes. J. Abnormal Psychol. 2012;121 doi: 10.1037/a0027347.
    1. Wong H.C., Zaman R. Neurostimulation in treating adhd. Psychiatria Danubina. 2019;31:11.
    1. Yarkoni T., Poldrack R.A., Nichols T.E., Van Essen D.C., Wager T.D. Large-scale automated synthesis of human functional neuroimaging data. Nat. Methods. 2011;8:665–670. doi: 10.1038/nmeth.1635.
    1. Zametkin A.J., Liebenauer L.L., Fitzgerald G.A., King A.C., Minkunas D.V., Herscovitch P., Yamada E.M., Cohen R.M. Brain metabolism in teenagers with attention-deficit hyperactivity disorder. Arch Gen Psychiatry. 1993;50:333–340. doi: 10.1001/archpsyc.1993.01820170011002.
    1. Zangen A., Roth Y., Voller B., Hallett M. Transcranial magnetic stimulation of deep brain regions: evidence for efficacy of the H-Coil. Clin. Neurophysiol. 2005;116:775–779. doi: 10.1016/j.clinph.2004.11.008.

Source: PubMed

3
Abonneren