Optimization of ventilator setting by flow and pressure waveforms analysis during noninvasive ventilation for acute exacerbations of COPD: a multicentric randomized controlled trial

Fabiano Di Marco, Stefano Centanni, Andrea Bellone, Grazia Messinesi, Alberto Pesci, Raffaele Scala, Andreas Perren, Stefano Nava, Fabiano Di Marco, Stefano Centanni, Andrea Bellone, Grazia Messinesi, Alberto Pesci, Raffaele Scala, Andreas Perren, Stefano Nava

Abstract

Introduction: The analysis of flow and pressure waveforms generated by ventilators can be useful in the optimization of patient-ventilator interactions, notably in chronic obstructive pulmonary disease (COPD) patients. To date, however, a real clinical benefit of this approach has not been proven.

Methods: The aim of the present randomized, multi-centric, controlled study was to compare optimized ventilation, driven by the analysis of flow and pressure waveforms, to standard ventilation (same physician, same initial ventilator setting, same time spent at the bedside while the ventilator screen was obscured with numerical data always available). The primary aim was the rate of pH normalization at two hours, while secondary aims were changes in PaCO2, respiratory rate and the patient's tolerance to ventilation (all parameters evaluated at baseline, 30, 120, 360 minutes and 24 hours after the beginning of ventilation). Seventy patients (35 for each group) with acute exacerbation of COPD were enrolled.

Results: Optimized ventilation led to a more rapid normalization of pH at two hours (51 vs. 26% of patients), to a significant improvement of the patient's tolerance to ventilation at two hours, and to a higher decrease of PaCO2 at two and six hours. Optimized ventilation induced physicians to use higher levels of external positive end-expiratory pressure, more sensitive inspiratory triggers and a faster speed of pressurization.

Conclusions: The analysis of the waveforms generated by ventilators has a significant positive effect on physiological and patient-centered outcomes during acute exacerbation of COPD. The acquisition of specific skills in this field should be encouraged.

Trial registration: ClinicalTrials.gov NCT01291303.

Figures

Figure 1
Figure 1
Rate of pH normalization (pH ≥ 7.35) and changes in actual pH values. B. Vertical error bars on data points represent the standard error of the mean.
Figure 2
Figure 2
Changes in PaCO2 (actual data minus baseline values). Vertical error bars on data points represent the standard error of the mean. The values indicate the P of between-group Student's t-test.

References

    1. Brochard L, Mancebo J, Wysocki M, Lofaso F, Conti G, Rauss A, Simonneau G, Benito S, Gasparetto A, Lemaire F, Isabey D, Harf A. Noninvasive ventilation for acute exacerbations of chronic obstructive pulmonary disease. N Engl J Med. 1995;333:817–822. doi: 10.1056/NEJM199509283331301.
    1. Lightowler JV, Wedzicha JA, Elliott MW, Ram FS. Non-invasive positive pressure ventilation to treat respiratory failure resulting from exacerbations of chronic obstructive pulmonary disease: Cochrane systematic review and meta-analysis. BMJ. 2003;326:185. doi: 10.1136/bmj.326.7382.185.
    1. Nava S, Hill N. Non-invasive ventilation in acute respiratory failure. Lancet. 2009;374:250–259. doi: 10.1016/S0140-6736(09)60496-7.
    1. Bott J, Carroll MP, Conway JH, Keilty SE, Ward EM, Brown AM, Paul EA, Elliott MW, Godfrey RC, Wedzicha JA. Randomised controlled trial of nasal ventilation in acute ventilatory failure due to chronic obstructive airways disease. Lancet. 1993;341:1555–1557. doi: 10.1016/0140-6736(93)90696-E.
    1. Confalonieri M, Garuti G, Cattaruzza MS, Osborn JF, Antonelli M, Conti G, Kodric M, Resta O, Marchese S, Gregoretti C, Rossi A. A chart of failure risk for noninvasive ventilation in patients with COPD exacerbation. Eur Respir J. 2005;25:348–355. doi: 10.1183/09031936.05.00085304.
    1. Kramer N, Meyer TJ, Meharg J, Cece RD, Hill NS. Randomized, prospective trial of noninvasive positive pressure ventilation in acute respiratory failure. Am J Respir Crit Care Med. 1995;151:1799–1806.
    1. Thille AW, Rodriguez P, Cabello B, Lellouche F, Brochard L. Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med. 2006;32:1515–1522. doi: 10.1007/s00134-006-0301-8.
    1. Jolliet P, Tassaux D. Clinical review: patient-ventilator interaction in chronic obstructive pulmonary disease. Crit Care. 2006;10:236. doi: 10.1186/cc5073.
    1. Nava S, Bruschi C, Rubini F, Palo A, Iotti G, Braschi A. Respiratory response and inspiratory effort during pressure support ventilation in COPD patients. Intensive Care Med. 1995;21:871–879. doi: 10.1007/BF01712327.
    1. Epstein SK. How often does patient-ventilator asynchrony occur and what are the consequences? Respir Care. 2011;56:25–38. doi: 10.4187/respcare.01009.
    1. Nilsestuen JO, Hargett KD. Using ventilator graphics to identify patient-ventilator asynchrony. Respir Care. 2005;50:202–234. discussion 232-204.
    1. Celli BR, MacNee W. Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. Eur Respir J. 2004;23:932–946. doi: 10.1183/09031936.04.00014304.
    1. Randomization Plan Generator.
    1. Gladwin MT, Pierson DJ. Mechanical ventilation of the patient with severe chronic obstructive pulmonary disease. Intensive Care Med. 1998;24:898–910. doi: 10.1007/s001340050688.
    1. Thille AW, Cabello B, Galia F, Lyazidi A, Brochard L. Reduction of patient-ventilator asynchrony by reducing tidal volume during pressure-support ventilation. Intensive Care Med. 2008;34:1477–1486. doi: 10.1007/s00134-008-1121-9.
    1. Vignaux L, Vargas F, Roeseler J, Tassaux D, Thille AW, Kossowsky MP, Brochard L, Jolliet P. Patient-ventilator asynchrony during non-invasive ventilation for acute respiratory failure: a multicenter study. Intensive Care Med. 2009;35:840–846. doi: 10.1007/s00134-009-1416-5.
    1. Parthasarathy S, Jubran A, Tobin MJ. Cycling of inspiratory and expiratory muscle groups with the ventilator in airflow limitation. Am J Respir Crit Care Med. 1998;158:1471–1478.
    1. Prinianakis G, Plataki M, Kondili E, Klimathianaki M, Vaporidi K, Georgopoulos D. Effects of relaxation of inspiratory muscles on ventilator pressure during pressure support. Intensive Care Med. 2008;34:70–74. doi: 10.1007/s00134-007-0879-5.
    1. Nava S, Ambrosino N, Bruschi C, Confalonieri M, Rampulla C. Physiological effects of flow and pressure triggering during non-invasive mechanical ventilation in patients with chronic obstructive pulmonary disease. Thorax. 1997;52:249–254. doi: 10.1136/thx.52.3.249.
    1. Vitacca M, Rubini F, Foglio K, Scalvini S, Nava S, Ambrosino N. Non-invasive modalities of positive pressure ventilation improve the outcome of acute exacerbations in COLD patients. Intensive Care Med. 1993;19:450–455. doi: 10.1007/BF01711086.
    1. Nava S, Ceriana P. Causes of failure of noninvasive mechanical ventilation. Respir Care. 2004;49:295–303.
    1. Tassaux D, Gainnier M, Battisti A, Jolliet P. Impact of expiratory trigger setting on delayed cycling and inspiratory muscle workload. Am J Respir Crit Care Med. 2005;172:1283–1289. doi: 10.1164/rccm.200407-880OC.

Source: PubMed

3
Abonneren