Drug repurposing for breast cancer therapy: Old weapon for new battle

Sadhna Aggarwal, Sumit Singh Verma, Sumit Aggarwal, Subash Chandra Gupta, Sadhna Aggarwal, Sumit Singh Verma, Sumit Aggarwal, Subash Chandra Gupta

Abstract

Despite tremendous resources being invested in prevention and treatment, breast cancer remains a leading cause of cancer deaths in women globally. The available treatment modalities are very costly and produces severe side effects. Drug repurposing that relate to new uses for old drugs has emerged as a novel approach for drug development. Repositioning of old, clinically approved, off patent non-cancer drugs with known targets, into newer indication is like using old weapons for new battle. The advances in genomics, proteomics and information computational biology has facilitated the process of drug repurposing. Repositioning approach not only fastens the process of drug development but also offers more effective, cheaper, safer drugs with lesser/known side effects. During the last decade, drugs such as alkylating agents, anthracyclins, antimetabolite, CDK4/6 inhibitor, aromatase inhibitor, mTOR inhibitor and mitotic inhibitors has been repositioned for breast cancer treatment. The repositioned drugs have been successfully used for the treatment of most aggressive triple negative breast cancer. The literature review suggest that serendipity plays a major role in the drug development. This article describes the comprehensive overview of the current scenario of drug repurposing for the breast cancer treatment. The strategies as well as several examples of repurposed drugs are provided. The challenges associated with drug repurposing are discussed.

Keywords: Breast cancer; Multitargeting; Non-cancer drug; OMICS; Serendipity.

Conflict of interest statement

None.

Copyright © 2019 Elsevier Ltd. All rights reserved.

Figures

Fig. 1
Fig. 1
Chemical structure of clinically approved drugs repositioned for breast cancer treatment.

References

    1. Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018;68(6):394–424.
    1. Yalaza M., Inan A., Bozer M. Male breast cancer. J. Breast Health. 2016;12(1):1–8.
    1. Hondermarck H., Vercoutter‿Edouart A.S., Révillion F., Lemoine J., El‿Yazidi‿Belkoura I., Nurcombe V., Peyrat J.P. Proteomics of breast cancer for marker discovery and signal pathway profiling. PROTEOMICS: Int. Ed. 2001;1(10):1216–1232.
    1. Onitilo A.A., Engel J.M., Greenlee R.T., Mukesh B.N. Breast cancer subtypes based on ER/PR and Her2 expression: comparison of clinicopathologic features and survival. Clin. Med. Res. 2009;7(1–2):4–13.
    1. Weigelt B., Reis-Filho J.S. Molecular profiling currently offers no more than tumour morphology and basic immunohistochemistry. Breast Cancer Res. 2010;12(Suppl. 4):S5.
    1. Waks A.G., Winer E.P. Breast cancer treatment: a review. Jama. 2019;321(3):288–300.
    1. Banin Hirata B.K., Oda J.M., Losi Guembarovski R., Ariza C.B., de Oliveira C.E., Watanabe M.A. Molecular markers for breast cancer: prediction on tumor behavior. Dis. Markers. 2014;2014
    1. Inoue K., Fry E.A. Novel molecular markers for breast cancer. Biomark. Cancer. 2016;8:25–42.
    1. Maughan K.L., Lutterbie M.A., Ham P.S. Treatment of breast cancer. Am. Fam. Physician. 2010;81(11):1339–1346.
    1. Tong C.W.S., Wu M., Cho W.C.S., To K.K.W. Recent advances in the treatment of breast cancer. Front. Oncol. 2018;8:227.
    1. Nounou M.I., ElAmrawy F., Ahmed N., Abdelraouf K., Goda S., Syed-Sha-Qhattal H. Breast cancer: conventional diagnosis and treatment modalities and recent patents and technologies. Breast Cancer: Basic Clin. Res. 2015;9(Suppl. 2):17–34.
    1. Houssami N., Cuzick J., Dixon J.M. The prevention, detection, and management of breast cancer. Med. J. Aust. 2006;184(5):230–234.
    1. Davies C., Pan H., Godwin J., Gray R., Arriagada R., Raina V., Abraham M., Medeiros Alencar V.H., Badran A., Bonfill X., Bradbury J., Clarke M., Collins R., Davis S.R., Delmestri A., Forbes J.F., Haddad P., Hou M.F., Inbar M., Khaled H., Kielanowska J., Kwan W.H., Mathew B.S., Mittra I., Muller B., Nicolucci A., Peralta O., Pernas F., Petruzelka L., Pienkowski T., Radhika R., Rajan B., Rubach M.T., Tort S., Urrutia G., Valentini M., Wang Y., Peto R., G. Adjuvant Tamoxifen: Longer Against Shorter Collaborative Long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years after diagnosis of oestrogen receptor-positive breast cancer: ATLAS, a randomised trial. Lancet. 2013;381(9869):805–816.
    1. Dhankhar R., Vyas S.P., Jain A.K., Arora S., Rath G., Goyal A.K. Advances in novel drug delivery strategies for breast cancer therapy. Artif. Cells Blood Substitutes Immobilization Biotechnol. 2010;38(5):230–249.
    1. Matsen C.B., Neumayer L.A. Breast cancer: a review for the general surgeon. JAMA Surg. 2013;148(10):971–979.
    1. Tsang R.Y., Finn R.S. Beyond trastuzumab: novel therapeutic strategies in HER2-positive metastatic breast cancer. Br. J. Cancer. 2012;106(1):6–13.
    1. Swain S.M., Im Y.H., Im S.A., Chan V., Miles D., Knott A., Clark E., Ross G., Baselga J. Safety profile of Pertuzumab with Trastuzumab and Docetaxel in patients from Asia with human epidermal growth factor receptor 2-positive metastatic breast cancer: results from the phase III trial CLEOPATRA. Oncologist. 2014;19(7):693–701.
    1. Hirsimaki P., Aaltonen A., Mantyla E. Toxicity of antiestrogens. Breast J. 2002;8(2):92–96.
    1. Puhalla S., Brufsky A., Davidson N. Adjuvant endocrine therapy for premenopausal women with breast cancer. Breast. 2009;18(Suppl. 3):S122–30.
    1. Goldhirsch A., Winer E.P., Coates A.S., Gelber R.D., Piccart-Gebhart M., Thurlimann B., Senn H.J., Panel m. Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann. Oncol. 2013;24(9):2206–2223.
    1. Robson M., Im S.A., Senkus E., Xu B., Domchek S.M., Masuda N., Delaloge S., Li W., Tung N., Armstrong A., Wu W., Goessl C., Runswick S., Conte P. Olaparib for Metastatic Breast Cancer in Patients with a Germline BRCA Mutation. N. Engl. J. Med. 2017;377(6):523–533.
    1. Telli M.L., Hellyer J., Audeh W., Jensen K.C., Bose S., Timms K.M., Gutin A., Abkevich V., Peterson R.N., Neff C., Hughes E., Sangale Z., Jones J., Hartman A.R., Chang P.J., Vinayak S., Wenstrup R., Ford J.M. Homologous recombination deficiency (HRD) status predicts response to standard neoadjuvant chemotherapy in patients with triple-negative or BRCA1/2 mutation-associated breast cancer. Breast Cancer Res. Treat. 2018;168(3):625–630.
    1. Neuhouser M.L., Smith A.W., George S.M., Gibson J.T., Baumgartner K.B., Baumgartner R., Duggan C., Bernstein L., McTiernan A., Ballard R. Use of complementary and alternative medicine and breast cancer survival in the Health, eating, activity, and lifestyle study. Breast Cancer Res. Treat. 2016;160(3):539–546.
    1. Akram M., Siddiqui S.A. Breast cancer management: past, present and evolving. Indian J. Cancer. 2012;49(3):277–282.
    1. Prasad S., Gupta S.C., Aggarwal B.B. Serendipity in cancer drug discovery: rational or coincidence? Trends Pharmacol. Sci. 2016;37(6):435–450.
    1. Gupta S.C., Sung B., Prasad S., Webb L.J., Aggarwal B.B. Cancer drug discovery by repurposing: teaching new tricks to old dogs. Trends Pharmacol. Sci. 2013;34(9):508–517.
    1. Paul S.M., Mytelka D.S., Dunwiddie C.T., Persinger C.C., Munos B.H., Lindborg S.R., Schacht A.L. How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat. Rev. Drug Discov. 2010;9(3):203–214.
    1. Ashburn T.T., Thor K.B. Drug repositioning: identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov. 2004;3(8):673–683.
    1. Pushpakom S., Iorio F., Eyers P.A., Escott K.J., Hopper S., Wells A., Doig A., Guilliams T., Latimer J., McNamee C., Norris A., Sanseau P., Cavalla D., Pirmohamed M. Drug repurposing: progress, challenges and recommendations. Nat. Rev. Drug Discov. 2019;18(1):41–58.
    1. Jadamba E., Shin M. A systematic framework for drug repositioning from integrated omics and drug phenotype profiles using pathway-drug network. Biomed Res. Int. 2016;2016
    1. Nosengo N. Can you teach old drugs new tricks? Nature. 2016;534(7607):314–316.
    1. Dimasi J.A. New drug development in the United States from 1963 to 1999. Clin. Pharmacol. Ther. 2001;69(5):286–296.
    1. Oprea T.I., Bauman J.E., Bologa C.G., Buranda T., Chigaev A., Edwards B.S., Jarvik J.W., Gresham H.D., Haynes M.K., Hjelle B., Hromas R., Hudson L., Mackenzie D.A., Muller C.Y., Reed J.C., Simons P.C., Smagley Y., Strouse J., Surviladze Z., Thompson T., Ursu O., Waller A., Wandinger-Ness A., Winter S.S., Wu Y., Young S.M., Larson R.S., Willman C., Sklar L.A. Drug repurposing from an academic perspective. Drug Discov. Today Therapeutic Strategies. 2011;8(3–4):61–69.
    1. Heckman-Stoddard B.M., DeCensi A., Sahasrabuddhe V.V., Ford L.G. Repurposing metformin for the prevention of cancer and cancer recurrence. Diabetologia. 2017;60(9):1639–1647.
    1. Boolell M., Allen M.J., Ballard S.A., Gepi-Attee S., Muirhead G.J., Naylor A.M., Osterloh I.H., Gingell C. Sildenafil: an orally active type 5 cyclic GMP-specific phosphodiesterase inhibitor for the treatment of penile erectile dysfunction. Int. J. Impot. Res. 1996;8(2):47–52.
    1. McBride W.G. Thalidomide embryopathy. Teratology. 1977;16(1):79–82.
    1. D’Amato R.J., Loughnan M.S., Flynn E., Folkman J. Thalidomide is an inhibitor of angiogenesis. Proc. Natl. Acad. Sci. U. S. A. 1994;91(9):4082–4085.
    1. Singhal S., Mehta J., Desikan R., Ayers D., Roberson P., Eddlemon P., Munshi N., Anaissie E., Wilson C., Dhodapkar M., Zeddis J., Barlogie B. Antitumor activity of thalidomide in refractory multiple myeloma. N. Engl. J. Med. 1999;341(21):1565–1571.
    1. Ning Y.M., Gulley J.L., Arlen P.M., Woo S., Steinberg S.M., Wright J.J., Parnes H.L., Trepel J.B., Lee M.J., Kim Y.S., Sun H., Madan R.A., Latham L., Jones E., Chen C.C., Figg W.D., Dahut W.L. Phase II trial of bevacizumab, thalidomide, docetaxel, and prednisone in patients with metastatic castration-resistant prostate cancer. J. Clin. Oncol. 2010;28(12):2070–2076.
    1. Shim J.S., Liu J.O. Recent advances in drug repositioning for the discovery of new anticancer drugs. Int. J. Biol. Sci. 2014;10(7):654–663.
    1. Oprea T.I., Tropsha A., Faulon J.L., Rintoul M.D. Systems chemical biology. Nat. Chem. Biol. 2007;3(8):447–450.
    1. Boyer A., Pasquier E., Tomasini P., Ciccolini J., Greillier L., Andre N., Barlesi F., Mascaux C. Drug repurposing in malignant pleural mesothelioma: a breath of fresh air? Eur. Respir. Rev. 2018;27(147)
    1. Oprea T.I., Mestres J. Drug repurposing: far beyond new targets for old drugs. AAPS J. 2012;14(4):759–763.
    1. Napolitano F., Zhao Y., Moreira V.M., Tagliaferri R., Kere J., D’Amato M., Greco D. Drug repositioning: a machine-learning approach through data integration. J. Cheminform. 2013;5(1):30.
    1. Li J., Zheng S., Chen B., Butte A.J., Swamidass S.J., Lu Z. A survey of current trends in computational drug repositioning. Brief. Bioinf. 2016;17(1):2–12.
    1. Chen H., Zhang H., Zhang Z., Cao Y., Tang W. Network-based inference methods for drug repositioning. Comput. Math. Methods Med. 2015;2015
    1. Garraway L.A., Verweij J., Ballman K.V. Precision oncology: an overview. J. Clin. Oncol. 2013;31(15):1803–1805.
    1. Zou D., Ma L., Yu J., Zhang Z. Biological databases for human research. Genomics, Proteomics Bioinf. 2015;13(1):55–63.
    1. Kreeger P.K., Lauffenburger D.A. Cancer systems biology: a network modeling perspective. Carcinogenesis. 2010;31(1):2–8.
    1. Lamb J., Crawford E.D., Peck D., Modell J.W., Blat I.C., Wrobel M.J., Lerner J., Brunet J.P., Subramanian A., Ross K.N., Reich M., Hieronymus H., Wei G., Armstrong S.A., Haggarty S.J., Clemons P.A., Wei R., Carr S.A., Lander E.S., Golub T.R. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science. 2006;313(5795):1929–1935.
    1. Lamb J. The Connectivity Map: a new tool for biomedical research. Nat. Rev. Cancer. 2007;7(1):54–60.
    1. Iorio F., Tagliaferri R., di Bernardo D. Identifying network of drug mode of action by gene expression profiling. J. Comput. Biol. 2009;16(2):241–251.
    1. Subramanian A., Tamayo P., Mootha V.K., Mukherjee S., Ebert B.L., Gillette M.A., Paulovich A., Pomeroy S.L., Golub T.R., Lander E.S., Mesirov J.P. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. 2005;102(43):15545–15550.
    1. Law V., Knox C., Djoumbou Y., Jewison T., Guo A.C., Liu Y., Maciejewski A., Arndt D., Wilson M., Neveu V., Tang A., Gabriel G., Ly C., Adamjee S., Dame Z.T., Han B., Zhou Y., Wishart D.S. DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res. 2014;42(Database issue):D1091–7.
    1. Hamosh A., Scott A.F., Amberger J.S., Bocchini C.A., McKusick V.A. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res. 2005;33(Database issue):D514–7.
    1. Barrett T., Wilhite S.E., Ledoux P., Evangelista C., Kim I.F., Tomashevsky M., Marshall K.A., Phillippy K.H., Sherman P.M., Holko M., Yefanov A., Lee H., Zhang N., Robertson C.L., Serova N., Davis S., Soboleva A. NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids Res. 2013;41(Database issue):D991–5.
    1. Kanehisa M., Furumichi M., Tanabe M., Sato Y., Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45(D1):D353–D361.
    1. Szklarczyk D., Franceschini A., Wyder S., Forslund K., Heller D., Huerta-Cepas J., Simonovic M., Roth A., Santos A., Tsafou K.P., Kuhn M., Bork P., Jensen L.J., von Mering C. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43(Database issue):D447–52.
    1. Chatr-Aryamontri A., Breitkreutz B.J., Heinicke S., Boucher L., Winter A., Stark C., Nixon J., Ramage L., Kolas N., O’Donnell L., Reguly T., Breitkreutz A., Sellam A., Chen D., Chang C., Rust J., Livstone M., Oughtred R., Dolinski K., Tyers M. The BioGRID interaction database: 2013 update. Nucleic Acids Res. 2013;41(Database issue):D816–23.
    1. Chen J.Y., Pandey R., Nguyen T.M. HAPPI-2: a comprehensive and high-quality map of human annotated and predicted protein interactions. BMC Genomics. 2017;18(1):182.
    1. Croft D., O’Kelly G., Wu G., Haw R., Gillespie M., Matthews L., Caudy M., Garapati P., Gopinath G., Jassal B., Jupe S., Kalatskaya I., Mahajan S., May B., Ndegwa N., Schmidt E., Shamovsky V., Yung C., Birney E., Hermjakob H., D’Eustachio P., Stein L. Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res. 2011;39(Database issue):D691–7.
    1. Kuhn M., von Mering C., Campillos M., Jensen L.J., Bork P. STITCH: interaction networks of chemicals and proteins. Nucleic Acids Res. 2008;36(Database issue):D684–8.
    1. Kuhn M., Szklarczyk D., Franceschini A., von Mering C., Jensen L.J., Bork P. STITCH 3: zooming in on protein-chemical interactions. Nucleic Acids Res. 2012;40(Database issue):D876–80.
    1. Zhu F., Shi Z., Qin C., Tao L., Liu X., Xu F., Zhang L., Song Y., Liu X., Zhang J., Han B., Zhang P., Chen Y. Therapeutic target database update 2012: a resource for facilitating target-oriented drug discovery. Nucleic Acids Res. 2012;40(Database issue):D1128–36.
    1. Andersson M.L., Bottiger Y., Bastholm-Rahmner P., Ovesjo M.L., Veg A., Eiermann B. Evaluation of usage patterns and user perception of the drug-drug interaction database SFINX. Int. J. Med. Inform. 2015;84(5):327–333.
    1. Kuhn M., Letunic I., Jensen L.J., Bork P. The SIDER database of drugs and side effects. Nucleic Acids Res. 2016;44(D1):D1075–9.
    1. Nguyen T.M., Muhammad S.A., Ibrahim S., Ma L., Guo J., Bai B., Zeng B. DeCoST: a new approach in drug repurposing from control system theory. Front. Pharmacol. 2018;9:583.
    1. Pujol A., Mosca R., Farres J., Aloy P. Unveiling the role of network and systems biology in drug discovery. Trends Pharmacol. Sci. 2010;31(3):115–123.
    1. de Jonge M.E., Huitema A.D., Rodenhuis S., Beijnen J.H. Clinical pharmacokinetics of cyclophosphamide. Clin. Pharmacokinet. 2005;44(11):1135–1164.
    1. Abu Eid R., Razavi G.S., Mkrtichyan M., Janik J., Khleif S.N. Old-school chemotherapy in immunotherapeutic combination in cancer, a low-cost drug repurposed. Cancer Immunol. Res. 2016;4(5):377–382.
    1. Singh J.C., Mamtani A., Barrio A., Morrow M., Sugarman S., Jones L.W., Yu A.F., Argolo D., Smyth L.M., Modi S., Schweber S., Boafo C., Patil S., Norton L., Baselga J., Hudis C.A., Dang C. Pathologic complete response with neoadjuvant doxorubicin and cyclophosphamide followed by paclitaxel with trastuzumab and Pertuzumab in patients with HER2-positive early stage breast cancer: a single center experience. Oncologist. 2017;22(2):139–143.
    1. Nakatsukasa K., Koyama H., Oouchi Y., Imanishi S., Mizuta N., Sakaguchi K., Fujita Y., Fujiwara I., Kotani T., Matsuda T., Fukuda K., Morita M., Kawakami S., Kadotani Y., Konishi E., Yanagisawa A., Taguchi T. Docetaxel and cyclophosphamide as neoadjuvant chemotherapy in HER2-negative primary breast cancer. Breast Cancer. 2017;24(1):63–68.
    1. Sykes M.P., Karnofsky D.A., Philips F.S., Burchenal J.H. Clinical studies on triethylenephosphoramide and diethylenephosphoramide, compounds with nitrogen‿mustard‿like activity. Cancer. 1953;6(1):142–148.
    1. Kim K.-W., Roh J.K., Wee H.-J., Kim C. Springer; 2016. Cancer Drug Discovery.
    1. Lyons A., Edelstyn G. Thiotepa in treatment of advanced breast cancer. Br. Med. J. 1962;2(5315):1280–1283.
    1. Perloff M., Hart R.D., Holland J.F. Vinblastine, adriamycin, thiotepa, and halotestin (VATH): therapy for advanced breast cancer refractory to prior chemotherapy. Cancer. 1978;42(6):2534–2537.
    1. Gewirtz D.A. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem. Pharmacol. 1999;57(7):727–741.
    1. Binaschi M., Bigioni M., Cipollone A., Rossi C., Goso C., Maggi C.A., Capranico G., Animati F. Anthracyclines: selected new developments, Current medicinal chemistry. Anticancer Agents Med. Chem. 2001;1(2):113–130.
    1. T.A.S.o.H.-S . 2016. Pharmacists, Doxorubicin Hydrochloride.
    1. Ravina E. John Wiley & Sons; 2011. The Evolution of Drug Discovery: From Traditional Medicines to Modern Drugs.
    1. Brayfield A. Pharmaceutical Press; 2017. Martindale: The Complete Drug Reference.
    1. M.C. Support . 2009. Liposomal Doxorubicin (Caelyx, Myocet)
    1. Moore A.Y. Clinical applications for topical 5-fluorouracil in the treatment of dermatological disorders. J. Dermatolog. Treat. 2009;20(6):328–335.
    1. Ansfield F.J., Schroeder J.M., Curreri A.R. Five years clinical experience with 5-fluorouracil. Jama. 1962;181:295–299.
    1. Lokich J.J., Phillips D., Green R., Paul S., Sonneborn H., Zipoli T.E., Curt G. 5-Fluorouracil and methotrexate administered simultaneously as a continuous infusion. A phase I study. Cancer. 1985;56(10):2395–2398.
    1. Cameron D.A., Gabra H., Leonard R.C. Continuous 5-fluorouracil in the treatment of breast cancer. Br. J. Cancer. 1994;70(1):120–124.
    1. Klaassen U., Wilke H., Harstrick A., Seeber S. Fluorouracil-based combinations in the treatment of metastatic breast cancer. Oncology. 1998;12(Suppl. 1):31–35.
    1. Zoli W., Ulivi P., Tesei A., Fabbri F., Rosetti M., Maltoni R., Giunchi D.C., Ricotti L., Brigliadori G., Vannini I., Amadori D. Addition of 5-fluorouracil to doxorubicin-paclitaxel sequence increases caspase-dependent apoptosis in breast cancer cell lines. Breast Cancer Res. 2005;7(5):R681–9.
    1. Cronstein B.N., Bertino J.R. Springer Science & Business Media; 2000. Methotrexate.
    1. Jolivet J., Cowan K.H., Curt G.A., Clendeninn N.J., Chabner B.A. The pharmacology and clinical use of methotrexate. N. Engl. J. Med. 1983;309(18):1094–1104.
    1. Wright J.C., Prigot A., Wright B., Weintraub S., Wright L.T. An evaluation of folic acid antagonists in adults with neoplastic diseases: a study of 93 patients with incurable neoplasms. J. Med. Assoc. 1951;43(4):211–240.
    1. Fracchia A.A., Farrow J.H., Adam Y.G., Monroy J., Knapper W.H. Systemic chemotherapy for advanced breast cancer. Cancer. 1970;26(3):642–649.
    1. Bonadonna G., Brusamolino E., Valagussa P., Rossi A., Brugnatelli L., Brambilla C., De Lena M., Tancini G., Bajetta E., Musumeci R., Veronesi U. Combination chemotherapy as an adjuvant treatment in operable breast cancer. N. Engl. J. Med. 1976;294(8):405–410.
    1. Bonadonna G., Moliterni A., Zambetti M., Daidone M.G., Pilotti S., Gianni L., Valagussa P. 30 years’ follow up of randomised studies of adjuvant CMF in operable breast cancer: cohort study. BMJ. 2005;330(7485):217.
    1. N.I.f.H.a.C . 2009. Excellence, Rheumatoid Arthritis. The Management of Rheumatoid Arthritis in Adults.
    1. Tabata T., Katoh M., Tokudome S., Nakajima M., Yokoi T. Identification of the cytosolic carboxylesterase catalyzing the 5′-deoxy-5-fluorocytidine formation from capecitabine in human liver. Drug Metab. Dispos. 2004;32(10):1103–1110.
    1. Miwa M., Ura M., Nishida M., Sawada N., Ishikawa T., Mori K., Shimma N., Umeda I., Ishitsuka H. Design of a novel oral fluoropyrimidine carbamate, capecitabine, which generates 5-fluorouracil selectively in tumours by enzymes concentrated in human liver and cancer tissue. Eur. J. Cancer. 1998;34(8):1274–1281.
    1. Pivot X., Asmar L., Buzdar A.U., Valero V., Hortobagyi G. A unified definition of clinical anthracycline resistance breast cancer. Br. J. Cancer. 2000;82(3):529–534.
    1. Villanueva C., Awada A., Campone M., Machiels J.P., Besse T., Magherini E., Dubin F., Semiond D., Pivot X. A multicentre dose-escalating study of cabazitaxel (XRP6258) in combination with capecitabine in patients with metastatic breast cancer progressing after anthracycline and taxane treatment: a phase I/II study. Eur. J. Cancer. 2011;47(7):1037–1045.
    1. Fumoleau P., Delgado F.M., Delozier T., Monnier A., Gil Delgado M.A., Kerbrat P., Garcia-Giralt E., Keiling R., Namer M., Closon M.T. Phase II trial of weekly intravenous vinorelbine in first-line advanced breast cancer chemotherapy. J. Clin. Oncol. 1993;11(7):1245–1252.
    1. Sparano J.A., Vrdoljak E., Rixe O., Xu B., Manikhas A., Medina C., Da Costa S.C., Ro J., Rubio G., Rondinon M., Perez Manga G., Peck R., Poulart V., Conte P. Randomized phase III trial of ixabepilone plus capecitabine versus capecitabine in patients with metastatic breast cancer previously treated with an anthracycline and a taxane. J. Clin. Oncol. 2010;28(20):3256–3263.
    1. Alvarellos M.L., Lamba J., Sangkuhl K., Thorn C.F., Wang L., Klein D.J., Altman R.B., Klein T.E. PharmGKB summary: gemcitabine pathway. Pharmacogenet. Genomics. 2014;24(11):564–574.
    1. Mini E., Nobili S., Caciagli B., Landini I., Mazzei T. Cellular pharmacology of gemcitabine. Ann. Oncol. 2006;17(Suppl. 5):v7–12.
    1. Plunkett W., Huang P., Gandhi V. Preclinical characteristics of gemcitabine. Anticancer Drugs. 1995;6(Suppl. 6):7–13.
    1. Lee K., Kim D.E., Jang K.S., Kim S.J., Cho S., Kim C. Gemcitabine, a broad-spectrum antiviral drug, suppresses enterovirus infections through innate immunity induced by the inhibition of pyrimidine biosynthesis and nucleotide depletion. Oncotarget. 2017;8(70):115315–115325.
    1. King R.S. Gemcitabine. New first-line therapy for pancreatic cancer. Cancer Pract. 1996;4(6):353–354.
    1. Takada M., Negoro S., Kudo S., Furuse K., Nishikawa H., Takada Y., Kamei T., Niitani H., Fukuoka M. Activity of gemcitabine in non-small-cell lung cancer: results of the Japan gemcitabine group (A) phase II study. Cancer Chemother. Pharmacol. 1998;41(3):217–222.
    1. Spielmann M., Llombart-Cussac A., Kalla S., Espie M., Namer M., Ferrero J.M., Dieras V., Fumoleau P., Cuvier C., Perrocheau G., Ponzio A., Kayitalire L., Pouillart P. Single-agent gemcitabine is active in previously treated metastatic breast cancer. Oncology. 2001;60(4):303–307.
    1. Mason J.S., Taylor J.B., Triggle D.J. Elsevier; 2007. Comprehensive Medicinal Chemistry II.: Computer-assisted Drug Design.
    1. Stemmler H.J., diGioia D., Freier W., Tessen H.W., Gitsch G., Jonat W., Brugger W., Kettner E., Abenhardt W., Tesch H., Hurtz H.J., Rosel S., Brudler O., Heinemann V. Randomised phase II trial of gemcitabine plus vinorelbine vs gemcitabine plus cisplatin vs gemcitabine plus capecitabine in patients with pretreated metastatic breast cancer. Br. J. Cancer. 2011;104(7):1071–1078.
    1. Finn R.S., Martin M., Rugo H.S., Jones S., Im S.-A., Gelmon K., Harbeck N., Lipatov O.N., Walshe J.M., Moulder S. Palbociclib and letrozole in advanced breast cancer. N. Engl. J. Med. 2016;375(20):1925–1936.
    1. Rugo H.S., Finn R.S., Dieras V., Ettl J., Lipatov O., Joy A.A., Harbeck N., Castrellon A., Iyer S., Lu D.R., Mori A., Gauthier E.R., Bartlett C.H., Gelmon K.A., Slamon D.J. Palbociclib plus letrozole as first-line therapy in estrogen receptor-positive/human epidermal growth factor receptor 2-negative advanced breast cancer with extended follow-up. Breast Cancer Res. Treat. 2019;174(3):719–729.
    1. Masuda N., Inoue K., Nakamura R., Rai Y., Mukai H., Ohno S., Hara F., Mori Y., Hashigaki S., Muramatsu Y., Nagasawa T., Umeyama Y., Huang X., Iwata H. Palbociclib in combination with fulvestrant in patients with hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer: PALOMA-3 subgroup analysis of Japanese patients. Int. J. Clin. Oncol. 2019;24(3):262–273.
    1. Turner N.C., Slamon D.J., Ro J., Bondarenko I., Im S.A., Masuda N., Colleoni M., DeMichele A., Loi S., Verma S., Iwata H., Harbeck N., Loibl S., Andre F., Puyana Theall K., Huang X., Giorgetti C., Huang Bartlett C., Cristofanilli M. Overall survival with palbociclib and fulvestrant in advanced breast cancer. N. Engl. J. Med. 2018;379(20):1926–1936.
    1. Cristofanilli M., Turner N.C., Bondarenko I., Ro J., Im S.A., Masuda N., Colleoni M., DeMichele A., Loi S., Verma S., Iwata H., Harbeck N., Zhang K., Theall K.P., Jiang Y., Bartlett C.H., Koehler M., Slamon D. Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): final analysis of the multicentre, double-blind, phase 3 randomised controlled trial. Lancet Oncol. 2016;17(4):425–439.
    1. Vogel C.L., Johnston M.A., Capers C., Braccia D. Toremifene for breast cancer: a review of 20 years of data. Clin. Breast Cancer. 2014;14(1):1–9.
    1. Provinciali N., Suen C., Dunn B.K., DeCensi A. Raloxifene hydrochloride for breast cancer risk reduction in postmenopausal women. Expert Rev. Clin. Pharmacol. 2016;9(10):1263–1272.
    1. Martino S., Cauley J.A., Barrett-Connor E., Powles T.J., Mershon J., Disch D., Secrest R.J., Cummings S.R., Investigators C. Continuing outcomes relevant to Evista: breast cancer incidence in postmenopausal osteoporotic women in a randomized trial of raloxifene. J. Natl. Cancer Inst. 2004;96(23):1751–1761.
    1. Pistelli M., Mora A.D., Ballatore Z., Berardi R. Aromatase inhibitors in premenopausal women with breast cancer: the state of the art and future prospects. Curr. Oncol. 2018;25(2):e168–e175.
    1. Carlson R.W. The history and mechanism of action of fulvestrant. Clin. Breast Cancer. 2005;6(Suppl. 1):S5–8.
    1. Mehta R.S., Barlow W.E., Albain K.S., Vandenberg T.A., Dakhil S.R., Tirumali N.R., Lew D.L., Hayes D.F., Gralow J.R., Linden H.M. Overall survival with fulvestrant plus anastrozole in metastatic breast cancer. N. Engl. J. Med. 2019;380(13):1226–1234.
    1. Nathan M.R., Schmid P. A review of fulvestrant in breast cancer. Oncol. Ther. 2017;5(1):17–29.
    1. Cheer S.M., Plosker G.L., Simpson D., Wagstaff A.J. Goserelin: a review of its use in the treatment of early breast cancer in premenopausal and perimenopausal women. Drugs. 2005;65(18):2639–2655.
    1. Carbognin L., Furlanetto J., Vicentini C., Nortilli R., Pilotto S., Brunelli M., Pellini F., Pollini G.P., Bria E., Tortora G. Neoadjuvant strategies for triple negative breast cancer:’ state-of-the-art’ and future perspectives. Anticancer Agents Med. Chem. 2015;15(1):15–25.
    1. Royce M.E., Osman D. Everolimus in the treatment of metastatic breast cancer. Breast Cancer: Basic Clin. Res. 2015;9:73–79.
    1. Baselga J., Campone M., Piccart M., Burris H.A., 3rd, Rugo H.S., Sahmoud T., Noguchi S., Gnant M., Pritchard K.I., Lebrun F., Beck J.T., Ito Y., Yardley D., Deleu I., Perez A., Bachelot T., Vittori L., Xu Z., Mukhopadhyay P., Lebwohl D., Hortobagyi G.N. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N. Engl. J. Med. 2012;366(6):520–529.
    1. Chan J.M., Rhee J.-W., Drum C.L., Bronson R.T., Golomb G., Langer R., Farokhzad O.C. In vivo prevention of arterial restenosis with paclitaxel-encapsulated targeted lipid–polymeric nanoparticles. Proc. Natl. Acad. Sci. 2011;108(48):19347–19352.
    1. Sparano J.A. Taxanes for breast cancer: an evidence-based review of randomized phase II and phase III trials. Clin. Breast Cancer. 2000;1(1):32–40. discussion 41-2.
    1. Nabholtz J.M., Gligorov J. The role of taxanes in the treatment of breast cancer. Expert Opin. Pharmacother. 2005;6(7):1073–1094.
    1. Crown J., O’Leary M., Ooi W.S. Docetaxel and paclitaxel in the treatment of breast cancer: a review of clinical experience. Oncologist. 2004;9(Suppl. 2):24–32.
    1. Noble R.L., Beer C.T., Cutts J.H. Role of chance observations in chemotherapy: vinca rosea. Ann. N. Y. Acad. Sci. 1958;76(3):882–894.
    1. Radford J.A., Knight R.K., Rubens R.D. Mitomycin C and vinblastine in the treatment of advanced breast cancer. Eur. J. Cancer Clin. Oncol. 1985;21(12):1475–1477.
    1. Sedlacek S.M. First-line and salvage therapy of metastatic breast cancer with mitomycin/vinblastine. Oncology. 1993;50(Suppl. 1):16–21.
    1. Urruticoechea A., Archer C.D., Assersohn L.A., Gregory R.K., Verrill M., Mendes R., Walsh G., Smith I.E., Johnston S.R. Mitomycin C, vinblastine and cisplatin (MVP): an active and well-tolerated salvage regimen for advanced breast cancer. Br. J. Cancer. 2005;92(3):475–479.
    1. Zheng Z.Y., Li J., Li F., Zhu Y., Cui K., Wong S.T., Chang E.C., Liao Y.H. Induction of N-Ras degradation by flunarizine-mediated autophagy. Sci. Rep. 2018;8(1):16932.
    1. Lee J., Yesilkanal A.E., Wynne J.P., Frankenberger C., Liu J., Yan J., Elbaz M., Rabe D.C., Rustandy F.D., Tiwari P., Grossman E.A., Hart P.C., Kang C., Sanderson S.M., Andrade J., Nomura D.K., Bonini M.G., Locasale J.W., Rosner M.R. Effective breast cancer combination therapy targeting BACH1 and mitochondrial metabolism. Nature. 2019;568(7751):254–258.
    1. Pantziarka P., Verbaanderd C., Sukhatme V., Rica Capistrano I., Crispino S., Gyawali B., Rooman I., Van Nuffel A.M., Meheus L., Sukhatme V.P., Bouche G. ReDO_DB: the repurposing drugs in oncology database. E Cancer Med. Sci. 2018;12:886.
    1. Firger J. Nitric oxide inhibitors hit target for triple-negative breast cancer. J. Natl. Cancer Inst. 2015;107(8)
    1. Gao X., Liu X., Lu Y., Wang Y., Cao W., Liu X., Hu H., Wang H. PIM1 is responsible for IL-6-induced breast cancer cell EMT and stemness via c-myc activation. Breast Cancer. 2019;26(5):663–671.
    1. Knott S.R.V., Wagenblast E., Khan S., Kim S.Y., Soto M., Wagner M., Turgeon M.O., Fish L., Erard N., Gable A.L., Maceli A.R., Dickopf S., Papachristou E.K., D’Santos C.S., Carey L.A., Wilkinson J.E., Harrell J.C., Perou C.M., Goodarzi H., Poulogiannis G., Hannon G.J. Asparagine bioavailability governs metastasis in a model of breast cancer. Nature. 2018;554(7692):378–381.
    1. Lian X., Wang G., Zhou H., Zheng Z., Fu Y., Cai L. Anticancer properties of fenofibrate: a repurposing use. J. Cancer. 2018;9(9):1527–1537.
    1. Mejia-Pedroza R.A., Espinal-Enriquez J., Hernandez-Lemus E. Pathway-based drug repositioning for breast cancer molecular subtypes. Front. Pharmacol. 2018;9:905.
    1. Cagan R., Meyer P. Rethinking cancer: current challenges and opportunities in cancer research. Dis. Model. Mech. 2017;10(4):349–352.
    1. Prasad V., Vandross A. Characteristics of exceptional or super responders to cancer drugs. Mayo Clin. Proc. 2015;90(12):1639–1649.
    1. Morello L. More cuts loom for US science. Nature. 2013;501(7466):147–148.
    1. Matthews S.J., McCoy C. Thalidomide: a review of approved and investigational uses. Clin. Ther. 2003;25(2):342–395.
    1. Neuberger A., Oraiopoulos N., Drakeman D.L. Renovation as innovation: is repurposing the future of drug discovery research? Drug Discov. Today. 2019;24(1):1–3.
    1. Lord C.J., Ashworth A. PARP inhibitors: synthetic lethality in the clinic. Science. 2017;355(6330):1152–1158.
    1. Scherpereel A., Berghmans T., Lafitte J.J., Colinet B., Richez M., Bonduelle Y., Meert A.P., Dhalluin X., Leclercq N., Paesmans M., Willems L., Sculier J.P., P. European Lung Cancer Working Valproate-doxorubicin: promising therapy for progressing mesothelioma. A phase II study. Eur. Respir. J. 2011;37(1):129–135.
    1. Kola I., Landis J. Can the pharmaceutical industry reduce attrition rates? Nat. Rev. Drug Discov. 2004;3(8):711–715.
    1. Nowak-Sliwinska P., Scapozza L., Altaba A.R.I. Drug repurposing in oncology: Compounds, pathways, phenotypes and computational approaches for colorectal cancer. Biochim. et Biophys. Acta. Rev. Cancer. 2019;1871(2):434–454.

Source: PubMed

3
Abonneren