Characteristic of entire corneal topography and tomography for the detection of sub-clinical keratoconus with Zernike polynomials using Pentacam

Zhe Xu, Weibo Li, Jun Jiang, Xiran Zhuang, Wei Chen, Mei Peng, Jianhua Wang, Fan Lu, Meixiao Shen, Yuanyuan Wang, Zhe Xu, Weibo Li, Jun Jiang, Xiran Zhuang, Wei Chen, Mei Peng, Jianhua Wang, Fan Lu, Meixiao Shen, Yuanyuan Wang

Abstract

The study aimed to characterize the entire corneal topography and tomography for the detection of sub-clinical keratoconus (KC) with a Zernike application method. Normal subjects (n = 147; 147 eyes), sub-clinical KC patients (n = 77; 77 eyes), and KC patients (n = 139; 139 eyes) were imaged with the Pentacam HR system. The entire corneal data of pachymetry and elevation of both the anterior and posterior surfaces were exported from the Pentacam HR software. Zernike polynomials fitting was used to quantify the 3D distribution of the corneal thickness and surface elevation. The root mean square (RMS) values for each order and the total high-order irregularity were calculated. Multimeric discriminant functions combined with individual indices were built using linear step discriminant analysis. Receiver operating characteristic curves determined the diagnostic accuracy (area under the curve, AUC). The 3rd-order RMS of the posterior surface (AUC: 0.928) obtained the highest discriminating capability in sub-clinical KC eyes. The multimeric function, which consisted of the Zernike fitting indices of corneal posterior elevation, showed the highest discriminant ability (AUC: 0.951). Indices generated from the elevation of posterior surface and thickness measurements over the entire cornea using the Zernike method based on the Pentacam HR system were able to identify very early KC.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Figure 1
Figure 1
Receiver operating characteristic (ROC) curves of discriminant functions for normal, sub-clinical KC, and KC groups. (A) ROC curve of the output value of discriminant functions for sub-clinical KC group versus normal group. (B) ROC curve of the output value of discriminant functions for KC group versus sub-clinical KC group.

References

    1. Haw WW, Manche EE. Iatrogenic keratectasia after a deep primary keratotomy during laser in situ keratomileusis. Am. J. Ophthalmol. 2001;132:920–921. doi: 10.1016/S0002-9394(01)01148-5.
    1. Tervo TM. Iatrogenic keratectasia after laser in situ keratomileusis. J. Cataract Refract. Surg. 2001;27:490–491. doi: 10.1016/S0886-3350(01)00831-8.
    1. Randleman JB, Russell B, Ward MA, Thompson KP, Stulting RD. Risk factors and prognosis for corneal ectasia after LASIK. Ophthalmology. 2003;110:267–275. doi: 10.1016/S0161-6420(02)01727-X.
    1. Ambrósio R, Jr., Wilson SE. Early pellucid marginal corneal degeneration: case reports of two refractive surgery candidates. Cornea. 2002;21:114–117. doi: 10.1097/00003226-200201000-00024.
    1. Amoils SP, Deist MB, Gous P, Amoils PM. Iatrogenic keratectasia after laser in situ keratomileusis for less than −4.0 to −7.0 diopters of myopia. J. Cataract Refract. Surg. 2000;26:967–977. doi: 10.1016/S0886-3350(00)00434-X.
    1. Rabinowitz YS. Keratoconus. Surv. Ophthalmol. 1998;42:297–319. doi: 10.1016/S0039-6257(97)00119-7.
    1. Klyce SD. Chasing the suspect: keratoconus. Br. J. Ophthalmol. 2009;93:845–847. doi: 10.1136/bjo.2008.147371.
    1. Li X, Rabinowitz YS, Rasheed K, Yang H. Longitudinal study of the normal eyes in unilateral keratoconus patients. Ophthalmology. 2004;111:440–446. doi: 10.1016/j.ophtha.2003.06.020.
    1. Labiris G, et al. Diagnostic capacity of the keratoconus match index and keratoconus match probability in subclinical keratoconus. J. Cataract Refract. Surg. 2014;40:999–1005. doi: 10.1016/j.jcrs.2013.08.064.
    1. De SU, et al. Sensitivity and specificity of posterior corneal elevation measured by Pentacam in discriminating keratoconus/subclinical keratoconus. Ophthalmology. 2008;115:1534–1539. doi: 10.1016/j.ophtha.2008.02.020.
    1. Steinberg J, et al. Screening for Subclinical Keratoconus Using Swept-Source Fourier Domain Anterior Segment Optical Coherence Tomography. Cornea. 2015;34:1413–1419. doi: 10.1097/ICO.0000000000000568.
    1. Rabinowitz YS, Rasheed K. KISA% index: a quantitative videokeratography algorithm embodying minimal topographic criteria for diagnosing keratoconus. J. Cataract Refract. Surg. 1999;25:1327–1335. doi: 10.1016/S0886-3350(99)00195-9.
    1. De Sanctis U, Aragno V, Dalmasso P, Brusasco L, Grignolo F. Diagnosis of subclinical keratoconus using posterior elevation measured with 2 different methods. Cornea. 2013;32:911–915. doi: 10.1097/ICO.0b013e3182854774.
    1. Shetty R, et al. A novel zernike application to differentiate between three-dimensional corneal thickness of normal corneas and corneas with keratoconus. Am. J. Ophthalmol. 2015;160:453–462. doi: 10.1016/j.ajo.2015.06.001.
    1. Muftuoglu O, Ayar O, Hurmeric V, Orucoglu F, Kilic I. Comparison of multimetric D index with keratometric, pachymetric, and posterior elevation parameters in diagnosing subclinical keratoconus in fellow eyes of asymmetric keratoconus patients. J. Cataract Refract. Surg. 2015;41:557–565. doi: 10.1016/j.jcrs.2014.05.052.
    1. Ambrósio R, Jr., et al. Novel pachymetric parameters based on corneal tomography for diagnosing keratoconus. J. Refract. Surg. 2011;27:753–758. doi: 10.3928/1081597X-20110721-01.
    1. Smolek MK, Klyce SD. Goodness-of-prediction of Zernike polynomial fitting to corneal surfaces. J. Cataract Refract. Surg. 2005;31:2350–2355. doi: 10.1016/j.jcrs.2005.05.025.
    1. Buhren J, Kuhne C, Kohnen T. Defining subclinical keratoconus using corneal first-surface higher-order aberrations. Am. J. Ophthalmol. 2007;143:381–389. doi: 10.1016/j.ajo.2006.11.062.
    1. Buhren J, Kook D, Yoon G, Kohnen T. Detection of subclinical keratoconus by using corneal anterior and posterior surface aberrations and thickness spatial profiles. Invest Ophthalmol. Vis. Sci. 2010;51:3424–3432. doi: 10.1167/iovs.09-4960.
    1. Rabinowitz YS, Rasheed K. KISA% index: a quantitative videokeratography algorithm embodying minimal topographic criteria for diagnosing keratoconus. J. Cataract Refract. Surg. 1999;25:1327–1335. doi: 10.1016/S0886-3350(99)00195-9.
    1. Buhren J, Kuhne C, Kohnen T. Defining subclinical keratoconus using corneal first-surface higher-order aberrations. Am. J. Ophthalmol. 2007;143:381–389. doi: 10.1016/j.ajo.2006.11.062.
    1. Belin MW, Khachikian SS. Corneal diagnosis and evaluation with the OCULUS Pentacam. Highlights of Ophthalmology. 2007;35:5–8.
    1. Ambrósio R, Jr., Alonso RS, Luz A, Coca Velarde LG. Corneal-thickness spatial profile and corneal-volume distribution: tomographic indices to detect keratoconus. J. Cataract Refract. Surg. 2006;32:1851–1859. doi: 10.1016/j.jcrs.2006.06.025.
    1. Ambrósio R, Jr., Klyce SD, Wilson SE. Corneal topographic and pachymetric screening of keratorefractive patients. J. Refract. Surg. 2003;19:24–29.
    1. Gomes JA, et al. Global consensus on keratoconus and ectatic diseases. Cornea. 2015;34:359–369. doi: 10.1097/ICO.0000000000000408.
    1. De Sanctis U, et al. Sensitivity and specificity of posterior corneal elevation measured by Pentacam in discriminating keratoconus/subclinical keratoconus. Ophthalmology. 2008;115:1534–1539. doi: 10.1016/j.ophtha.2008.02.020.
    1. Bae GH, et al. Corneal topographic and tomographic analysis of fellow eyes in unilateral keratoconus patients using Pentacam. Am. J. Ophthalmol. 2014;157:103–109. doi: 10.1016/j.ajo.2013.08.014.
    1. Carvalho LA. Accuracy of Zernike polynomials in characterizing optical aberrations and the corneal surface of the eye. Invest Ophthalmol. Vis. Sci. 2005;46:1915–1926. doi: 10.1167/iovs.04-1222.
    1. Mahmoud AM, et al. Expanding the cone location and magnitude index to include corneal thickness and posterior surface information for the detection of keratoconus. Am. J. Ophthalmol. 2013;156:1102–1111. doi: 10.1016/j.ajo.2013.07.018.
    1. Rabinowitz YS, Li X, Canedo AL, Ambrosio R, Jr., Bykhovskaya Y. Optical coherence tomography combined with videokeratography to differentiate mild keratoconus subtypes. J. Refract. Surg. 2014;30:80–87. doi: 10.3928/1081597X-20140120-02.
    1. Li Y, et al. Keratoconus diagnosis with optical coherence tomography pachymetry mapping. Ophthalmology. 2008;115:2159–2166. doi: 10.1016/j.ophtha.2008.08.004.
    1. Tajbakhsh Z, et al. Comparison of keratometry measurements using the Pentacam HR, the Orbscan IIz, and the TMS-4 topographer. Ophthalmic Physiol Opt. 2012;32:539–546. doi: 10.1111/j.1475-1313.2012.00942.x.
    1. Reddy JC, et al. Comparative evaluation of dual Scheimpflug imaging parameters in keratoconus, early keratoconus, and normal eyes. J. Cataract Refract. Surg. 2014;40:582–592. doi: 10.1016/j.jcrs.2013.08.061.
    1. Jafarinasab MR, et al. Sensitivity and specificity of posterior and anterior corneal elevation measured by orbscan in diagnosis of clinical and subclinical keratoconus. J. Ophthalmic Vis. Res. 2015;10:10–15. doi: 10.4103/2008-322X.163768.
    1. Quisling S, Sjoberg S, Zimmerman B, Goins K, Sutphin J. Comparison of Pentacam and Orbscan IIz on posterior curvature topography measurements in keratoconus eyes. Ophthalmology. 2006;113:1629–1632. doi: 10.1016/j.ophtha.2006.03.046.
    1. Crawford AZ, Patel DV, McGhee CN. Comparison and repeatability of keratometric and corneal power measurements obtained by Orbscan II, Pentacam, and Galilei corneal tomography systems. Am. J. Ophthalmol. 2013;156:53–60. doi: 10.1016/j.ajo.2013.01.029.
    1. Schweitzer C, et al. Screening of forme fruste keratoconus with the ocular response analyzer. Invest Ophthalmol. Vis. Sci. 2010;51:2403–2410. doi: 10.1167/iovs.09-3689.
    1. Goebels S, et al. Staging of keratoconus indices regarding tomography, topography, and biomechanical measurements. Am. J. Ophthalmol. 2015;159:733–738. doi: 10.1016/j.ajo.2015.01.014.
    1. Mohammadpour M, et al. Ocular response analyzer parameters in healthy, keratoconus suspect and manifest keratoconus eyes. Oman. J. Ophthalmol. 2015;8:102–106. doi: 10.4103/0974-620X.159255.
    1. Fontes BM, Ambrosio R, Jr., Jardim D, Velarde GC, Nose W. Corneal biomechanical metrics and anterior segment parameters in mild keratoconus. Ophthalmology. 2010;117:673–679. doi: 10.1016/j.ophtha.2009.09.023.
    1. Vinciguerra R, et al. Detection of Keratoconus With a New Biomechanical Index. J. Refract. Surg. 2016;32:803–810. doi: 10.3928/1081597X-20160629-01.
    1. Ambrósio R, Jr., et al. Integration of Scheimpflug-Based Corneal Tomography and Biomechanical Assessments for Enhancing Ectasia Detection. J. Refract. Surg. 2017;33:434–443. doi: 10.3928/1081597X-20170426-02.
    1. Mercer RN, et al. Comparison of Corneal Deformation Parameters in Keratoconic and Normal Eyes Using a Non-contact Tonometer With a Dynamic Ultra-High-Speed Scheimpflug Camera. J. Refract. Surg. 2017;33:625–631. doi: 10.3928/1081597X-20170621-03.
    1. Wang YM, Chan TCY, Yu M, Jhanji V. Comparison of Corneal Dynamic and Tomographic Analysis in Normal, Forme Fruste Keratoconic, and Keratoconic Eyes. J. Refract. Surg. 2017;33:632–638. doi: 10.3928/1081597X-20170621-09.
    1. Elham R, et al. Keratoconus diagnosis using Corvis ST measured biomechanical parameters. J. Curr. Ophthalmol. 2017;29:175–181. doi: 10.1016/j.joco.2017.05.002.
    1. Thibos LN, Applegate RA, Schwiegerling JT, Webb R. Standards for reporting the optical aberrations of eyes. J. Refract. Surg. 2002;18:S652–S660.
    1. Sideroudi H, Labiris G, Giarmoukakis A, Bougatsou N, Kozobolis V. Contribution of reference bodies in diagnosis of keratoconus. Optom. Vis. Sci. 2014;91:676–681. doi: 10.1097/OPX.0000000000000258.
    1. Iskander DR, Collins MJ, Davis B. Optimal modeling of corneal surfaces with Zernike polynomials. IEEE Trans. Biomed. Eng. 2001;48:87–95. doi: 10.1109/10.900255.
    1. Altman DG, Bland JM. Diagnostic tests 3: receiver operating characteristic plots. BMJ. 1994;309:188. doi: 10.1136/bmj.309.6948.188.

Source: PubMed

3
Abonneren