Comparing Traditional and Digitized Cognitive Tests Used in Standard Clinical Evaluation - A Study of the Digital Application Minnemera

Stina Björngrim, Wobbie van den Hurk, Moises Betancort, Alejandra Machado, Maria Lindau, Stina Björngrim, Wobbie van den Hurk, Moises Betancort, Alejandra Machado, Maria Lindau

Abstract

The purpose of this study was to compare a new digitized cognitive test battery, Minnemera, with its correspondent traditional paper-based cognitive tests. Eighty-one healthy adults between the ages of 21 and 85 participated in the study. Participants performed the two different test versions (traditional paper-based and digitized) with an interval of four weeks between the tests. Test presentation (the order of the test versions presented) was counterbalanced in order to control for any possible test learning effects. The digitized tests were constructed so that there were only minor differences when compared to the traditional paper-based tests. Test results from the paper-based and digitized versions of the cognitive screening were compared within individuals by means of a correlation analysis and equivalence tests. The effects of demographic variables (age, gender and level of education) and test presentation were explored for each test measure and each test version through linear regression models. For each test measure, a significant correlation between traditional and digitized version was observed ranging between r = 0.34 and r = 0.67 with a median of r = 0.53 (corresponding to a large effect size). Score equivalence was observed for five out of six tests. In line with previous traditional cognitive studies, age was found to be the most prominent predictor of performance in all digitized tests, with younger participants performing better than older adults. Gender was the second strongest predictor, where women outperformed men in tests measuring verbal memory; men performed better than women in tests with a strong visual component. Finally, the educational level of the test subjects had an effect on executive functions, with a higher educational level linked to a better inhibition response and working memory span. This study suggests that the tests in the Minnemera cognitive screening battery are acceptably comparable to the traditional paper-based counterparts.

Keywords: cognition; digitized assessment; equivalence test; neuropsychology; screening battery; validity.

Copyright © 2019 Björngrim, van den Hurk, Betancort, Machado and Lindau.

References

    1. Army Individual Test battery (1944). Manual of Directions and Scoring, War Department Adjutant General’s Office. Washington D.C.: Army Individual Test battery.
    1. Ashendorf L., Jefferson A. L., O’Connor M. K., Chaisson C., Green R. C., Stern R. A. (2008). Trail making test errors in normal aging, mild cognitive impairment, and dementia. Arch. Clin. Neuropsychol. 23 129–137. 10.1016/j.acn.2007.11.005
    1. Bates B. T., Zhang S., Dufek J. S., Chen F. C. (1996). The effects of sample size and variability on the correlation coefficient. Med. Sci. Sports Exe. 28 386–391. 10.1249/00005768-199603000-00015
    1. Bezdicek O., Lukavsky J., Stepankova H., Nikolai T., Axelrod B. N., Michalec J., et al. (2015). The prague stroop test: normative standards in older Czech adults and discriminative validity for mild cognitive impairment in Parkinson’s disease. J. Clin. Exp. Neuropsychol. 37 794–807. 10.1080/13803395.2015.1057106
    1. Bosco F. A., Aguinis H., Singh K., Field J. G., Pierce C. A. (2015). Correlational effect size benchmarks. J. Appl. Psychol. 2:431. 10.1037/a0038047
    1. Brunetti R., Del Gatto C., Delogu F. (2014). eCorsi: implementation and testing of the corsi block-tapping task for digital tablets. Front. Psychol. 5:939. 10.3389/fpsyg.2014.00939
    1. Claessen M. H., van der Ham I. J., van Zandvoort M. J. (2015). Computerization of the standard corsi block-tapping task affects its underlying cognitive concepts: a pilot study. Appl. Neuropsychol. Adult. 2015 22 180–188. 10.1080/23279095.2014.892488
    1. Cohen J. (1988). Statistical Power Analysis for the Behavioral Sciences, 2nd Edn. Hillsdale, NJ: Erlbaum.
    1. Collie A., Maruff P., Darby D. G., McStephen M. (2003). The effects of practice on the cognitive test performance of neurologically normal individuals assessed at brief test–retest intervals. J. Int. Neuropsychol. Soc. 9 419–428. 10.1017/S1355617703930074
    1. Corsi P. M. (1972). Human Memory and the Medial Temporal Region of the Brain. Doctoral dissertation, McGill University, Montreal.
    1. Deary I. J., Der G. (2005). Reaction time, age, and cognitive ability: longitudinal findings from age 16 to 63 years in representative population samples. Aging, Neuropsychol. Cogn. 12 187–215. 10.1080/13825580590969235
    1. DiBonaventura M. D., Erblich J., Solar R. P., Bovbjerg D. H. (2010). A computerized stroop task to assess cancer-related cognitive biases. Behav. Med. 36 37–43. 10.1080/08964280903521321
    1. Dillon A. (1992). Reading from paper versus screens: a critical review of the empirical literature. Ergonomics 35 1297–1326. 10.1080/00140139208967394
    1. Duff K., Beglinger L. J., Schultz S. K., Moser D. J., McCaffrey R. J., Haase R. F., et al. (2007). Practice effects in the prediction of long-term cognitive outcome in three patient samples: a novel prognostic index. Arch. Clin. Neuropsychol. 22 15–24. 10.1016/j.acn.2006.08.013
    1. Fellows R. P., Dahmen J., Cook D., Schmitter-Edgecombe M. (2017). Multicomponent analysis of a digital trail making test. Clin. Neuropsychol. 31 154–167. 10.1080/13854046.2016.1238510
    1. Folstein M., Folstein S., McHugh P. R. (1975). “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. of Psychiatric Res. 12 189–198. 10.1016/0022-3956(75)90026-6
    1. García-Casal J. A., Franco-Martín M., Perea-Bartolomé M. V., Toribio-Guzmán J. M., García-Moja C., Goñi-Imizcoz M., et al. (2017). Electronic devices for cognitive impairment screening: a systematic literature review. Int. J. Technol. Assess. Health Care 33 654–673. 10.1017/S0266462317000800
    1. Geffen G., Moar K. J., O’Hanlon A. P., Clark C. R., Geffen L. B. (1990). Performance measures of 16–86-year-old males and females on the auditory verbal learning test. Clin. Neuropsychol. 4 45–63. 10.1080/13854049008401496
    1. Gronwall D. M. A. (1977). Paced auditory serial-addition task: a measure of recovery from concussion. Percept. Mot. Skills 44 367–373. 10.2466/pms.1977.44.2.367
    1. Gualtieri C. T., Johnson L. G. (2006). Reliability and validity of a computerized neurocognitive test battery, CNS Vital Signs. Arch. Clin. Neuropsychol. 21 623–643. 10.1016/j.acn.2006.05.007
    1. Guariglia C. C. (2007). Spatial working memory in Alzheimer’s disease: a study using the corsi block-tapping test. Dement. Neuropsychol. 1 392–395. 10.1590/S1980-57642008DN10400011
    1. Hankee L. D., Preis S. R., Piers R. J., Beiser A. S., Devine S. A., Sudha Seshadri Y. J., et al. (2016). Population normative data for the CERAD word list and victoria stroop test in younger- and middle-aged adults: crosssectional analyses from the framingham heart study. Exp. Aging Res.arch 42 315–328. 10.1080/0361073X.2016.1191838
    1. Hepp H. H., Maier S., Hermie L., Spitzer M. (1996). The stroop effect in schizophrenic patients. Schizophr. Res. 22 187–195. 10.1016/S0920-9964(96)00080-1
    1. Hooijer C., Dinkgreve M., Jonker C., Lindeboom J., Kay D. W. K. (1992). Short screening tests for dementia in the elderly population. I. A comparison between AMTS, MMSE, MSQ and SPMSQ. Int. J. Geriatr. Psychiatry 7 559–571. 10.1002/gps.930070805
    1. Jørgensen K., Johannesen P., Vogel A. (2017). a danish adaption of the boston naming test: preliminary norms for older adults and validity in mild Alzheimer’s disease. Clin. Neuropsychol. 31(suppl 1), 72–87. 10.1080/13854046.2017.1371337
    1. Jorm A. F., Anstey K. J., Christensen H., Rodgers B. (2004). Gender differences in cognitive abilities: the mediating role of health state and health habits. Intelligence 32, 7–23. 10.1016/j.intell.2003.08.001
    1. Kaplan E., Goodglass H., Weintraub S. (1983). Boston Naming Test. Philadelphia, PA: Lea & Febiger.
    1. Karimpoor M., Churchill N. W., Tam F., Fischer C. E., Schweizer T. A., Graham S. J. (2017). Tablet-based functional mri of the trail making test: effect of tablet interaction mode. Front. Hum. Neurosci. 11:496. 10.3389/fnhum.2017.00496
    1. Kessels R. P. C., van Zandvoort M. J. E., Postma A., Kappelle L. J., de Haan E. H. F. (2000). The corsi block-tapping task: standardization and normative data. Appl. Neuropsychol. 7 252–258. 10.1207/S15324826AN0704_8
    1. Koo B. M., Vizer L. M. (2019). Mobile technology for cognitive assessment of older adults: a scoping review. Innov. Aging 3 igy038. 10.1093/geroni/igy038
    1. Lakens D., Scheel A. M., Isager P. M. (2018). Equivalence testing for psychological research: a tutorial. Adv. Methods Pract. Psychol. Sci. 2 259–269. 10.1177/2515245918770963
    1. Leibovici D., Ritchie K., Ledésert B., Touchon J. (1996). Does education level determine the course of cognitive decline? Age Age. 1996 392–397. 10.1093/ageing/25.5.392
    1. Maruta C., Guerreiro M., de Mendonça A., Hort J., Scheltens P. (2011). The use of neuropsychological tests across Europe: the need for a consensus in the use of assessment tools for dementia. Eur. J. Neurol. 18 279–285. 10.1111/j.1468-1331.2010.03134.x
    1. Mitrushina M. N., Boone K. B., Razani J., D’Elia L. (2005). Handbook of Normative data for Neuropsychological Assessment, 2nd Edn New York, NY: Oxford University Press.
    1. Morrison R. L., Pei H., Novak G., Kaufer D. I., Welsh-Bohmer K. A., Ruhmel S., et al. (2018). A computerized, self-administered test of verbal episodic memory in elderly patients with mild cognitive impairment and healthy participants: a randomized, crossover, validation study. Alzheimers Dement. 10 647–656. 10.1016/j.dadm.2018.08.010
    1. Müller S., Preische O., Heymann P., Elbing U., Laske C. (2017). Increased Diagnostic accuracy of digital vs. conventional clock drawing test for discrimination of patients in the early course of alzheimer’s disease from cognitively healthy individuals. Front. Aging Neurosci. 9:101. 10.3389/fnagi.2017.00101
    1. Mungas D., Reed B. R., Farias S. T., DeCarli C. (2009). Age and education effects on relationships of cognitive test scores with brain structure in demographically diverse older persons. Psychol. Aging 24 116–128. 10.1037/a0013421
    1. Neils J., Baris J., Carter C., Dell’aira A., Nordloh S., Weiler E. (1995). Effects of age, education, and living environment on Boston Naming Test performance. J. Speech Hear. Res. 38 1143–1149. 10.1044/jshr.3805.1143
    1. Noyes J. M., Garland K. J. (2008). Computer- vs. paper-based tasks: are they equivalent?. Ergonomics 51 1352–1375. 10.1080/00140130802170387
    1. Oliveira R. S., Trezza B. M., Busse A. L., Jacob-Filho W. (2014). Learning effect of computerized cognitive tests in older adults. Einstein 12 149–153. 10.1590/S1679-45082014AO2954
    1. Ozakbas S., Cinar B. P., Gurkan M. A., Ozturk O., Oz D., Kursun B. B. (2016). Paced auditory serial addition test: national normative data. Clin. Neurol. Neurosurg. 140 97–99. 10.1016/j.clineuro.2015.11.014
    1. Palmqvist S., Terzis B., Strobel C., Wallini A. (2013). MMSE-SR: the Standardized Swedish MMSE (2nd version). Stockholm: Svensk Förening för Kognitiva sjukdomar.
    1. Query W. T., Megran J. (1983). Age-related norms for AVLT in a male patient population. J. Clin. Psychol. 39 136–138. 10.1002/1097-4679(198301)39:1<136::aid-jclp2270390125>;2-q
    1. R Core Team (2018). R: A language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna: R Core Team.
    1. Regard M. (1991). Cognitive Rigidity and flexibility: a neuropsychological study. I Spreen, O., & Strauss, E. A compendium of Neuropsychological Tests: Administration, Norms, and Commentary. New York, NY: Oxford University Press.
    1. Rey A. (1964). L’examen Clinique en Psychologie (Clinical tests in psychology). Paris: Press Universities de France.
    1. Ricci M., Graef S., Blundo C., Miller L. A. (2012). Using the rey auditory verbal learning test (RAVLT) to differentiate Alzheimer’s dementia and behavioural variant fronto-temporal dementia. Clin. Neuropsychol. 26 926–941. 10.1080/13854046.2012.704073
    1. Rudick R., Antel J., Confavreux C., Cutter G., Ellison G., Fischer J., et al. (1997). Recommendations from the national multiple sclerosis society clinical outcomes assessment task force. Ann. Neurol. 42 379–382. 10.1002/ana.410420318
    1. Salthouse T. A. (1996). The processing-speed theory of adult age differences in cognition. Psychol. Rev 103 e403–e428. 10.1037//0033-295X.103.3.403
    1. Salthouse T. A. (2011). Effects of age on time-dependent cognitive change. Intelligence 39 222–232. 10.1177/0956797611404900
    1. Scharfen J., Jansen K., Holling H. (2018). Retest effects in working memory capacity tests: a meta analysis. Psychon. Bull. Rev. 25 2175–2199. 10.3758/s13423-018-1461-6
    1. Schmidt M. (1996). Rey Auditory Verbal Learning Test: A Handbook. Los Angeles, CA: Western Psychological Services.
    1. Schoenberg M. R., Dawson K. A., Duff K., Patton D., Scott J. G., Adams R. L. (2006). Test performance and classification statistics for the Rey auditory verbal learning test in selected clinical samples. Arch. Clin. Neuropsychol. 21 693–703. 10.1016/j.acn.2006.06.010
    1. Shulman K. I., Feinstein A. (2003). Quick Cognitive Screening for Clinicians: Clock-drawing and Other Brief Tests. Boca Raton: CRC Press.
    1. Spreen O., Strauss E. (1998). A Compendium of Neuropsychological Tests: Administration, Norms, and Commentary. New York, NY: Oxford University Press.
    1. Strauss E., Sherman E. M. S., Spreen O. (2006). A Compendium of Neuropsychological Tests: Administration, Norms and commentary, 3rd Edn New York: Oxford University Press.
    1. Stroop J. R. (1935). Studies of interference in serial verbal reactions. J. Exp. Psychol. 18 643–662. 10.1037/h0054651
    1. Tombaugh T. N. (2004). Trail making test a and b: normative data stratified by age and education. Arch. Clin. Neuropsychol. 19 203–214. 10.1016/S0887-6177(03)00039-8
    1. Van Buuren S., Groothuis-Oudshoorn K. (2011). Mice: multivariate imputation by chained equations in R. J. Statist. Softw. 45:3.
    1. Van der Elst W., Van Boxtel M. P. J., Van Breukelen G. J. P., Jolles J. (2005). Rey’s verbal learning test: normative data for 1855 healthy participants aged 24–81 years and the influence of age, sex, education and mode of presentation. J. Int. Neuropsychol. Soc. 11 290–302. 10.1017/S1355617705050344
    1. Van der Elst W., Van Boxtel M. P. J., Van Breukelen G. J. P., Jolles J. (2006). The stroop color-word test: influence of age, sex, and education; and normative data for a large sample across the adult age range. Assessment 13 62–79. 10.1177/1073191105283427
    1. Van Gorp W. G., Satz P., Kiersch M. E., Henry R. (1986). Normative data on the boston naming test for a group of normal older adults. J. Clin. Exp. Neuropsychol. 8 702–705. 10.1080/01688638608405189
    1. Wästlund E., Reinikka H., Norlander T., Archer T. (2005). Effects of VDT and paper presentation on consumption and production of information: Psychological and physiological factors. Comput. Hum. Behav. 21 377–394. 10.1016/j.chb.2004.02.007
    1. Winblad B., Amouyel P., Andrieu S., Ballard C., Brayne C., Brodaty H., et al. (2016). Defeating Alzheimer’s disease and other dementias: a priority for European science and society. Lancet Neurol. 15 455–532.
    1. Woods D. L., Wyma J. M., Herron T. J., Yund E. W., Reed B. (2018). The Dyad-adaptive paced auditory serial addition test (DA-PASAT): normative data and the effects of repeated testing, simulated malingering, and traumatic brain injury. PLoS One 13:e0178148. 10.1371/journal.pone.0178148
    1. World Health Organization [WHO] (2019). WHO Guideline: Recommendations on Digital Interventions for Health System Strengthening. Geneva: World Health Organization.
    1. Wu F., Guo Y., Zheng Y., Ma W., Kowal P., Chatterji S., et al. (2016). Social-economic status and cognitive performance among Chinese aged 50 years and older. PLoS One 11:e0166986. 10.1371/journal.pone.0166986
    1. Ziefle M. (1998). Effects of display resolution on visual performance. Hum. Factors 40 554–568. 10.1518/001872098779649355

Source: PubMed

3
Abonneren