A Pilot Study of Immune Activation and Rifampin Absorption in HIV-Infected Patients without Tuberculosis Infection: A Short Report

Christopher Vinnard, Isabel Manley, Brittney Scott, Mariana Bernui, Joella Adams, Sheryl Varghese, Isaac Zentner, Michele A Kutzler, Christopher Vinnard, Isabel Manley, Brittney Scott, Mariana Bernui, Joella Adams, Sheryl Varghese, Isaac Zentner, Michele A Kutzler

Abstract

Background: Rifampin malabsorption is frequently observed in tuberculosis patients coinfected with human immunodeficiency virus (HIV) but cannot be predicted by patient factors such as CD4+ T cell count or HIV viral load.

Methods: We sought to describe the relationship between HIV-associated immune activation, measures of gut absorptive capacity and permeability, and rifampin pharmacokinetic parameters in a pilot study of 6 HIV-infected, tuberculosis-uninfected patients who were naïve to antiretroviral therapy.

Results: The median rifampin area under the concentration-versus-time curve during the 8-hour observation period was 42.8 mg·hr/L (range: 21.2 to 57.6), with a median peak concentration of 10.1 mg/L (range: 5.3 to 12.5). We observed delayed rifampin absorption, with a time to maximum concentration greater than 2 hours, in 2 of 6 participants. There was a trend towards increased plasma concentrations of sCD14, a marker of monocyte activation in response to bacterial translocation, among participants with delayed rifampin absorption compared to participants with rapid absorption (p = 0.06).

Conclusions: Delayed rifampin absorption may be associated with elevated markers of bacterial translocation among HIV-infected individuals naïve to antiretroviral therapy. This trial is registered with NCT01845298.

Figures

Figure 1
Figure 1
Flow cytometry results for CD4+ T cells. Panel 1: gating of lymphocytes; panel 2: live/dead staining; panel 3: CD3+ CD4+; panel 4: CD4+ HLA-DR+; panel 5: CD4+ CD38+; panel 6: CD4+ CD57+.
Figure 2
Figure 2
Flow cytometry results for CD8+ T cells. Panel 1: gating of lymphocytes; panel 2: live/dead staining; panel 3: CD3+ CD8+; panel 4: CD8+ HLA-DR+; panel 5: CD8+ CD38+; panel 6: CD8+ CD57+.
Figure 3
Figure 3
Individual plots of serum rifampin concentration-versus-time curves.

References

    1. Nahid P., Dorman S. E., Alipanah N., et al. Official American Thoracic Society/centers for disease control and prevention/infectious diseases society of America clinical practice guidelines: treatment of drug-susceptible tuberculosis. Clinical Infectious Diseases. 2016;63(7):e147–e195. doi: 10.1093/cid/ciw376.
    1. Pasipanodya J., Gumbo T. An oracle: antituberculosis pharmacokinetics-pharmacodynamics, clinical correlation, and clinical trial simulations to predict the future. Antimicrobial Agents and Chemotherapy. 2011;55(1):24–34. doi: 10.1128/AAC.00749-10.
    1. Pasipanodya J. G., McIlleron H., Burger A., Wash P. A., Smith P., Gumbo T. Serum drug concentrations predictive of pulmonary tuberculosis outcomes. The Journal of Infectious Diseases. 2013;208(9):1464–1473. doi: 10.1093/infdis/jit352.
    1. Tappero J. W., Bradford W. Z., Agerton T. B., et al. Serum concentrations of antimycobacterial drugs in patients with pulmonary tuberculosis in Botswana. Clinical Infectious Diseases. 2005;41(4):461–469. doi: 10.1086/431984.
    1. Dorman S. E., Savic R. M., Goldberg S., et al. Daily rifapentine for treatment of pulmonary tuberculosis. A randomized, dose-ranging trial. American Journal of Respiratory and Critical Care Medicine. 2015:191–333.
    1. Pasipanodya J. G., Srivastava S., Gumbo T. Meta-analysis of clinical studies supports the pharmacokinetic variability hypothesis for acquired drug resistance and failure of antituberculosis therapy. Clinical Infectious Diseases. 2012;55(2):169–177. doi: 10.1093/cid/cis353.
    1. Chigutsa E., Pasipanodya J. G., Visser M. E., et al. Impact of nonlinear interactions of pharmacokinetics and mics on sputum bacillary kill rates as a marker of sterilizing effect in tuberculosis. Antimicrobial Agents and Chemotherapy. 2015;59(1):38–45. doi: 10.1128/AAC.03931-14.
    1. Sahai J., Gallicano K., Swick L., et al. Reduced plasma concentrations of antituberculosis drugs in patients with HIV infection. Annals of Internal Medicine. 1997;127(4):289–293. doi: 10.7326/0003-4819-127-4-199708150-00006.
    1. Perlman D. C., Segal Y., Rosenkranz S., et al. The clinical pharmacokinetics of rifampin and ethambutol in HIV-infected persons with tuberculosis. Clinical Infectious Diseases. 2005;41(11):1638–1647. doi: 10.1086/498024.
    1. Façanha M. C., Gondim A. M. B., Pinheiro V. G. F., et al. Intestinal barrier function and serum concentrations of rifampin, isoniazid and pyrazinamide in patients with pulmonary tuberculosis. The Brazilian Journal of Infectious Diseases. 2009;13(3):210–217. doi: 10.1590/S1413-86702009000300011.
    1. Barroso E. C., Pinheiro V. G., Façanha M. C., Carvalho M. R., Moura M. E., Campelo C. L. Serum concentrations of rifampin, isoniazid, and intestinal absorption, permeability in patients with multidrug resistant tuberculosis. The American Journal of Tropical Medicine and Hygiene. 2009;81:322–329.
    1. Pinheiro V. G. F., Ramos L. M. A., Monteiro H. S. A., et al. Intestinal permeability and malabsorption of rifampin and isoniazid in active pulmonary tuberculosis. The Brazilian Journal of Infectious Diseases. 2006;10(6):374–379. doi: 10.1590/S1413-86702006000600003.
    1. Mehandru S., Tenner-Racz K., Racz P., Markowitz M. The gastrointestinal tract is critical to the pathogenesis of acute HIV-1 infection. The Journal of Allergy and Clinical Immunology. 2005;116(2):419–422. doi: 10.1016/j.jaci.2005.05.040.
    1. Brenchley J. M., Price D. A., Douek D. C. HIV disease: Fallout from a mucosal catastrophe? Nature Immunology. 2006;7(3):235–239. doi: 10.1038/ni1316.
    1. Liu Z., Cumberland W. G., Hultin L. E., Prince H. E., Detels R., Giorgi J. V. Elevated CD38 antigen expression on CD8+ T cells is a stronger marker for the risk of chronic HIV disease progression to AIDS and death in the multicenter AIDS cohort study than CD4+ cell count, soluble immune activation markers, or combinations of HLA-DR and CD38 expression. Journal of Acquired Immune Deficiency Syndromes. 1997;16(2):83–92. doi: 10.1097/00042560-199710010-00003.
    1. Sandler N. G., Wand H., Roque A., et al. Plasma levels of soluble CD14 independently predict mortality in HIV infection. The Journal of Infectious Diseases. 2011;203(6):780–790. doi: 10.1093/infdis/jiq118.
    1. Medellín-Garibay S. E., Cortez-Espinosa N., Milán-Segovia R. C., et al. Clinical pharmacokinetics of rifampin in patients with tuberculosis and type 2 diabetes mellitus: Association with biochemical and immunological parameters. Antimicrobial Agents and Chemotherapy. 2015;59(12):7707–7714. doi: 10.1128/AAC.01067-15.
    1. Brenchley J. M., Karandikar N. J., Betts M. R., et al. Expression of CD57 defines replicative senescence and antigen-induced apoptotic death of CD8+ T cells. Blood. 2003;101(7):2711–2720. doi: 10.1182/blood-2002-07-2103.
    1. Craig R. M., Atkinson A. J., Jr. d-Xylose testing: A review. Gastroenterology. 1988;95(1):223–231. doi: 10.1016/0016-5085(88)90318-6.
    1. Ménard S., Cerf-Bensussan N., Heyman M. Multiple facets of intestinal permeability and epithelial handling of dietary antigens. Mucosal Immunology. 2010;3(3):247–259. doi: 10.1038/mi.2010.5.
    1. Northrop C. A., Lunn P. G., Behrens R. H. Automated enzymatic assays for the determination of intestinal permeability probes in urine. 1. Lactulose and lactose. Clinica Chimica Acta. 1990;187(2):79–87. doi: 10.1016/0009-8981(90)90333-N.
    1. Lunn P. G., Northrop C. A., Northrop A. J. Automated enzymatic assays for the determination of intestinal permeability probes in urine. 2. Mannitol. Clinica Chimica Acta. 1989;183(2):163–170. doi: 10.1016/0009-8981(89)90332-X.
    1. Jaki T., Wolfsegger M. J. Estimation of pharmacokinetic parameters with the R package PK. Pharmaceutical Statistics. 2011;10(3):284–288. doi: 10.1002/pst.449.

Source: PubMed

3
Abonneren