Lipidomic profiling identifies signatures of metabolic risk

Xiaoyan Yin, Christine M Willinger, Joshua Keefe, Jun Liu, Antonio Fernández-Ortiz, Borja Ibáñez, José Peñalvo, Aram Adourian, George Chen, Dolores Corella, Reinald Pamplona, Manuel Portero-Otin, Mariona Jove, Paul Courchesne, Cornelia M van Duijn, Valentín Fuster, José M Ordovás, Ayşe Demirkan, Martin G Larson, Daniel Levy, Xiaoyan Yin, Christine M Willinger, Joshua Keefe, Jun Liu, Antonio Fernández-Ortiz, Borja Ibáñez, José Peñalvo, Aram Adourian, George Chen, Dolores Corella, Reinald Pamplona, Manuel Portero-Otin, Mariona Jove, Paul Courchesne, Cornelia M van Duijn, Valentín Fuster, José M Ordovás, Ayşe Demirkan, Martin G Larson, Daniel Levy

Abstract

Background: Metabolic syndrome (MetS), the clustering of metabolic risk factors, is associated with cardiovascular disease risk. We sought to determine if dysregulation of the lipidome may contribute to metabolic risk factors.

Methods: We measured 154 circulating lipid species in 658 participants from the Framingham Heart Study (FHS) using liquid chromatography-tandem mass spectrometry and tested for associations with obesity, dysglycemia, and dyslipidemia. Independent external validation was sought in three independent cohorts. Follow-up data from the FHS were used to test for lipid metabolites associated with longitudinal changes in metabolic risk factors.

Results: Thirty-nine lipids were associated with obesity and eight with dysglycemia in the FHS. Of 32 lipids that were available for replication for obesity and six for dyslipidemia, 28 (88%) replicated for obesity and five (83%) for dysglycemia. Four lipids were associated with longitudinal changes in body mass index and four were associated with changes in fasting blood glucose in the FHS.

Conclusions: We identified and replicated several novel lipid biomarkers of key metabolic traits. The lipid moieties identified in this study are involved in biological pathways of metabolic risk and can be explored for prognostic and therapeutic utility.

Keywords: Biomarker; Cardiovascular disease; Dysglycemia; Dyslipidemia; Metabolic risk; Metabolic syndrome.

Conflict of interest statement

Declaration of Competing Interest Dr. Adourian contributed to this project while affiliated with BG Medicine, Inc., a biomarker discovery company. All other authors have reported that they have no relationships relevant to the contents of this paper to disclose.

Copyright © 2019. Published by Elsevier B.V.

Figures

Fig. 1
Fig. 1
Flow chart of experimental design.

References

    1. Organization WH. Global status report on noncommunicable diseases 2010. 2011; Geneva, Switzerland.
    1. Patti A.M., Al-Rasadi K., Giglio R.V., Nikolic D., Mannina C., Castellino G. Natural approaches in metabolic syndrome management. Arch Med Sci. 2018;14(2):422–441.
    1. Ford ES. Risks for all-cause mortality, cardiovascular disease, and diabetes associated with the metabolic syndrome: a summary of the evidence. Diabetes Care. 2005;28(7):1769–1778.
    1. Mottillo S., Filion K.B., Genest J., Joseph L., Pilote L., Poirier P. The metabolic syndrome and cardiovascular risk a systematic review and meta-analysis. J Am Coll Cardiol. 2010;56(14):1113–1132.
    1. Murphy S.A., Nicolaou A. Lipidomics applications in health, disease and nutrition research. Mol Nutr Food Res. 2013;57(8):1336–1346.
    1. Hoefer I.E., Steffens S., Ala-Korpela M., Back M., Badimon L., Bochaton-Piallat M.L. Novel methodologies for biomarker discovery in atherosclerosis. Eur Heart J. 2015;36(39):2635–2642.
    1. Feinleib M., Kannel W.B., Garrison R.J., McNamara P.M., Castelli W.P. The Framingham offspring study. Design and preliminary data. Prev Med. 1975;4(4):518–525.
    1. Splansky G.L., Corey D., Yang Q., Atwood L.D., Cupples L.A., Benjamin E.J. The third generation cohort of the national heart, lung, and blood institute's Framingham heart study: design, recruitment, and initial examination. Am J Epidemiol. 2007;165(11):1328–1335.
    1. Santos RL, Zillikens MC, Rivadeneira FR, Pols HA, Oostra BA, van Duijn CM. Heritability of fasting glucose levels in a young genetically isolated population. Diabetologia. 2006;49(4):667–672.
    1. Lorenzo C, Okoloise M, Williams K, Stern MP, Haffner SM, San Antonio Heart S. The metabolic syndrome as predictor of type 2 diabetes: the San Antonio heart study. Diabetes Care. 2003;26(11):3153–3159.
    1. Fernandez-Ortiz A., Jimenez-Borreguero L.J., Penalvo J.L., Ordovas J.M., Mocoroa A., Fernandez-Friera L. The progression and early detection of subclinical atherosclerosis (PESA) study: rationale and design. Am Heart J. 2013;166(6):990–998.
    1. Liu J, van Klinken JB, Semiz S, van Dijk KW, Verhoeven A, Hankemeier T. A mendelian randomization study of metabolite profiles, fasting glucose, and type 2 diabetes. Diabetes. 2017;66(11):2915–2926.
    1. Weir J.M., Wong G., Barlow C.K., Greeve M.A., Kowalczyk A., Almasy L. Plasma lipid profiling in a large population-based cohort. J Lipid Res. 2013;54(10):2898–2908.
    1. Haffner S.M., Miettinen H., Gaskill S.P., Stern M.P. Metabolic precursors of hypertension. the San Antonio heart study. Arch Intern Med. 1996;156(17):1994–2001.
    1. Gonzalez-Covarrubias V, Beekman M, Uh HW, Dane A, Troost J, Paliukhovich I. Lipidomics of familial longevity. Aging Cell. 2013;12(3):426–434.
    1. Demirkan A., van Duijn C.M., Ugocsai P., Isaacs A., Pramstaller P.P., Liebisch G. Genome-wide association study identifies novel loci associated with circulating phospho- and sphingolipid concentrations. PLoS Genet. 2012;8(2)
    1. Draisma H.H.M., Pool R., Kobl M., Jansen R., Petersen A.K., Vaarhorst A.A.M. Genome-wide association study identifies novel genetic variants contributing to variation in blood metabolite levels. Nat Commun. 2015;6:7208.
    1. Pizarro C., Arenzana-Ramila I., Perez-del-Notario N., Perez-Matute P., Gonzalez-Saiz J.M. Plasma lipidomic profiling method based on ultrasound extraction and liquid chromatography mass spectrometry. Anal Chem. 2013;85(24):12085–12092.
    1. National Cholesterol Education Program Expert Panel on Detection E Treatment of high blood cholesterol in A. third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult treatment panel III) final report. Circulation. 2002;106(25):3143–3421.
    1. Blom G. John Wiley & Sons, Inc.; New York: 1958. Statistical estimates and transformed beta variables.
    1. Levy D., DeStefano A.L., Larson M.G., O'Donnell C.J., Lifton R.P., Gavras H. Evidence for a gene influencing blood pressure on chromosome 17. Genome scan linkage results for longitudinal blood pressure phenotypes in subjects from the framingham heart study. Hypertension. 2000;36(4):477–483.
    1. Team RDC . R Foundation for Statistical Computing; 2008. R: a language and environment for statistical computing. ISBN 3-900051-07-0.
    1. Li M.X., Yeung J.M., Cherny S.S., Sham P.C. Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets. Hum Genet. 2012;131(5):747–756.
    1. Graessler J, Schwudke D, Schwarz PE, Herzog R, Shevchenko A, Bornstein SR. Top-down lipidomics reveals ether lipid deficiency in blood plasma of hypertensive patients. PLoS ONE. 2009;4(7):e6261.
    1. Barber MN, Risis S, Yang C, Meikle PJ, Staples M, Febbraio MA. Plasma lysophosphatidylcholine levels are reduced in obesity and type 2 diabetes. PLoS ONE. 2012;7(7):e41456.
    1. Grapov D, Adams SH, Pedersen TL, Garvey WT, Newman JW. Type 2 diabetes associated changes in the plasma non-esterified fatty acids, oxylipins and endocannabinoids. PLoS ONE. 2012;7(11):e48852.
    1. Haus JM, Kashyap SR, Kasumov T, Zhang R, Kelly KR, Defronzo RA. Plasma ceramides are elevated in obese subjects with type 2 diabetes and correlate with the severity of insulin resistance. Diabetes. 2009;58(2):337–343.
    1. Kulkarni H, Meikle PJ, Mamtani M, Weir JM, Barlow CK, Jowett JB. Plasma lipidomic profile signature of hypertension in Mexican American families: specific role of diacylglycerols. Hypertension. 2013;62(3):621–626.
    1. Rhee E.P., Cheng S., Larson M.G., Walford G.A., Lewis G.D., McCabe E. Lipid profiling identifies a triacylglycerol signature of insulin resistance and improves diabetes prediction in humans. J Clin Invest. 2011;121(4):1402–1411.
    1. Farooqui A.A., Horrocks L.A., Farooqui T. Interactions between neural membrane glycerophospholipid and sphingolipid mediators: a recipe for neural cell survival or suicide. J Neurosci Res. 2007;85(9):1834–1850.
    1. Stegemann C, Pechlaner R, Willeit P, Langley SR, Mangino M, Mayr U. Lipidomics profiling and risk of cardiovascular disease in the prospective population-based bruneck study. Circulation. 2014;129(18):1821–1831.
    1. Stegemann C., Drozdov I., Shalhoub J., Humphries J., Ladroue C., Didangelos A. Comparative lipidomics profiling of human atherosclerotic plaques. Circ Cardiovasc Genet. 2011;4(3):232–242.
    1. Engelking L.R. Textbook of veterinary physiological chemistry (Third edition) 2015. Chapter 53 - Overview of lipid metabolism; pp. 340–344.
    1. Law S.H., Chan M.L., Marathe G.K., Parveen F., Chen C.H., Ke L.Y. An updated review of lysophosphatidylcholine metabolism in human diseases. Int J Mol Sci. 2019;20(5)
    1. Matsumoto T., Kobayashi T., Kamata K. Role of lysophosphatidylcholine (LPC) in atherosclerosis. Curr Med Chem. 2007;14(30):3209–3220.
    1. Croset M., Brossard N., Polette A., Lagarde M. Characterization of plasma unsaturated lysophosphatidylcholines in human and rat. Biochem J. 2000;345(Pt 1):61–67.
    1. Duivenvoorden R., Holleboom A.G., van den Bogaard B., Nederveen A.J., de Groot E., Hutten B.A. Carriers of lecithin cholesterol acyltransferase gene mutations have accelerated atherogenesis as assessed by carotid 3.0-T magnetic resonance imaging [corrected] J Am Coll Cardiol. 2011;58(24):2481–2487.
    1. Morris A.J., Smyth S.S. Lysophosphatidic acid and cardiovascular disease: seeing is believing. J Lipid Res. 2013;54(5):1153–1155.
    1. Petersen K.S., Keogh J.B., Lister N., Weir J.M., Meikle P.J., Clifton P.M. Association between dairy intake, lipids and vascular structure and function in diabetes. World J Diabetes. 2017;8(5):202–212.
    1. Magaye R.R., Savira F., Hua Y., Kelly D.J., Reid C., Flynn B. The role of dihydrosphingolipids in disease. Cell Mol Life Sci. 2018
    1. AOCS Lipid Library; 2013. An introduction to sphingolipids and membrane rafts.
    1. Merrill A.H., Jr. Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics. Chem Rev. 2011;111(10):6387–6422.
    1. Quehenberger O., Armando A.M., Brown A.H., Milne S.B., Myers D.S., Merrill A.H. Lipidomics reveals a remarkable diversity of lipids in human plasma. J Lipid Res. 2010;51(11):3299–3305.
    1. Kuksis A., Breckenridge W.C., Myher J.J., Kakis G. Replacement of endogenous phospholipids in rat plasma lipoproteins during intravenous infusion of an artificial lipid emulsion. Can J Biochem. 1978;56(6):630–639.
    1. Rye K.A., Hime N.J., Barter P.J. The influence of sphingomyelin on the structure and function of reconstituted high density lipoproteins. J Biol Chem. 1996;271(8):4243–4250.
    1. Viana M.B., Giugliani R., Leite V.H., Barth M.L., Lekhwani C., Slade C.M. Very low levels of high density lipoprotein cholesterol in four sibs of a family with non-neuropathic niemann-pick disease and sea-blue histiocytosis. J Med Genet. 1990;27(8):499–504.
    1. Hannun Y.A., Obeid L.M. Many ceramides. J Biol Chem. 2011;286(32):27855–27862.
    1. Holland W.L., Brozinick J.T., Wang L.P., Hawkins E.D., Sargent K.M., Liu Y. Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. Cell Metab. 2007;5(3):167–179.
    1. Samad F, Hester KD, Yang G, Hannun YA, Bielawski J. Altered adipose and plasma sphingolipid metabolism in obesity: a potential mechanism for cardiovascular and metabolic risk. Diabetes. 2006;55(9):2579–2587.
    1. Straczkowski M, Kowalska I, Nikolajuk A, Dzienis-Straczkowska S, Kinalska I, Baranowski M. Relationship between insulin sensitivity and sphingomyelin signaling pathway in human skeletal muscle. Diabetes. 2004;53(5):1215–1221.
    1. Adams JM, 2nd, Pratipanawatr T, Berria R, Wang E, DeFronzo RA, Sullards MC. Ceramide content is increased in skeletal muscle from obese insulin-resistant humans. Diabetes. 2004;53(1):25–31.
    1. Schlitt A., Blankenberg S., Yan D., von Gizycki H., Buerke M., Werdan K. Further evaluation of plasma sphingomyelin levels as a risk factor for coronary artery disease. Nutr Metab (Lond) 2006;3:5.
    1. Chapman M.J. Comparative analysis of mammalian plasma lipoproteins. Methods Enzymol. 1986;128:70–143.
    1. Pentikainen M.O., Lehtonen E.M., Kovanen P.T. Aggregation and fusion of modified low density lipoprotein. J Lipid Res. 1996;37(12):2638–2649.
    1. Tabas I., Li Y., Brocia R.W., Xu S.W., Swenson T.L., Williams K.J. Lipoprotein lipase and sphingomyelinase synergistically enhance the association of atherogenic lipoproteins with smooth muscle cells and extracellular matrix. A possible mechanism for low density lipoprotein and lipoprotein(a) retention and macrophage foam cell formation. J Biol Chem. 1993;268(27):20419–20432.
    1. Cheng JM, Suoniemi M, Kardys I, Vihervaara T, de Boer SP, Akkerhuis KM. Plasma concentrations of molecular lipid species in relation to coronary plaque characteristics and cardiovascular outcome: results of the Atheroremo-ivus study. Atherosclerosis. 2015;243(2):560–566.
    1. Olofsson S.O., Boren J. Apolipoprotein B: a clinically important apolipoprotein which assembles atherogenic lipoproteins and promotes the development of atherosclerosis. J Intern Med. 2005;258(5):395–410.
    1. Wheeler E, Leong A, Liu CT, Hivert MF, Strawbridge RJ, Podmore C. Impact of common genetic determinants of hemoglobin A1c on type 2 diabetes risk and diagnosis in ancestrally diverse populations: a transethnic genome-wide meta-analysis. PLoS Med. 2017;14(9)
    1. Raichur S., Wang S.T., Chan P.W., Li Y., Ching J., Chaurasia B. CerS2 haploinsufficiency inhibits beta-Oxidation and confers susceptibility to diet-induced steatohepatitis and insulin resistance. Cell Metab. 2014;20(5):919.
    1. Estruch R., Ros E., Salas-Salvado J., Covas M.I., Corella D., Aros F. Primary prevention of cardiovascular disease with a mediterranean diet supplemented with extra-virgin Olive oil or Nuts. N Engl J Med. 2018;378(25):e34.
    1. Chavez J.A., Summers S.A. Characterizing the effects of saturated fatty acids on insulin signaling and ceramide and diacylglycerol accumulation in 3T3-L1 adipocytes and C2C12 myotubes. Arch Biochem Biophys. 2003;419(2):101–109.
    1. Hojjati M.R., Li Z., Zhou H., Tang S., Huan C., Ooi E. Effect of myriocin on plasma sphingolipid metabolism and atherosclerosis in apoE-deficient mice. J Biol Chem. 2005;280(11):10284–10289.
    1. Bikman B.T., Guan Y., Shui G., Siddique M.M., Holland W.L., Kim J.Y. Fenretinide prevents lipid-induced insulin resistance by blocking ceramide biosynthesis. J Biol Chem. 2012;287(21):17426–17437.
    1. Ussher JR, Koves TR, Cadete VJ, Zhang L, Jaswal JS, Swyrd SJ. Inhibition of de novo ceramide synthesis reverses diet-induced insulin resistance and enhances whole-body oxygen consumption. Diabetes. 2010;59(10):2453–2464.
    1. Szymanska E., Bouwman J., Strassburg K., Vervoort J., Kangas A.J., Soininen P. Gender-dependent associations of metabolite profiles and body fat distribution in a healthy population with central obesity: towards metabolomics diagnostics. OMICS. 2012;16(12):652–667.

Source: PubMed

3
Abonneren