A mechanistic model and therapeutic interventions for COVID-19 involving a RAS-mediated bradykinin storm

Michael R Garvin, Christiane Alvarez, J Izaak Miller, Erica T Prates, Angelica M Walker, B Kirtley Amos, Alan E Mast, Amy Justice, Bruce Aronow, Daniel Jacobson, Michael R Garvin, Christiane Alvarez, J Izaak Miller, Erica T Prates, Angelica M Walker, B Kirtley Amos, Alan E Mast, Amy Justice, Bruce Aronow, Daniel Jacobson

Abstract

Neither the disease mechanism nor treatments for COVID-19 are currently known. Here, we present a novel molecular mechanism for COVID-19 that provides therapeutic intervention points that can be addressed with existing FDA-approved pharmaceuticals. The entry point for the virus is ACE2, which is a component of the counteracting hypotensive axis of RAS. Bradykinin is a potent part of the vasopressor system that induces hypotension and vasodilation and is degraded by ACE and enhanced by the angiotensin1-9 produced by ACE2. Here, we perform a new analysis on gene expression data from cells in bronchoalveolar lavage fluid (BALF) from COVID-19 patients that were used to sequence the virus. Comparison with BALF from controls identifies a critical imbalance in RAS represented by decreased expression of ACE in combination with increases in ACE2, renin, angiotensin, key RAS receptors, kinogen and many kallikrein enzymes that activate it, and both bradykinin receptors. This very atypical pattern of the RAS is predicted to elevate bradykinin levels in multiple tissues and systems that will likely cause increases in vascular dilation, vascular permeability and hypotension. These bradykinin-driven outcomes explain many of the symptoms being observed in COVID-19.

Keywords: COVID-19; bradykinin; computational biology; human; human biology; hyaluronic acid; medicine; pathogenesis; renin-angiotensin system; systems biology.

Conflict of interest statement

MG, CA, JM, EP, AW, BA, AM, AJ, BA, DJ No competing interests declared

Figures

Figure 1.. Functionally annotated network of genes…
Figure 1.. Functionally annotated network of genes involved in the hypertension-hypotension axis whose expression across the GTEx population is correlated and anticorrelated with the AGTR1 and AGTR2 receptors.
When ACE is downregulated and ACE2 and the BK pathway is upregulated in the lungs of COVID-19 patients it leads to the hypotension, vascular permeability, and the Bradykinin Storm that explains much of COVID-19 symptomatology. As can be seen broadly across the figure, the resulting dysfunction caused by this imbalance will likely have a significant impact on the immune response by increasing processes on the right and decreasing those on the left. Genes are hexagons, highlighted colored genes of the AGTR1 cluster are associated with vasoconstriction and their connections to other enriched features are via pink edges; green highlighted genes in the AGTR2 cluster are those associated with fluid balance and vasodilation and their connections to enriched features are shown as light green edges. Figure is made from two gene cluster input to http://toppcluster.cchmc.org using FDR cutoff of 0.05 for network output and xgmml output to Cytoscape.
Figure 2.. Critically disrupted RAS and Bradykinin…
Figure 2.. Critically disrupted RAS and Bradykinin pathways in COVID-19 BAL samples.
(A) Significantly differentially expressed genes: red ovals indicate genes upregulated in COVID-19, blue are downregulated, colors are scaled to the log2-fold-change values for COVID-19. The overall effect is to shift the system to production of Ang1-9 and AGTR2-driven sensitization of BK receptors involved in pain (BDKRB1) and NO-dependent vasodilation (BDKRB2). Several points of inhibition maintain this imbalance. The suppression of NFkappaB by the virus decreases its binding to the ACE promoter and subsequent transcription (lower left). Decrease in the activation of Vitamin D and its receptor (VDR), which normally inhibits REN production, in combination with the upregulation of ACE2, increases flux of angiotensin to Ang1-9 (top left). Decrease in the expression of the SERPING1 gene, lifts suppression of FXII of the intrinsic coagulation cascade, resulting in further production of BK from kallikrein and KNG (both upregulated) (top right). BK levels are further increased because ACE, which normally degrades it, is decreased. A surge in Ang1-9 further sensitizes the effects of bradykinin at BDKRB2. Other enzymes that degrade BK are also downregulated such as MME, which is meant to degrade Ang1-9 , BK, and another important peptide Apelin (APLN). (B) The result of a hyperactive bradykinin system is vasodilation to the point of vascular leakage and infiltration of inflammatory cells.
Figure 3.. The upregulation of hyaluronan synthases…
Figure 3.. The upregulation of hyaluronan synthases and downregulation of hyaluronidases combined with the BK-induced hyperpermeability of the lung microvasculature leads to the formation of a HA-hydrogel that inhibits gas exchange in the alveoli of COVID-19 patients.
Figure 4.. Systemic-level effects of critically imbalanced…
Figure 4.. Systemic-level effects of critically imbalanced RAS and BK pathways.
The gene expression patterns from COVID BAL samples reveal a RAS that is skewed toward low levels of ACE that result in higher levels of Ang1-9 and BK. High levels of ACE normally present in the lungs are responsible for generating system-wide angiotensin-derived peptides. As detailed in Figure 2, the Bradykinin-Storm is likely to affect major organs that are regulated by angiotensin derivatives. These include altered electrolyte balance from affected kidney and heart tissue, arrhythmia in dysregulated cardiac tissue, neurological disruptions in the brain, myalgia in muscles and severe alterations in oxygen uptake in the lung itself. Red colors indicate upregulation and blue downregulation.

References

    1. Adachi T, Chong J-M, Nakajima N, Sano M, Yamazaki J, Miyamoto I, Nishioka H, Akita H, Sato Y, Kataoka M, Katano H, Tobiume M, Sekizuka T, Itokawa K, Kuroda M, Suzuki T. Clinicopathologic and immunohistochemical findings from autopsy of patient with COVID-19, Japan. Emerging Infectious Diseases. 2020;26:201353. doi: 10.3201/eid2609.201353.
    1. Alipio M. Vitamin D supplementation could possibly improve clinical outcomes of patients infected with Coronavirus-2019 (COVID-2019) SSRN Electronic Journal. 2020;2:100051. doi: 10.2139/ssrn.3571484.
    1. Araújo RC, Kettritz R, Fichtner I, Paiva AC, Pesquero JB, Bader M. Altered neutrophil homeostasis in Kinin B1 receptor-deficient mice. Biological Chemistry. 2001;382:91–95. doi: 10.1515/BC.2001.014.
    1. Arendse LB, Danser AHJ, Poglitsch M, Touyz RM, Burnett JC, Llorens-Cortes C, Ehlers MR, Sturrock ED. Novel therapeutic approaches targeting the Renin-Angiotensin system and associated peptides in hypertension and heart failure. Pharmacological Reviews. 2019;71:539–570. doi: 10.1124/pr.118.017129.
    1. Bai B, Liu L, Zhang N, Wang C, Jiang Y, Chen J. Heterodimerization of human apelin and bradykinin 1 receptors: novel signal transduction characteristics. Cellular Signalling. 2014;26:1549–1559. doi: 10.1016/j.cellsig.2014.03.022.
    1. Bai F, Pang XF, Zhang LH, Wang NP, McKallip RJ, Garner RE, Zhao ZQ. Angiotensin II AT1 receptor alters ACE2 activity, eNOS expression and CD44-hyaluronan interaction in rats with hypertension and myocardial fibrosis. Life Sciences. 2016;153:141–152. doi: 10.1016/j.lfs.2016.04.013.
    1. Barton LM, Duval EJ, Stroberg E, Ghosh S, Mukhopadhyay S. COVID-19 autopsies, Oklahoma, USA. American Journal of Clinical Pathology. 2020;153:725–733. doi: 10.1093/ajcp/aqaa062.
    1. Bernstein KE, Khan Z, Giani JF, Cao DY, Bernstein EA, Shen XZ. Angiotensin-converting enzyme in innate and adaptive immunity. Nature Reviews Nephrology. 2018;14:325–336. doi: 10.1038/nrneph.2018.15.
    1. Bhagat R, Forteza RM, Calcote CB, Williams WT, Bigler SA, Dwyer TM. Pulmonary emboli from therapeutic sodium hyaluronate. Respiratory Care. 2012;57:1670–1673. doi: 10.4187/respcare.01666.
    1. Bielecka-Dabrowa A, Mikhailidis DP, Jones L, Rysz J, Aronow WS, Banach M. The meaning of hypokalemia in heart failure. International Journal of Cardiology. 2012;158:12–17. doi: 10.1016/j.ijcard.2011.06.121.
    1. Bikle DD. Vitamin D metabolism, mechanism of action, and clinical applications. Chemistry & Biology. 2014;21:319–329. doi: 10.1016/j.chembiol.2013.12.016.
    1. Carey RM. Blood pressure and the renal actions of AT2 receptors. Current Hypertension Reports. 2017;19:21. doi: 10.1007/s11906-017-0720-7.
    1. Chen Z, Tan F, Erdös EG, Deddish PA. Hydrolysis of angiotensin peptides by human angiotensin I-converting enzyme and the resensitization of B2 kinin receptors. Hypertension. 2005;46:1368–1373. doi: 10.1161/01.HYP.0000188905.20884.63.
    1. Chen Y. The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Directly decimates human spleens and lymph nodes. medRxiv. 2020 doi: 10.1101/2020.03.27.20045427.
    1. Chin AWH, Chu JTS, Perera MRA, Hui KPY, Yen H-L, Chan MCW, Peiris M, Poon LLM. Stability of SARS-CoV-2 in different environmental conditions. The Lancet Microbe. 2020;1:e10. doi: 10.1016/S2666-5247(20)30003-3.
    1. Cholankeril G. High prevalence of concurrent gastrointestinal manifestations in patients with SARS-CoV-2: early experience from California. Gastroenterology. 2020;5085:30471–30476. doi: 10.1053/j.gastro.2020.04.008.
    1. Cowman MK, Matsuoka S. Experimental approaches to hyaluronan structure. Carbohydrate Research. 2005;340:791–809. doi: 10.1016/j.carres.2005.01.022.
    1. Cyr M, Lepage Y, Blais C, Gervais N, Cugno M, Rouleau JL, Adam A. Bradykinin and des-Arg(9)-bradykinin metabolic pathways and kinetics of activation of human plasma. American Journal of Physiology. Heart and Circulatory Physiology. 2001;281:H275–H283. doi: 10.1152/ajpheart.2001.281.1.H275.
    1. Dancer RC, Parekh D, Lax S, D'Souza V, Zheng S, Bassford CR, Park D, Bartis DG, Mahida R, Turner AM, Sapey E, Wei W, Naidu B, Stewart PM, Fraser WD, Christopher KB, Cooper MS, Gao F, Sansom DM, Martineau AR, Perkins GD, Thickett DR. Vitamin D deficiency contributes directly to the acute respiratory distress syndrome (ARDS) Thorax. 2015;70:617–624. doi: 10.1136/thoraxjnl-2014-206680.
    1. Driggin E, Madhavan MV, Bikdeli B, Chuich T, Laracy J, Biondi-Zoccai G, Brown TS, Der Nigoghossian C, Zidar DA, Haythe J, Brodie D, Beckman JA, Kirtane AJ, Stone GW, Krumholz HM, Parikh SA. Cardiovascular considerations for patients, health care workers, and health systems during the COVID-19 pandemic. Journal of the American College of Cardiology. 2020;75:2352–2371. doi: 10.1016/j.jacc.2020.03.031.
    1. Dubois EA, Cohen AF. Icatibant. British Journal of Clinical Pharmacology. 2010;69:425–426. doi: 10.1111/j.1365-2125.2010.03642.x.
    1. Erdös EG, Jackman HL, Brovkovych V, Tan F, Deddish PA. Products of angiotensin I hydrolysis by human cardiac enzymes potentiate bradykinin. Journal of Molecular and Cellular Cardiology. 2002;34:1569–1576. doi: 10.1006/jmcc.2002.2080.
    1. Fan BE, Chong VCL, Chan SSW, Lim GH, Lim KGE, Tan GB, Mucheli SS, Kuperan P, Ong KH. Hematologic parameters in patients with COVID-19 infection. American Journal of Hematology. 2020;95:E131–E134. doi: 10.1002/ajh.25774.
    1. Farkas H, Varga L. Ecallantide is a novel treatment for attacks of hereditary angioedema due to C1 inhibitor deficiency. Clinical, Cosmetic and Investigational Dermatology. 2011;4:61–68. doi: 10.2147/CCID.S10322.
    1. Flores-Muñoz M, Smith NJ, Haggerty C, Milligan G, Nicklin SA. Angiotensin1-9 antagonises pro-hypertrophic signalling in cardiomyocytes via the angiotensin type 2 receptor. The Journal of Physiology. 2011;589:939–951. doi: 10.1113/jphysiol.2010.203075.
    1. Garcia V, Shkolnik B, Milhau L, Falck JR, Schwartzman ML. 20-HETE activates the transcription of Angiotensin-Converting enzyme via nuclear Factor-κB translocation and promoter binding. Journal of Pharmacology and Experimental Therapeutics. 2016;356:525–533. doi: 10.1124/jpet.115.229377.
    1. Gordon RD, Wolfe LK, Island DP, Liddle GW. A diurnal rhythm in plasma renin activity in man. Journal of Clinical Investigation. 1966;45:1587–1592. doi: 10.1172/JCI105464.
    1. Goyal P, Choi JJ, Pinheiro LC, Schenck EJ, Chen R, Jabri A, Satlin MJ, Campion TR, Nahid M, Ringel JB, Hoffman KL, Alshak MN, Li HA, Wehmeyer GT, Rajan M, Reshetnyak E, Hupert N, Horn EM, Martinez FJ, Gulick RM, Safford MM. Clinical characteristics of Covid-19 in New York city. New England Journal of Medicine. 2020;382:2372–2374. doi: 10.1056/NEJMc2010419.
    1. GTEx Consortium The Genotype-Tissue expression (GTEx) project. Nature Genetics. 2013;45:580–585. doi: 10.1038/ng.2653.
    1. Guo T, Fan Y, Chen M, Wu X, Zhang L, He T, Wang H, Wan J, Wang X, Lu Z. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19) JAMA Cardiology. 2020;27:e201017. doi: 10.1001/jamacardio.2020.1017.
    1. Hällgren R, Samuelsson T, Laurent TC, Modig J. Accumulation of hyaluronan (hyaluronic acid) in the lung in adult respiratory distress syndrome. American Review of Respiratory Disease. 1989;139:682–687. doi: 10.1164/ajrccm/139.3.682.
    1. Han SW, Park MJ, Lee SH. Hyaluronic acid-induced diffuse alveolar hemorrhage: unknown complication induced by a well-known injectable agent. Annals of Translational Medicine. 2019;7:13. doi: 10.21037/atm.2018.11.51.
    1. Harada H, Takahashi M. CD44-dependent intracellular and extracellular catabolism of hyaluronic acid by hyaluronidase-1 and -2. Journal of Biological Chemistry. 2007;282:5597–5607. doi: 10.1074/jbc.M608358200.
    1. Helms J, Kremer S, Merdji H, Clere-Jehl R, Schenck M, Kummerlen C, Collange O, Boulay C, Fafi-Kremer S, Ohana M, Anheim M, Meziani F. Neurologic features in severe SARS-CoV-2 infection. New England Journal of Medicine. 2020;382:2268–2270. doi: 10.1056/NEJMc2008597.
    1. Hofman Z, de Maat S, Hack CE, Maas C. Bradykinin: inflammatory product of the coagulation system. Clinical Reviews in Allergy & Immunology. 2016;51:152–161. doi: 10.1007/s12016-016-8540-0.
    1. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet. 2020;395:497–506. doi: 10.1016/S0140-6736(20)30183-5.
    1. Jacox L, Sindelka R, Chen J, Rothman A, Dickinson A, Sive H. The extreme anterior domain is an essential craniofacial organizer acting through Kinin-Kallikrein signaling. Cell Reports. 2014;8:596–609. doi: 10.1016/j.celrep.2014.06.026.
    1. Jang JG, Hong KS, Choi EY. A case of nonthrombotic pulmonary embolism after facial injection of hyaluronic acid in an illegal cosmetic procedure. Tuberculosis and Respiratory Diseases. 2014;77:90. doi: 10.4046/trd.2014.77.2.90.
    1. Jin JM, Bai P, He W, Wu F, Liu XF, Han DM, Liu S, Yang JK. Gender differences in patients with COVID-19: focus on severity and mortality. Frontiers in Public Health. 2020;8:152. doi: 10.3389/fpubh.2020.00152.
    1. Kalinska M, Meyer-Hoffert U, Kantyka T, Potempa J. Kallikreins - The melting pot of activity and function. Biochimie. 2016;122:270–282. doi: 10.1016/j.biochi.2015.09.023.
    1. Kanasaki K. N-acetyl-seryl-aspartyl-lysyl-proline is a valuable endogenous antifibrotic peptide for kidney fibrosis in diabetes: an update and translational aspects. Journal of Diabetes Investigation. 2020;11:516–526. doi: 10.1111/jdi.13219.
    1. Kaneiwa T, Mizumoto S, Sugahara K, Yamada S. Identification of human hyaluronidase-4 as a novel chondroitin sulfate hydrolase that preferentially cleaves the galactosaminidic linkage in the trisulfated tetrasaccharide sequence. Glycobiology. 2010;20:300–309. doi: 10.1093/glycob/cwp174.
    1. Kaplan AP, Ghebrehiwet B. The plasma bradykinin-forming pathways and its interrelationships with complement. Molecular Immunology. 2010;47:2161–2169. doi: 10.1016/j.molimm.2010.05.010.
    1. Kjeldsen K. Hypokalemia and sudden cardiac death. Experimental and Clinical Cardiology. 2010;15:e96–e99.
    1. Lippi G, South AM, Henry BM. Electrolyte imbalances in patients with severe coronavirus disease 2019 (COVID-19) Annals of Clinical Biochemistry: International Journal of Laboratory Medicine. 2020;57:262–265. doi: 10.1177/0004563220922255.
    1. Long Q-X, Tang X-J, Shi Q-L, Li Q, Deng H-J, Yuan J, Hu J-L, Xu W, Zhang Y, Lv F-J, Su K, Zhang F, Gong J, Wu B, Liu X-M, Li J-J, Qiu J-F, Chen J, Huang A-L. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nature Medicine. 2020;63:6. doi: 10.1038/s41591-020-0965-6.
    1. Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, Chang J, Hong C, Zhou Y, Wang D, Miao X, Li Y, Hu B. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurology. 2020;77:683–689. doi: 10.1001/jamaneurol.2020.1127.
    1. Marcic B, Deddish PA, Jackman HL, Erdös EG. Enhancement of bradykinin and resensitization of its B2 receptor. Hypertension. 1999;33:835–843. doi: 10.1161/01.hyp.33.3.835.
    1. McCarthy DJ, Chen Y, Smyth GK. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Research. 2012;40:4288–4297. doi: 10.1093/nar/gks042.
    1. McKallip RJ, Fisher M, Do Y, Szakal AK, Gunthert U, Nagarkatti PS, Nagarkatti M. Targeted deletion of CD44v7 exon leads to decreased endothelial cell injury but not tumor cell killing mediated by interleukin-2-activated cytolytic lymphocytes. Journal of Biological Chemistry. 2003;278:43818–43830. doi: 10.1074/jbc.M304467200.
    1. McKallip RJ, Hagele HF, Uchakina ON. Treatment with the hyaluronic acid synthesis inhibitor 4-methylumbelliferone suppresses SEB-induced lung inflammation. Toxins. 2013;5:1814–1826. doi: 10.3390/toxins5101814.
    1. Modig J, Hällgren R. Increased hyaluronic acid production in lung--a possible important factor in interstitial and alveolar edema during general anesthesia and in adult respiratory distress syndrome. Resuscitation. 1989;17:223–231. doi: 10.1016/0300-9572(89)90038-5.
    1. Mogielnicki A, Kramkowski K, Hermanowicz JM, Leszczynska A, Przyborowski K, Buczko W. Angiotensin-(1-9) enhances stasis-induced venous thrombosis in the rat because of the impairment of fibrinolysis. Journal of the Renin-Angiotensin-Aldosterone System. 2014;15:13–21. doi: 10.1177/1470320313498631.
    1. Mong MA, Awkal JA, Marik PE. Accelerated hyaluronan concentration as the primary driver of morbidity and mortality in high-risk COVID-19 patients: with therapeutic introduction of an oral hyaluronan inhibitor in the prevention of ‘Induced Hyaluronan Storm’ Syndrome. medRxiv. 2020 doi: 10.1101/2020.04.19.20071647.
    1. Mustafa A, McKallip RJ, Fisher M, Duncan R, Nagarkatti PS, Nagarkatti M. Regulation of interleukin-2-induced vascular leak syndrome by targeting CD44 using hyaluronic acid and anti-CD44 antibodies. Journal of Immunotherapy. 2002;25:476–488. doi: 10.1097/00002371-200211000-00004.
    1. NCATS Inxight Drugs — HYMECROMONE. 2020
    1. Necas J, Bartosikova L, Brauner P, Kolar J. Hyaluronic acid (hyaluronan): a review. Veterinární Medicína. 2008;53:397–411. doi: 10.17221/1930-VETMED.
    1. Paegelow I, Werner H, Vietinghoff G, Wartner U. Release of cytokines from isolated lung strips by bradykinin. Inflammation Research. 1995;44:306–311. doi: 10.1007/BF02032574.
    1. Pan L, Mu M, Yang P, Sun Y, Wang R, Yan J, Li P, Hu B, Wang J, Hu C, Jin Y, Niu X, Ping R, Du Y, Li T, Xu G, Hu Q, Tu L. Clinical characteristics of COVID-19 patients with digestive symptoms in Hubei, China: a descriptive, Cross-Sectional, multicenter study. The American Journal of Gastroenterology. 2020;115:766–773. doi: 10.14309/ajg.0000000000000620.
    1. Patel VB, Zhong JC, Grant MB, Oudit GY. Role of the ACE2/Angiotensin 1-7 Axis of the Renin-Angiotensin system in heart failure. Circulation Research. 2016;118:1313–1326. doi: 10.1161/CIRCRESAHA.116.307708.
    1. Rentsch CT. Covid-19 testing, hospital admission, and intensive care among 2,026,227 united states veterans aged 54-75 years. medRxiv. 2020 doi: 10.1101/2020.04.09.20059964.
    1. Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. Journal of Clinical Investigation. 1990;86:1343–1346. doi: 10.1172/JCI114844.
    1. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–140. doi: 10.1093/bioinformatics/btp616.
    1. Salska A, Dziuba M, Salski W, Chizynski K, Zielinska M. Apelin and atrial fibrillation: the role in the arrhythmia recurrence prognosis. Disease Markers. 2018;2018:1–8. doi: 10.1155/2018/5285392.
    1. Sato T, Suzuki T, Watanabe H, Kadowaki A, Fukamizu A, Liu PP, Kimura A, Ito H, Penninger JM, Imai Y, Kuba K. Apelin is a positive regulator of ACE2 in failing hearts. Journal of Clinical Investigation. 2013;123:5203–5211. doi: 10.1172/JCI69608.
    1. Schmaier AH. The plasma kallikrein-kinin system counterbalances the renin-angiotensin system. Journal of Clinical Investigation. 2002;109:1007–1009. doi: 10.1172/JCI0215490.
    1. Schmaier AH. The contact activation and kallikrein/kinin systems: pathophysiologic and physiologic activities. Journal of Thrombosis and Haemostasis. 2016;14:28–39. doi: 10.1111/jth.13194.
    1. Schmitt AD, Hu M, Jung I, Xu Z, Qiu Y, Tan CL, Li Y, Lin S, Lin Y, Barr CL, Ren B. A compendium of chromatin contact maps reveals spatially active regions in the human genome. Cell Reports. 2016;17:2042–2059. doi: 10.1016/j.celrep.2016.10.061.
    1. Sey NYA, Hu B, Mah W, Fauni H, McAfee JC, Rajarajan P, Brennand KJ, Akbarian S, Won H. A computational tool (H-MAGMA) for improved prediction of brain-disorder risk genes by incorporating brain chromatin interaction profiles. Nature Neuroscience. 2020;23:583–593. doi: 10.1038/s41593-020-0603-0.
    1. Shi S, Qin M, Shen B, Cai Y, Liu T, Yang F, Gong W, Liu X, Liang J, Zhao Q, Huang H, Yang B, Huang C. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiology. 2020;25:e200950. doi: 10.1001/jamacardio.2020.0950.
    1. Sisay M. 3CLpro inhibitors as a potential therapeutic option for COVID-19: available evidence and ongoing clinical trials. Pharmacological Research. 2020;156:104779. doi: 10.1016/j.phrs.2020.104779.
    1. Skogestad J, Aronsen JM. Hypokalemia-Induced arrhythmias and heart failure: new insights and implications for therapy. Frontiers in Physiology. 2018;9:1500. doi: 10.3389/fphys.2018.01500.
    1. Stuardo M, Gonzalez CB, Nualart F, Boric M, Corthorn J, Bhoola KD, Figueroa CD. Stimulated human neutrophils form biologically active kinin peptides from high and low molecular weight kininogens. Journal of Leukocyte Biology. 2004;75:631–640. doi: 10.1189/jlb.1103546.
    1. Studdy PR, Lapworth R, Bird R. Angiotensin-converting enzyme and its clinical significance--a review. Journal of Clinical Pathology. 1983;36:938–947. doi: 10.1136/jcp.36.8.938.
    1. Su H, Yang M, Wan C, Yi LX, Tang F, Zhu HY, Yi F, Yang HC, Fogo AB, Nie X, Zhang C. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney International. 2020;98:219–227. doi: 10.1016/j.kint.2020.04.003.
    1. The Lancet Haematology COVID-19 coagulopathy: an evolving story. The Lancet Haematology. 2020;7:e425. doi: 10.1016/S2352-3026(20)30151-4.
    1. Tuoresmäki P, Väisänen S, Neme A, Heikkinen S, Carlberg C. Patterns of genome-wide VDR locations. PLOS ONE. 2014;9:e96105. doi: 10.1371/journal.pone.0096105.
    1. Vaidya A, Williams JS. The relationship between vitamin D and the renin-angiotensin system in the pathophysiology of hypertension, kidney disease, and diabetes. Metabolism. 2012;61:450–458. doi: 10.1016/j.metabol.2011.09.007.
    1. van de Veerdonk FL, Netea MG, van Deuren M, van der Meer JW, de Mast Q, Brüggemann RJ, van der Hoeven H. Kallikrein-kinin blockade in patients with COVID-19 to prevent acute respiratory distress syndrome. eLife. 2020;9:e57555. doi: 10.7554/eLife.57555.
    1. Wadman M. How does coronavirus kill? clinicians trace a ferocious rampage through the body, from brain to toes. Science. 2020;2:abc3208. doi: 10.1126/science.abc3208.
    1. Wang D, Fang L, Shi Y, Zhang H, Gao L, Peng G, Chen H, Li K, Xiao S. Porcine epidemic diarrhea virus 3C-Like protease regulates its interferon antagonism by cleaving NEMO. Journal of Virology. 2016;90:2090–2101. doi: 10.1128/JVI.02514-15.
    1. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y, Zhao Y, Li Y, Wang X, Peng Z. Clinical characteristics of 138 hospitalized patients with 2019 novel Coronavirus–Infected Pneumonia in Wuhan, China. JAMA. 2020;323:1061–1069. doi: 10.1001/jama.2020.1585.
    1. Wilkerson RG. Angioedema in the emergency department: an evidence-based review. Emergency Medicine Practice. 2012;14:1–21.
    1. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, Liu S, Zhao P, Liu H, Zhu L, Tai Y, Bai C, Gao T, Song J, Xia P, Dong J, Zhao J, Wang FS. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. The Lancet Respiratory Medicine. 2020;8:420–422. doi: 10.1016/S2213-2600(20)30076-X.
    1. Zhang DD, Gao ZX, Vio CP, Xiao Y, Wu P, Zhang H, Guo XW, Meng XX, Gu L, Wang JL, Duan XP, Lin DH, Wang WH, Gu R. Bradykinin stimulates renal na+ and K+ Excretion by Inhibiting the K+ Channel (Kir4.1) in the Distal Convoluted Tubule. Hypertension. 2018;72:361–369. doi: 10.1161/HYPERTENSIONAHA.118.11070.
    1. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270–273. doi: 10.1038/s41586-020-2012-7.

Source: PubMed

3
Abonneren