Longitudinal Branched-Chain Amino Acids, Lifestyle Intervention, and Type 2 Diabetes in the Finnish Diabetes Prevention Study

Jemina Kivelä, Jelena Meinilä, Matti Uusitupa, Jaakko Tuomilehto, Jaana Lindström, Jemina Kivelä, Jelena Meinilä, Matti Uusitupa, Jaakko Tuomilehto, Jaana Lindström

Abstract

Context: Circulating branched-chain amino acids (BCAAs) are associated with the risk of type 2 diabetes (T2D).

Objective: We examined to what extent lifestyle intervention aiming to prevent T2D interacts with this association and how BCAA concentrations change during the intervention.

Methods: We computed trajectory clusters by k-means clustering of serum fasting BCAAs analyzed annually by mass spectrometry during a 4-year intervention. We investigated whether baseline BCAAs, BCAA trajectories, and BCAA change trajectories predicted T2D and whether BCAAs predicted T2D differently in the intervention (n = 198) and control group (n = 196).

Results: Elevated baseline BCAAs predicted the incidence of T2D in the control group (hazard ratio [HR] 1.05 per 10 μmol/L, P = 0.01), but not in the intervention group. BCAA concentration decreased during the first year in the whole cohort (mean -14.9 μmol/L, P < 0.001), with no significant difference between the groups. We identified 5 BCAA trajectory clusters and 5 trajectory clusters for the change in BCAAs. Trajectories with high mean BCAA levels were associated with an increased HR for T2D compared with the trajectory with low BCAA levels (trajectory with highest vs lowest BCAA, HR 4.0; P = 0.01). A trajectory with increasing BCAA levels had a higher HR for T2D compared with decreasing trajectory in the intervention group only (HR 25.4, P < 0.001).

Conclusion: Lifestyle intervention modified the association of the baseline BCAA concentration and BCAA trajectories with the incidence of T2D. Our study adds to the accumulating evidence on the mechanisms behind the effect of lifestyle changes on the risk of T2D.

Trial registration: ClinicalTrials.gov NCT00518167.

Keywords: amino acids; branched-chain; cluster analysis; diabetes mellitus; lifestyle intervention; metabolome; type 2.

© The Author(s) 2022. Published by Oxford University Press on behalf of the Endocrine Society.

Figures

Figure 1.
Figure 1.
Flowchart of participants. Abbreviations: DPS, Diabetes Prevention Study; BMI, body mass index; BCAA, branched-chain amino acids; T2D, type 2 diabetes.
Figure 2.
Figure 2.
Joint effect of intervention and baseline branched-chain amino acids (BCAA) concentration on type 2 diabetes incidence. Participants in the control group with a low baseline BCAA comprise the reference group in Cox regression model adjusted for age, sex, education, smoking, body mass index (BMI), leisure-time physical activity, saturated fat intake, fiber intake, and blood triglycerides. The y-axis is on logarithmic scale.
Figure 3.
Figure 3.
Branched-chain amino acid (BCAA) change from baseline to year 4 in the intervention and control groups. Error bars indicate 95% CI.
Figure 4.
Figure 4.
Trajectory clusters of BCAA levels from baseline to 4 years. Cluster size: A = 118, B = 106, C = 69, D = 48, E = 23.
Figure 5.
Figure 5.
Trajectory clusters of branched-chain amino acid (BCAA) change. Cluster size: cA n = 130, cB n = 97, cC n = 93, cD n = 23, cE n = 21.

References

    1. Stancakova A, Civelek M, Saleem NK, et al. . Hyperglycemia and a common variant of GCKR are associated with the levels of eight amino acids in 9,369 Finnish men. Diabetes. 2012;61(7):1895-1902. doi:10.2337/db11-1378
    1. Tillin T, Hughes AD, Wang Q, et al. . Diabetes risk and amino acid profiles: cross-sectional and prospective analyses of ethnicity, amino acids and diabetes in a South Asian and European cohort from the SABRE (Southall And Brent REvisited) Study. Diabetologia. 2015;58(5):968-979. doi:10.1007/s00125-015-3517-8
    1. Wurtz P, Soininen P, Kangas AJ, et al. . Branched-chain and aromatic amino acids are predictors of insulin resistance in young adults. Diabetes Care. 2013;36(3):648-655. doi:10.2337/dc12-0895
    1. Rangel-Huerta OD, Pastor-Villaescusa B, Gil A. Are we close to defining a metabolomic signature of human obesity? A systematic review of metabolomics studies. Metabolomics. 2019;15(6):93. doi:10.1007/s11306-019-1553-y
    1. Guasch-Ferre M, Hruby A, Toledo E, et al. . Metabolomics in prediabetes and diabetes: a systematic review and meta-analysis. Diabetes Care. 2016;39(5):833-846. doi:10.2337/dc15-2251
    1. Lackey DE, Lynch CJ, Olson KC, et al. . Regulation of adipose branched-chain amino acid catabolism enzyme expression and cross-adipose amino acid flux in human obesity. Am J Physiol Endocrinol Metab. 2013;304(11):E1175-E1187. doi:10.1152/ajpendo.00630.2012
    1. Lynch CJ, Adams SH. Branched-chain amino acids in metabolic signalling and insulin resistance. Nat Rev Endocrinol. 2014;10(12):723-736. doi:10.1038/nrendo.2014.171
    1. White PJ, McGarrah RW, Herman MA, Bain JR, Shah SH, Newgard CB. Insulin action, type 2 diabetes, and branched-chain amino acids: a two-way street. Molecular Metabolism. 2021;52:101261. doi:10.1016/j.molmet.2021.101261
    1. Dunkley AJ, Bodicoat DH, Greaves CJ, et al. . Diabetes prevention in the real world: effectiveness of pragmatic lifestyle interventions for the prevention of type 2 diabetes and of the impact of adherence to guideline recommendations: a systematic review and meta-analysis. Diabetes Care. 2014;37(4):922-933. doi:10.2337/dc13-2195
    1. Knowler WC, Barrett-Connor E, Fowler SE, et al. . Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393-403. doi:10.1056/NEJMoa012512
    1. Lindstrom J, Peltonen M, Eriksson JG, et al. . Improved lifestyle and decreased diabetes risk over 13 years: long-term follow-up of the randomised Finnish Diabetes Prevention Study (DPS). Diabetologia. 2013;56(2):284-293. doi:10.1007/s00125-012-2752-5
    1. Penn L, White M, Lindström J, et al. . Importance of weight loss maintenance and risk prediction in the prevention of type 2 diabetes: analysis of European Diabetes Prevention Study RCT. PLoS One. 2013;8(2):e57143. doi:10.1371/journal.pone.0057143
    1. Uusitupa M, Khan TA, Viguiliouk E, et al. . Prevention of type 2 diabetes by lifestyle changes: a systematic review and meta-analysis. Nutrients. 2019;11(11):E2611. doi:10.3390/nu11112611
    1. Jachthuber Trub C, Balikcioglu M, Freemark M, et al. . Impact of lifestyle Intervention on branched-chain amino acid catabolism and insulin sensitivity in adolescents with obesity. Endocrinol Diabetes Metab. 2021;4(3):e00250. doi:10.1002/edm2.250
    1. Lamiquiz-Moneo I, Bea AM, Palacios-Pérez C, et al. . Effect of lifestyle intervention in the concentration of adipoquines and branched chain amino acids in subjects with high risk of developing type 2 diabetes: feel4diabetes study. Cells. 2020;9(3):E693. doi:10.3390/cells9030693
    1. Ramzan I, Taylor M, Phillips B, et al. . A novel dietary intervention reduces circulatory branched-chain amino acids by 50%: a pilot study of relevance for obesity and diabetes. Nutrients. 2020;13(1):E95. doi:10.3390/nu13010095
    1. Ruiz-Canela M, Guasch-Ferré M, Toledo E, et al. . Plasma branched chain/aromatic amino acids, enriched Mediterranean diet and risk of type 2 diabetes: case-cohort study within the PREDIMED Trial. Diabetologia. 2018;61(7):1560-1571. doi:10.1007/s00125-018-4611-5
    1. WHO Study Group on Diabetes Mellitus, Organization WH. Diabetes mellitus: report of a WHO study group [meeting held in Geneva from 11 to 16 February 1985]. World Health Organization; 1985. Accessed December 21, 2021.
    1. Tuomilehto J, Lindstrom J, Eriksson JG, et al. . Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001;344(18):1343-1350. doi:10.1056/NEJM200105033441801
    1. World Health Organization. Definition, Diagnosis and Classification of Diabetes Mellitus and Its Complications: Report of a WHO Consultation. Part 1, Diagnosis and Classification of Diabetes Mellitus. World Health Organization; 1999. Accessed December 21, 2021.
    1. Eriksson J, Lindstrom J, Valle T, et al. . Prevention of Type II diabetes in subjects with impaired glucose tolerance: the Diabetes Prevention Study (DPS) in Finland. Study design and 1-year interim report on the feasibility of the lifestyle intervention programme. Diabetologia. 1999;42(7):793-801.
    1. Lindstrom J, Louheranta A, Mannelin M, et al. . The Finnish Diabetes Prevention Study (DPS): lifestyle intervention and 3-year results on diet and physical activity. Diabetes Care. 2003;26(12):3230-3236.
    1. National Public Health Institute, Nutrition Unit. Finnish Food Composition Database Fineli® National Public Health Institute, Helsinki, Finland. Published online 2002.
    1. Genolini C. K-Means for Longitudinal Data. 2016.
    1. Genolini C, Falissard B. KmL: a package to cluster longitudinal data. Comput Methods Programs Biomed. 2011;104(3):e112-e121. doi:10.1016/j.cmpb.2011.05.008
    1. RStudio Team. RStudio: Integrated Development for R. RStudio, Inc.2018.
    1. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; 2019.
    1. IBM Corp. IBM SPSS Statistics for Windows. IBM Corp, Armonk, NY; 2020.
    1. de Mello VD, Paananen J, Lindström J, et al. . Indolepropionic acid and novel lipid metabolites are associated with a lower risk of type 2 diabetes in the Finnish Diabetes Prevention Study. Sci Rep. 2017;7:46337. doi:10.1038/srep46337
    1. Palmer ND, Stevens RD, Antinozzi PA, et al. . Metabolomic profile associated with insulin resistance and conversion to diabetes in the Insulin Resistance Atherosclerosis Study. J Clin Endocrinol Metab. 2015;100(3):E463-E468. doi:10.1210/jc.2014-2357
    1. Tobias DK, Clish C, Mora S, et al. . Dietary intakes and circulating concentrations of branched-chain amino acids in relation to incident type 2 diabetes risk among high-risk women with a history of gestational diabetes mellitus. Clin Chem. 2018;64(8):1203-1210. doi:10.1373/clinchem.2017.285841
    1. Neamat-Allah J, Barrdahl M, Hüsing A, et al. . Weight cycling and the risk of type 2 diabetes in the EPIC-Germany cohort. Diabetologia. 2015;58(12):2718-2725. doi:10.1007/s00125-015-3755-9
    1. Zheng Y, Ceglarek U, Huang T, et al. . Weight-loss diets and 2-y changes in circulating amino acids in 2 randomized intervention trials. Am J Clin Nutr. 2016;103(2):505-511. doi:10.3945/ajcn.115.117689
    1. Lotta LA, Scott RA, Sharp SJ, et al. . Genetic predisposition to an impaired metabolism of the branched-chain amino acids and risk of type 2 Diabetes: a mendelian randomisation analysis. PLoS Med. 2016;13(11):e1002179. doi:10.1371/journal.pmed.1002179
    1. Neinast MD, Jang C, Hui S, et al. . Quantitative analysis of the whole-body metabolic fate of branched-chain amino acids. Cell Metab. 2019;29(2):417-429.e4. doi:10.1016/j.cmet.2018.10.013
    1. Ridaura VK, Faith JJ, Rey FE, et al. . Cultured gut microbiota from twins discordant for obesity modulate adiposity and metabolic phenotypes in mice. Science. 2013;341(6150):1. doi:10.1126/science.1241214
    1. Newgard CB. Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metab. 2012;15(5):606-614. doi:10.1016/j.cmet.2012.01.024
    1. Solon-Biet SM, Cogger VC, Pulpitel T, et al. . Branched-chain amino acids impact health and lifespan indirectly via amino acid balance and appetite control. Nat Metab. 2019;1(5):532-545. doi:10.1038/s42255-019-0059-2
    1. Lindström J, Neumann A, Sheppard KE, et al. . Take action to prevent diabetes--the IMAGE toolkit for the prevention of type 2 diabetes in Europe. Horm Metab Res. 2010;42(Suppl 1):S37-S55. doi:10.1055/s-0029-1240975

Source: PubMed

3
Abonneren