The role of background diet on the effects of eicosapentaenoic acid and docosahexaenoic acid supplementation in healthy pre-menopausal women: a randomized, cross-over, controlled study

Megan Arnold Gomes, Xiaoyuan Jia, Iris Kolenski, Alison M Duncan, Kelly A Meckling, Megan Arnold Gomes, Xiaoyuan Jia, Iris Kolenski, Alison M Duncan, Kelly A Meckling

Abstract

Background: The links between dietary fat intake, polyunsaturated fatty acid intake and breast cancer risk remain equivocal, with some studies pointing to improvements in risk upon omega-3 supplementation. However, the background diet is poorly controlled in most studies, potentially confounding this link. Therefore, this study examined the hypothesis that in order to see the benefits of omega-3 fatty acid supplementation, the background diet must be low in fat.

Methods: Of the 56 healthy, pre-menopausal women randomized to one of two experimental arms, consisting of a two-treatment, randomized, cross-over design, 41 completed the 10 month intervention. The two diet phases (habitual and low-fat) were separated by a washout phase, each lasting 3 menstrual cycles. During each diet phase, women were supplemented with 1.2 g eicosapentaenoic acid + docosahexaenoic acid per day.

Results: Red blood cell fatty acid composition indicated that more eicosapentaenoic acid and docosahexaenoic acid was incorporated in the low-fat diet than the habitual diet, though both diet phases resulted in significant increases in the omega-3 to omega-6 ratio. In the context of omega-3 supplementation in breast cancer risk reduction, we also measured fatty acid incorporation into nipple aspirate fluid. Similar changes to red blood cells were noted in nipple aspirate fluid, with higher incorporation of eicosapentaenoic acid in the low-fat diet phase.

Conclusions: These data suggest that the total level of dietary fat has some direct impact on fatty acid partitioning in addition to the recognized importance of fatty acid ratios, and supports the hypothesis that dietary fat intake must be considered a confounder in supplementation trials. Additionally, we demonstrate that n3 supplementation both reaches and imparts improvements in lipid content and n3:n6 at the target breast tissue.

Trial registration: Trial was been retrospectively registered at clinicaltrials.gov (Reg NCT02816125 ).

Keywords: Estrogen; Estrogen metabolites; Nipple aspirate; Omega-3 fatty acids; Urinary biomarkers.

Figures

Fig. 1
Fig. 1
Experimental design and participant flowchart. MC = menstrual cycle
Fig. 2
Fig. 2
Omega-3 and omega-6 content in red blood cells. a Omega-3 (n = 41), b omega-6 (n = 8) and c n-3:n6 content in red blood cell membrane phospholipids. Data are expressed as a percentage of total fatty acids ± standard error. a = significantly different from baseline, b = significantly different from low fat diet phase by paired t-test (p < 0.05)
Fig. 3
Fig. 3
Omega-3 and omega-6 content in nipple aspirate fluid. a Omega-3, b omega-6 and c n-3:n-6 (n = 15) content in nipple aspirate fluid. Data are expressed as a percentage of total fatty acids ± standard error. a = different from baseline, b = different from LFD + supplement by ANOVA and Tukey's post-hoc test (p < 0.05)
Fig. 4
Fig. 4
Blood serum and NAF estrogen levels. 17-β-estradiol was measured by radioimmunoassay at baseline and 3 MC after each intervention or washout period. a Average E2 levels ± SE in serum (n = 41). b Average E2 levels ± SE in NAF expressed per μg protein (n = 15). c correlation between serum and NAF E2 concentrations. Points represent the serum E2 value plotted as a function of the corresponding NAF value. a = different from baseline by ANOVA and Tukey's post-hoc test (p < 0.05)
Fig. 5
Fig. 5
Relative concentrations of urinary estrogen metabolites 2-OHE1 and 16α-EOE1. Complete morning voids were collected on the same day of the menstrual cycle each month. Portions were frozen at −80 °C until analysis. Freshly thawed samples (n = 34) were thawed and estimates of metabolites determined by ELISA as described in the Methods. Values are in arbitrary units (ratio) ± SE. a = significantly different from LFD + supplement (p < 0.05) by ANOVA followed by Tukey's post-hoc test

References

    1. Willett WC. Diet and breast cancer. J Intern Med. 2001;249:395–411. doi: 10.1046/j.1365-2796.2001.00822.x.
    1. Boyd NF, Martin L, Lockwood G, Greenberg C, Yaffe M, Tritchler D. Diet and breast cancer. Nutrition. 1998;14:722–4. doi: 10.1016/S0899-9007(98)00058-6.
    1. Hilakivi-Clarke L, Clarke R, Onojafe I, Raygada M, Cho E, Lippman M. A maternal diet high in n - 6 polyunsaturated fats alters mammary gland development, puberty onset, and breast cancer risk among female rat offspring. Proc Natl Acad Sci U S A. 1997;94:9372–7. doi: 10.1073/pnas.94.17.9372.
    1. Rose DP, Connolly JM, Rayburn J, Coleman M. Influence of diets containing eicosapentaenoic or docosahexaenoic acid on growth and metastasis of breast cancer cells in nude mice. J Natl Cancer Inst. 1995;87:587–92. doi: 10.1093/jnci/87.8.587.
    1. Carroll KK. Influence of diet on mammary cancer. Nutr Cancer. 1981;2:232–6. doi: 10.1080/01635588109513688.
    1. Chajes V, Torres-Mejia G, Biessy C, Ortega-Olvera C, Angeles-Llerenas A, Ferrari P, Lazcano-Ponce E, Romieu I. omega-3 and omega-6 Polyunsaturated fatty acid intakes and the risk of breast cancer in Mexican women: impact of obesity status. Cancer Epidemiol Biomarkers Prev. 2012;21:319–26. doi: 10.1158/1055-9965.EPI-11-0896.
    1. Lee MM, Lin SS. Dietary fat and breast cancer. Annu Rev Nutr. 2000;20:221–48. doi: 10.1146/annurev.nutr.20.1.221.
    1. Zheng JS, Hu XJ, Zhao YM, Yang J, Li D. Intake of fish and marine n-3 polyunsaturated fatty acids and risk of breast cancer: meta-analysis of data from 21 independent prospective cohort studies. BMJ. 2013;346:f3706. doi: 10.1136/bmj.f3706.
    1. Bartsch H, Nair J, Owen RW. Dietary polyunsaturated fatty acids and cancers of the breast and colorectum: emerging evidence for their role as risk modifiers. Carcinogenesis. 1999;20:2209–18. doi: 10.1093/carcin/20.12.2209.
    1. Rose DP. Dietary fatty acids and cancer. Am J Clin Nutr. 1997;66:998S–1003.
    1. Rose DP, Connolly JM. Omega-3 fatty acids as cancer chemopreventive agents. Pharmacol Ther. 1999;83:217–44. doi: 10.1016/S0163-7258(99)00026-1.
    1. Yang B, Ren XL, Fu YQ, Gao JL, Li D. Ratio of n-3/n-6 PUFAs and risk of breast cancer: a meta-analysis of 274135 adult females from 11 independent prospective studies. BMC Cancer. 2014;14:105. doi: 10.1186/1471-2407-14-105.
    1. Shannon J, King IB, Moshofsky R, Lampe JW, Gao DL, Ray RM, Thomas DB. Erythrocyte fatty acids and breast cancer risk: a case–control study in Shanghai, China. Am J Clin Nutr. 2007;85:1090–7.
    1. Simopoulos AP. Evolutionary aspects of diet, the omega-6/omega-3 ratio and genetic variation: nutritional implications for chronic diseases. Biomed Pharmacother. 2006;60:502–7. doi: 10.1016/j.biopha.2006.07.080.
    1. Terry PD, Terry JB, Rohan TE. Long-chain (n-3) fatty acid intake and risk of cancers of the breast and the prostate: recent epidemiological studies, biological mechanisms, and directions for future research. J Nutr. 2004;134:3412S–20.
    1. Smith-Warner SA, Spiegelman D, Adami HO, Beeson WL, van den Brandt PA, Folsom AR, Fraser GE, Freudenheim JL, Goldbohm RA, Graham S, et al. Types of dietary fat and breast cancer: a pooled analysis of cohort studies. Int J Cancer. 2001;92:767–74. doi: 10.1002/1097-0215(20010601)92:5<767::AID-IJC1247>;2-0.
    1. Prentice RL, Caan B, Chlebowski RT, Patterson R, Kuller LH, Ockene JK, Margolis KL, Limacher MC, Manson JE, Parker LM, et al. Low-fat dietary pattern and risk of invasive breast cancer: the women's health initiative randomized controlled dietary modification trial. JAMA. 2006;295:629–42. doi: 10.1001/jama.295.6.629.
    1. Wynder EL, Cohen LA, Muscat JE, Winters B, Dwyer JT, Blackburn G. Breast cancer: weighing the evidence for a promoting role of dietary fat. J Natl Cancer Inst. 1997;89:766–75. doi: 10.1093/jnci/89.11.766.
    1. Blackburn GL, Copeland T, Khaodhiar L, Buckley RB. Diet and breast cancer. J Womens Health (Larchmt) 2003;12:183–92. doi: 10.1089/154099903321576583.
    1. Saxe GA, Rock CL, Wicha MS, Schottenfeld D. Diet and risk for breast cancer recurrence and survival. Breast Cancer Res Treat. 1999;53:241–53. doi: 10.1023/A:1006190820231.
    1. Holmes MD, Hunter DJ, Colditz GA, Stampfer MJ, Hankinson SE, Speizer FE, Rosner B, Willett WC. Association of dietary intake of fat and fatty acids with risk of breast cancer. JAMA. 1999;281:914–20. doi: 10.1001/jama.281.10.914.
    1. Fabian CJ, Kimler BF, Hursting SD. Omega-3 fatty acids for breast cancer prevention and survivorship. Breast Cancer Res. 2015;17:62. doi: 10.1186/s13058-015-0571-6.
    1. Meckling KA, Gauthier M, Grubb R, Sanford J. Effects of a hypocaloric, low-carbohydrate diet on weight loss, blood lipids, blood pressure, glucose tolerance, and body composition in free-living overweight women. Can J Physiol Pharmacol. 2002;80:1095–105. doi: 10.1139/y02-140.
    1. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37:911–7. doi: 10.1139/o59-099.
    1. Atkinson TG, Barker HJ, Meckling-Gill KA. Incorporation of long-chain n-3 fatty acids in tissues and enhanced bone marrow cellularity with docosahexaenoic acid feeding in post-weanling Fischer 344 rats. Lipids. 1997;32:293–302. doi: 10.1007/s11745-997-0036-x.
    1. Sauter ER, Ross E, Daly M, Klein-Szanto A, Engstrom PF, Sorling A, Malick J, Ehya H. Nipple aspirate fluid: a promising non-invasive method to identify cellular markers of breast cancer risk. Br J Cancer. 1997;76:494–501. doi: 10.1038/bjc.1997.415.
    1. Klein P, Glaser E, Grogan L, Keane M, Lipkowitz S, Soballe P, Brooks L, Jenkins J, Steinberg SM, DeMarini DM, Kirsch I. Biomarker assays in nipple aspirate fluid. Breast J. 2001;7:378–87. doi: 10.1046/j.1524-4741.2001.07601.x.
    1. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54. doi: 10.1016/0003-2697(76)90527-3.
    1. Cohen M. Breast cancer early detection, health beliefs, and cancer worries in randomly selected women with and without a family history of breast cancer. Psychooncology. 2006;15:873–83. doi: 10.1002/pon.1018.
    1. Andersen LF, Veierod MB, Johansson L, Sakhi A, Solvoll K, Drevon CA. Evaluation of three dietary assessment methods and serum biomarkers as measures of fruit and vegetable intake, using the method of triads. Br J Nutr. 2005;93:519–27. doi: 10.1079/BJN20041381.
    1. Nothlings U, Wilkens LR, Murphy SP, Hankin JH, Henderson BE, Kolonel LN. Meat and fat intake as risk factors for pancreatic cancer: the multiethnic cohort study. J Natl Cancer Inst. 2005;97:1458–65. doi: 10.1093/jnci/dji292.
    1. Noakes M, Keogh JB, Foster PR, Clifton PM. Effect of an energy-restricted, high-protein, low-fat diet relative to a conventional high-carbohydrate, low-fat diet on weight loss, body composition, nutritional status, and markers of cardiovascular health in obese women. Am J Clin Nutr. 2005;81:1298–306.
    1. Lapillonne A, Picaud JC, Chirouze V, Goudable J, Reygrobellet B, Claris O, Salle BL. The use of low-EPA fish oil for long-chain polyunsaturated fatty acid supplementation of preterm infants. Pediatr Res. 2000;48:835–41. doi: 10.1203/00006450-200012000-00022.
    1. Harris RB, Foote JA, Hakim IA, Bronson DL, Alberts DS. Fatty acid composition of red blood cell membranes and risk of squamous cell carcinoma of the skin. Cancer Epidemiol Biomarkers Prev. 2005;14:906–12. doi: 10.1158/1055-9965.EPI-04-0670.
    1. Mattisson I, Wirfalt E, Wallstrom P, Gullberg B, Olsson H, Berglund G. High fat and alcohol intakes are risk factors of postmenopausal breast cancer: a prospective study from the Malmo diet and cancer cohort. Int J Cancer. 2004;110:589–97. doi: 10.1002/ijc.20166.
    1. Geppert J, Kraft V, Demmelmair H, Koletzko B. Docosahexaenoic acid supplementation in vegetarians effectively increases omega-3 index: a randomized trial. Lipids. 2005;40:807–14. doi: 10.1007/s11745-005-1442-9.
    1. Yuen AW, Sander JW, Fluegel D, Patsalos PN, Bell GS, Johnson T, Koepp MJ. Omega-3 fatty acid supplementation in patients with chronic epilepsy: a randomized trial. Epilepsy Behav. 2005;7:253–8. doi: 10.1016/j.yebeh.2005.04.014.
    1. Horrobin DF, Jenkins K, Bennett CN, Christie WW. Eicosapentaenoic acid and arachidonic acid: collaboration and not antagonism is the key to biological understanding. Prostaglandins Leukot Essent Fatty Acids. 2002;66:83–90. doi: 10.1054/plef.2001.0338.
    1. King IB, Lemaitre RN, Kestin M. Effect of a low-fat diet on fatty acid composition in red cells, plasma phospholipids, and cholesterol esters: investigation of a biomarker of total fat intake. Am J Clin Nutr. 2006;83:227–36.
    1. Jump DB. Fatty acid regulation of gene transcription. Crit Rev Clin Lab Sci. 2004;41:41–78. doi: 10.1080/10408360490278341.
    1. Aronson WJ, Kobayashi N, Barnard RJ, Henning S, Huang M, Jardack PM, Liu B, Gray A, Wan J, Konijeti R, et al. Phase II prospective randomized trial of a low-fat diet with fish oil supplementation in men undergoing radical prostatectomy. Cancer Prev Res (Phila) 2011;4:2062–71. doi: 10.1158/1940-6207.CAPR-11-0298.
    1. Obi N, Vrieling A, Heinz J, Chang-Claude J. Estrogen metabolite ratio: Is the 2-hydroxyestrone to 16alpha-hydroxyestrone ratio predictive for breast cancer? Int J Womens Health. 2011;3:37–51. doi: 10.2147/IJWH.S7595.
    1. Yaghjyan L, Colditz GA. Estrogens in the breast tissue: a systematic review. Cancer Causes Control. 2011;22:529–40. doi: 10.1007/s10552-011-9729-4.
    1. Burns CP, Halabi S, Clamon GH, Hars V, Wagner BA, Hohl RJ, Lester E, Kirshner JJ, Vinciguerra V, Paskett E. Phase I clinical study of fish oil fatty acid capsules for patients with cancer cachexia: cancer and leukemia group B study 9473. Clin Cancer Res. 1999;5:3942–7.
    1. Eliassen AH, Missmer SA, Tworoger SS, Spiegelman D, Barbieri RL, Dowsett M, Hankinson SE. Endogenous steroid hormone concentrations and risk of breast cancer among premenopausal women. J Natl Cancer Inst. 2006;98:1406–15. doi: 10.1093/jnci/djj376.
    1. Kabat GC, O'Leary ES, Gammon MD, Sepkovic DW, Teitelbaum SL, Britton JA, Terry MB, Neugut AI, Bradlow HL. Estrogen metabolism and breast cancer. Epidemiology. 2006;17:80–8. doi: 10.1097/01.ede.0000190543.40801.75.
    1. Alexander H, Stegner AL, Wagner-Mann C, Du Bois GC, Alexander S, Sauter ER. Proteomic analysis to identify breast cancer biomarkers in nipple aspirate fluid. Clin Cancer Res. 2004;10:7500–10. doi: 10.1158/1078-0432.CCR-04-1002.
    1. Ruhlen RL, Sauter ER. Proteomic analysis of breast tissue and nipple aspirate fluid for breast cancer detection. Biomark Med. 2007;1:251–60. doi: 10.2217/17520363.1.2.251.
    1. Sauter ER, Zhu W, Fan XJ, Wassell RP, Chervoneva I, Du Bois GC. Proteomic analysis of nipple aspirate fluid to detect biologic markers of breast cancer. Br J Cancer. 2002;86:1440–3. doi: 10.1038/sj.bjc.6600285.
    1. Hunter DJ, Spiegelman D, Adami HO, Beeson L, van den Brandt PA, Folsom AR, Fraser GE, Goldbohm RA, Graham S, Howe GR, et al. Cohort studies of fat intake and the risk of breast cancer--a pooled analysis. N Engl J Med. 1996;334:356–61. doi: 10.1056/NEJM199602083340603.
    1. Willett WC. Specific fatty acids and risks of breast and prostate cancer: dietary intake. Am J Clin Nutr. 1997;66:1557S–63.

Source: PubMed

3
Abonneren