Microbiota Composition and Diversity in Weight Loss Population After the Intake of IQP-AE-103 in a Double-Blind, Randomized, Placebo-Controlled Study

Li Vern Peng, Jennifer Cooper, Patricia De Costa, Pee Win Chong, Li Vern Peng, Jennifer Cooper, Patricia De Costa, Pee Win Chong

Abstract

The effect of the novel IQP-AE-103 (proprietary combination of dehydrated okra powder and inulin) on body weight reduction and the association with changes in microbiota composition were investigated in a double-blind, randomized, placebo-controlled trial. A total of seventy-two overweight or moderately obese subjects with a body mass index of ≥25 and <35 kg/m2 were randomly allocated to receive IQP-AE-103 or placebo; each group received two IQP-AE-103 or placebo capsules three times daily, respectively. Body weight, body fat, waist circumference, and hip circumference were measured, and fecal samples were collected at baseline and after 12 weeks of intervention. Using 16S rRNA gene sequencing on the fecal samples, the microbiota dissimilarity, diversity, and differences in relative abundance between or within groups were analyzed. At the end of the study, body weight was significantly reduced in the IQP-AE-103 group compared with the placebo group, 5.16 ± 2.39 kg vs. 0.97 ± 2.09 kg (p < 0.001). Subjects from the IQP-AE-103 group who achieved a reduction of ≥5% of total body weight from baseline (hereafter referred to as 5% responders or IQP5) had a mean body weight reduction of 6.74 ± 1.94 kg, significantly greater than the placebo group (p < 0.001). Using Lefse and statistical analysis, subjects in the IQP-AE-103 group had a significantly lower relative abundance of Firmicutes than the placebo group (p < 0.05) after 12 weeks of intervention. The 5% responders from the IQP-AE-103 group had a remarkable 4.6-fold higher relative abundance of Akkermansia muciniphila than the placebo group (p < 0.05). As the significant differences between groups were only observed post-intervention, the overall differences in microbiota profile suggest that the weight loss in overweight and moderately obese subjects who consumed IQP-AE-103 for 12 weeks is accompanied by a positive change in microbiota composition. These changes might be linked to the beneficial effects of microbiome modulations in alleviating obesity and metabolic syndrome. To the best of our knowledge, we are the first to report over-the-counter (OTC) supplementation that results in both significant changes in weight and favorable shifts on the subject microbiota profile. The trial is registered under ClinicalTrials.gov Identifier no. NCT03058367.

Keywords: Akkermansia muciniphila; inulin; metabolic syndrome; microbiota; obesity; okra.

Conflict of interest statement

LP, PD, and PC are the employees of InQpharm Group that funded the study. InQpharm Group was not involved in the conduct of the trial or the collection of data. JC received consultation fees for the independent review of the data and contributed to the manuscript writing.

Copyright © 2022 Peng, Cooper, De Costa and Chong.

Figures

FIGURE 1
FIGURE 1
Flowchart of the study population from the start until the end of the study.
FIGURE 2
FIGURE 2
Relative abundance of each phylum at baseline and after 12 weeks is shown as a percentage (%). Pattern-filled columns of the bar chart represent the relative distribution of the five main phyla. Euryarchaeota, Cyanobacteria, Elusimicrobia, Fusobacteria, Lentisphaerae, Spirochaetes, Synergistetes, and Tenericutes are classified as “Other” due to a low abundance level of p < 0.05 compared with placebo; #p < 0.05 compared with baseline within the same groups.
FIGURE 3
FIGURE 3
Histogram of linear discriminant analysis (LDA) scores showing the taxa abundance distribution of each microbiota classification with a statistical difference after 12 weeks. Bars in red indicate higher abundance in the IQP and IQP5 groups, while purple bars indicate higher abundance in the placebo group. (A) IQP group vs. placebo group; (B) IQP5 group vs. placebo group. Only taxa with LDA effect size > 2 are shown. f_: family; g_: genus, s_: species.
FIGURE 4
FIGURE 4
Relative abundance presented in percentage (%) of Akkermansia muciniphila in the IQP, IQP5, and placebo groups at baseline and after 12 weeks; *p < 0.05 compared with placebo after 12 weeks. #p < 0.05 compared with baseline within the same groups.

References

    1. Sonnenburg JL, Bäckhed F. Diet-microbiota interactions as moderators of human metabolism. Nature. (2016) 535:56–64. 10.1038/nature18846
    1. Derrien M, Belzer C, de Vos WM. Akkermansia muciniphila and its role in regulating host functions. Microb Pathog. (2017) 106:171–81. 10.1016/j.micpath.2016.02.005
    1. Vandeputte D, Falony G, Vieira-Silva S, Wang J, Sailer M, Theis S, et al. Prebiotic inulin-type fructans induce specific changes in the human gut microbiota. Gut. (2017) 66:1968–74. 10.1136/gutjnl-2016-313271
    1. Doestzada M, Vila AV, Zhernakova A, Koonen DPY, Weersma RK, Touw DJ, et al. Pharmacomicrobiomics: a novel route towards personalized medicine? Protein Cell. (2018) 9:432–45. 10.1007/s13238-018-0547-2
    1. Bashiardes S, Godneva A, Elinav E, Segal E. Towards utilization of the human genome and microbiome for personalized nutrition. Curr Opin Biotechnol. (2018) 51:57–63. 10.1016/j.copbio.2017.11.013
    1. Cândido FG, Valente FX, Grześkowiak Ł M., Moreira APB, Rocha DMUP, Alfenas R, et al. Impact of dietary fat on gut microbiota and low-grade systemic inflammation: mechanisms and clinical implications on obesity. Int J Food Sci Nutr. (2018) 69:125–43. 10.1080/09637486.2017.1343286
    1. Wan Y, Wang F, Yuan J, Li J, Jiang D, Zhang J, et al. Effects of dietary fat on gut microbiota and faecal metabolites, and their relationship with cardiometabolic risk factors: a 6-month randomised controlled-feeding trial. Gut. (2019) 68:1417–29. 10.1136/GUTJNL-2018-317609
    1. Méndez-Salazar EO, Ortiz-López MG, de los Granados-Silvestre MÁ, Palacios-González B, Menjivar M. Altered gut microbiota and compositional changes in Firmicutes and Proteobacteria in Mexican undernourished and obese children. Front Microbiol. (2018) 9:2494. 10.3389/FMICB.2018.02494
    1. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean twins. Nature. (2009) 457:480–4. 10.1038/nature07540
    1. Dao MC, Everard A, Clément K, Cani PD. Losing weight for a better health: role for the gut microbiota. Clin Nutr Exp. (2016) 6:39–58. 10.1016/j.yclnex.2015.12.001
    1. Depommier C, Everard A, Druart C, Plovier H, Van Hul M, Vieira-Silva S, et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat Med. (2019) 25:1096–103. 10.1038/s41591-019-0495-2
    1. Dao MC, Everard A, Aron-Wisnewsky J, Sokolovska N, Prifti E, Verger EO, et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut. (2016) 65:426–36. 10.1136/gutjnl-2014-308778
    1. Uebelhack R, Bongartz U, Seibt S, Bothe G, Chong PW, De Costa P, et al. Double-blind, randomized, three-armed, placebo-controlled, clinical investigation to evaluate the benefit and tolerability of two dosages of IQP-AE-103 in reducing body weight in overweight and moderately obese subjects. J Obes. (2019) 2019:3412952. 10.1155/2019/3412952
    1. Makhadmeh IM, Ereifej KI. Geometric characteristics and chemical composition of okra (Hibiscus esculentus L.) grown under semi-arid conditions. Int J Food Prop. (2004) 7:83–90. 10.1081/jfp-120022983
    1. Bakre L, Jaiyeoba K. Studies on the physicochemical properties of Abelmuscus esculentus L. (okra) pods – a potential tablet excipient. Int J Biol Chem Sci. (2009) 3:448–56. 10.4314/ijbcs.v3i3.45345
    1. Wanders AJ, Mars M, Borgonjen-van den Berg KJ, de Graaf C, Feskens EJ. Satiety and energy intake after single and repeated exposure to gel-forming dietary fiber: post-ingestive effects. Int J Obes. (2014) 38:794–800. 10.1038/ijo.2013.176
    1. Forde CG, Almiron-Roig E, Brunstrom JM. Expected satiety: application to weight management and understanding energy selection in humans. Curr Obes Rep. (2015) 4:131–40. 10.1007/s13679-015-0144-0
    1. Petropoulos S, Fernandes Â, Barros L, Ferreira I. Chemical composition, nutritional value and antioxidant properties of Mediterranean okra genotypes in relation to harvest stage. Food Chem. (2018) 242:466–74. 10.1016/j.foodchem.2017.09.082
    1. Arapitsas P. Identification and quantification of polyphenolic compounds from okra seeds and skins. Food Chem. (2008) 110:1041–5. 10.1016/j.foodchem.2008.03.014
    1. Xia F, Zhong Y, Li M, Chang Q, Liao Y, Liu X, et al. Antioxidant and anti-fatigue constituents of okra. Nutrients. (2015) 7:8846–58. 10.3390/nu7105435
    1. Raninen K, Lappi J, Mykkänen H, Poutanen K. Dietary fiber type reflects physiological functionality: comparison of grain fiber, inulin, and polydextrose. Nutr Rev. (2011) 69:9–21. 10.1111/j.1753-4887.2010.00358.x
    1. Reis SA, Conceição LL, Rosa DD, Dias MM, Peluzio Mdo C. Mechanisms used by inulin-type fructans to improve the lipid profile. Nutr Hosp. (2014) 31:528–34. 10.3305/nh.2015.31.2.7706
    1. Falony G, Joossens M, Vieira-Silva S, Wang J, Darzi Y, Faust K, et al. Population-level analysis of gut microbiome variation. Science. (2016) 352:560–4. 10.1126/science.aad3503
    1. Holscher HD, Bauer LL, Gourineni V, Pelkman CL, Fahey GC, Jr, Swanson KS. Agave inulin supplementation affects the fecal microbiota of healthy adults participating in a randomized, double-blind, placebo-controlled, crossover trial. J Nutr. (2015) 145:2025–32. 10.3945/jn.115.217331
    1. Macfarlane GT, Macfarlane S. Fermentation in the human large intestine: its physiologic consequences and the potential contribution of prebiotics. J Clin Gastroenterol. (2011) 45(Suppl. 3):S120–7. 10.1097/MCG.0b013e31822fecfe
    1. Rebello CJ, Burton J, Heiman M, Greenway FL. Gastrointestinal microbiome modulator improves glucose tolerance in overweight and obese subjects: a randomized controlled pilot trial. J Diabetes Complications. (2015) 29:1272–6. 10.1016/j.jdiacomp.2015.08.023
    1. Tropini C, Moss EL, Merrill BD, Ng KM, Higginbottom SK, Casavant EP, et al. Transient osmotic perturbation causes long-term alteration to the gut microbiota. Cell. (2018) 173:1742–54.e17. 10.1016/j.cell.2018.05.008
    1. Vandeputte D, Falony G, Vieira-Silva S, Tito RY, Joossens M, Raes J. Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. Gut. (2016) 65:57–62. 10.1136/gutjnl-2015-309618
    1. Weitkunat K, Schumann S, Petzke KJ, Blaut M, Loh G, Klaus S. Effects of dietary inulin on bacterial growth, short-chain fatty acid production and hepatic lipid metabolism in gnotobiotic mice. J Nutr Biochem. (2015) 26:929–37. 10.1016/j.jnutbio.2015.03.010
    1. Zhang Q, Yu H, Xiao X, Hu L, Xin F, Yu X. Inulin-type fructan improves diabetic phenotype and gut microbiota profiles in rats. PeerJ. (2018) 6:e4446. 10.7717/peerj.4446
    1. Guess ND, Dornhorst A, Oliver N, Bell JD, Thomas EL, Frost GS. A randomized controlled trial: the effect of inulin on weight management and ectopic fat in subjects with prediabetes. Nutr Metab (Lond). (2015) 12:36. 10.1186/s12986-015-0033-2
    1. Hess AL, Benítez-Páez A, Blædel T, Larsen LH, Iglesias JR, Madera C, et al. The effect of inulin and resistant maltodextrin on weight loss during energy restriction: a randomised, placebo-controlled, double-blinded intervention. Eur J Nutr. (2020) 59:2507–24. 10.1007/s00394-019-02099-x
    1. Zhao L. The gut microbiota and obesity: from correlation to causality. Nat Rev Microbiol. (2013) 11:639–47. 10.1038/nrmicro3089
    1. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA. (2010) 107:14691–6. 10.1073/pnas.1005963107
    1. Institute of Medicine. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids. Washington, DC: The National Academies Press; (2005). 10.17226/10490
    1. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. (2016) 13:581–3. 10.1038/nmeth.3869
    1. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. (2010) 7:335–6. 10.1038/nmeth.f.303
    1. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. (2011) 12:R60. 10.1186/gb-2011-12-6-r60
    1. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. (2006) 444:1022–3. 10.1038/4441022a
    1. Larsen N, Vogensen FK, van den Berg FW, Nielsen DS, Andreasen AS, Pedersen BK, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One. (2010) 5:e9085. 10.1371/journal.pone.0009085
    1. Xu Y, Wang N, Tan HY, Li S, Zhang C, Feng Y. Function of Akkermansia muciniphila in obesity: interactions with lipid metabolism, immune response and gut systems. Front Microbiol. (2020) 11:219. 10.3389/fmicb.2020.00219
    1. Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA. (2013) 110:9066–71. 10.1073/pnas.1219451110
    1. Plovier H, Everard A, Druart C, Depommier C, Van Hul M, Geurts L, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med. (2017) 23:107–13. 10.1038/nm.4236
    1. Wang L, Yang H, Huang H, Zhang C, Zuo H-X, Xu P, et al. Inulin-type fructans supplementation improves glycemic control for the prediabetes and type 2 diabetes populations: results from a GRADE-assessed systematic review and dose–response meta-analysis of 33 randomized controlled trials. J Transl Med. (2019) 17:410. 10.1186/S12967-019-02159-0
    1. Watanabe M, Risi R, Masi D, Caputi A, Balena A, Rossini G, et al. Current evidence to propose different food supplements for weight loss: a comprehensive review. Nutrients. (2020) 12:2873. 10.3390/NU12092873
    1. Verhoog S, Taneri PE, Roa Díaz ZM, Marques-Vidal P, Troup JP, Bally L, et al. Dietary factors and modulation of bacteria strains of Akkermansia muciniphila and Faecalibacterium prausnitzii: a systematic review. Nutrients. (2019) 11:1565. 10.3390/nu11071565
    1. Macchione IG, Lopetuso LR, Ianiro G, Napoli M, Gibiino G, Rizzatti G, et al. Akkermansia muciniphila: key player in metabolic and gastrointestinal disorders. Eur Rev Med Pharmacol Sci. (2019) 23:8075–83. 10.26355/eurrev_201909_19024
    1. Baldwin J, Collins B, Wolf PG, Martinez K, Shen W, Chuang CC, et al. Table grape consumption reduces adiposity and markers of hepatic lipogenesis and alters gut microbiota in butter fat-fed mice. J Nutr Biochem. (2016) 27:123–35. 10.1016/j.jnutbio.2015.08.027
    1. Cani PD, de Vos WM. Next-generation beneficial microbes: the case of Akkermansia muciniphila. Front Microbiol. (2017) 8:1765. 10.3389/fmicb.2017.01765
    1. Biagi E, Franceschi C, Rampelli S, Severgnini M, Ostan R, Turroni S, et al. Gut microbiota and extreme longevity. Curr Biol. (2016) 26:1480–5. 10.1016/j.cub.2016.04.016
    1. Collado MC, Derrien M, Isolauri E, de Vos WM, Salminen S. Intestinal integrity and Akkermansia muciniphila, a mucin-degrading member of the intestinal microbiota present in infants, adults, and the elderly. Appl Environ Microbiol. (2007) 73:7767–70. 10.1128/aem.01477-07
    1. Karlsson CL, Onnerfält J, Xu J, Molin G, Ahrné S, Thorngren-Jerneck K. The microbiota of the gut in preschool children with normal and excessive body weight. Obesity (Silver Spring). (2012) 20:2257–61. 10.1038/oby.2012.110
    1. Griffin NW, Ahern PP, Cheng J, Heath AC, Ilkayeva O, Newgard CB, et al. Prior dietary practices and connections to a human gut microbial metacommunity alter responses to diet interventions. Cell Host Microbe. (2017) 21:84–96. 10.1016/j.chom.2016.12.006
    1. Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. (2014) 157:121–41. 10.1016/j.cell.2014.03.011
    1. Walker JM, Eckardt P, Aleman JO, da Rosa JC, Liang Y, Iizumi T, et al. The effects of trans-resveratrol on insulin resistance, inflammation, and microbiota in men with the metabolic syndrome: a pilot randomized, placebo-controlled clinical trial. J Clin Transl Res. (2019) 4:122–35.
    1. Fava F, Gitau R, Griffin BA, Gibson GR, Tuohy KM, Lovegrove JA. The type and quantity of dietary fat and carbohydrate alter faecal microbiome and short-chain fatty acid excretion in a metabolic syndrome ‘at-risk’ population. Int J Obes. (2013) 37:216–23. 10.1038/ijo.2012.33
    1. Medina-Vera I, Sanchez-Tapia M, Noriega-López L, Granados-Portillo O, Guevara-Cruz M, Flores-López A, et al. A dietary intervention with functional foods reduces metabolic endotoxaemia and attenuates biochemical abnormalities by modifying faecal microbiota in people with type 2 diabetes. Diabetes Metab. (2019) 45:122–31. 10.1016/j.diabet.2018.09.004
    1. Derrien M, van Passel MW, van de Bovenkamp JH, Schipper RG, de Vos WM, Dekker J. Mucin-bacterial interactions in the human oral cavity and digestive tract. Gut Microbes. (2010) 1:254–68. 10.4161/gmic.1.4.12778
    1. Png CW, Lindén SK, Gilshenan KS, Zoetendal EG, McSweeney CS, Sly LI, et al. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am J Gastroenterol. (2010) 105:2420–8. 10.1038/ajg.2010.281
    1. Santacruz A, Collado MC, García-Valdés L, Segura MT, Martín-Lagos JA, Anjos T, et al. Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br J Nutr. (2010) 104:83–92. 10.1017/s0007114510000176
    1. Teixeira T, Grześkowiak LM, Salminen S, Laitinen K, Bressan J, Gouveia Peluzio M. Faecal levels of Bifidobacterium and Clostridium coccoides but not plasma lipopolysaccharide are inversely related to insulin and HOMA index in women. Clin Nutr. (2013) 32:1017–22. 10.1016/j.clnu.2013.02.008
    1. Zhang X, Shen D, Fang Z, Jie Z, Qiu X, Zhang C, et al. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS One. (2013) 8:e71108. 10.1371/journal.pone.0071108
    1. Zhang T, Li Q, Cheng L, Buch H, Zhang F. Akkermansia muciniphila is a promising probiotic. Microb Biotechnol. (2019) 12:1109–25. 10.1111/1751-7915.13410
    1. Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA. (2004) 101:15718–23. 10.1073/pnas.0407076101
    1. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. (2006) 444:1027–31. 10.1038/nature05414
    1. Grigorescu I, Dumitrascu DL. Implication of gut microbiota in diabetes mellitus and obesity. Acta Endocrinol (Buchar). (2016) 12:206–14. 10.4183/aeb.2016.206
    1. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. (2013) 500:541–6. 10.1038/nature12506
    1. Lee H, Lee Y, Kim J, An J, Lee S, Kong H, et al. Modulation of the gut microbiota by metformin improves metabolic profiles in aged obese mice. Gut Microbes. (2018) 9:155–65. 10.1080/19490976.2017.1405209
    1. Geerlings SY, Kostopoulos I, de Vos WM, Belzer C. Akkermansia muciniphila in the human gastrointestinal tract: when, where, and how? Microorganisms. (2018) 6:75. 10.3390/microorganisms6030075
    1. Ramirez-Farias C, Slezak K, Fuller Z, Duncan A, Holtrop G, Louis P. Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. Br J Nutr. (2008) 101:541–50. 10.1017/s0007114508019880
    1. Scott KP, Martin JC, Duncan SH, Flint HJ. Prebiotic stimulation of human colonic butyrate-producing bacteria and bifidobacteria, in vitro. FEMS Microbiol Ecol. (2014) 87:30–40. 10.1111/1574-6941.12186
    1. Roshanravan N, Mahdavi R, Alizadeh E, Jafarabadi MA, Hedayati M, Ghavami A, et al. Effect of butyrate and inulin supplementation on glycemic status, lipid profile and glucagon-like peptide 1 level in patients with type 2 diabetes: a randomized double-blind, placebo-controlled trial. Horm Metab Res. (2017) 49:886–91. 10.1055/s-0043-119089
    1. Pinheiro I, Robinson L, Verhelst A, Marzorati M, Winkens B, den Abbeele PV, et al. A yeast fermentate improves gastrointestinal discomfort and constipation by modulation of the gut microbiome: results from a randomized double-blind placebo-controlled pilot trial. BMC Complement Altern Med. (2017) 17:441. 10.1186/s12906-017-1948-0
    1. Most J, Tosti V, Redman LM, Fontana L. Calorie restriction in humans: an update. Ageing Res Rev. (2017) 39:36–45. 10.1016/j.arr.2016.08.005
    1. Anhê FF, Roy D, Pilon G, Dudonné S, Matamoros S, Varin TV, et al. A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut. (2015) 64:872–83. 10.1136/gutjnl-2014-307142
    1. Anhê FF, Pilon G, Roy D, Desjardins Y, Levy E, Marette A. Triggering Akkermansia with dietary polyphenols: a new weapon to combat the metabolic syndrome? Gut Microbes. (2016) 7:146–53. 10.1080/19490976.2016.1142036
    1. Healey G, Murphy R, Butts C, Brough L, Whelan K, Coad J. Habitual dietary fibre intake influences gut microbiota response to an inulin-type fructan prebiotic: a randomised, double-blind, placebo-controlled, cross-over, human intervention study. Br J Nutr. (2018) 119:176–89. 10.1017/S0007114517003440
    1. Leeming ER, Johnson AJ, Spector TD, Le Roy CI. Effect of diet on the gut microbiota: rethinking intervention duration. Nutrients. (2019) 11:2862. 10.3390/nu11122862
    1. Grube B, Chong PW, Lau KZ, Orzechowski HD. A natural fiber complex reduces body weight in the overweight and obese: a double-blind, randomized, placebo-controlled study. Obesity (Silver Spring). (2013) 21:58–64. 10.1002/oby.20244
    1. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. (2014) 505:559–63. 10.1038/nature12820
    1. Sanna S, van Zuydam NR, Mahajan A, Kurilshikov A, Vich Vila A, Võsa U, et al. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat Genet. (2019) 51:600–5. 10.1038/s41588-019-0350-x

Source: PubMed

3
Abonneren