Acquisition Time for Swept-Source Optical Biometry Plus Corneal Power Measurement During Cataract Evaluation

Ramón Ruiz-Mesa, Maria Ruiz-Santos, Julia Blanch-Ruiz, Ana Jiménez-Nieto, Ramón Ruiz-Mesa, Maria Ruiz-Santos, Julia Blanch-Ruiz, Ana Jiménez-Nieto

Abstract

Purpose: To compare the acquisition time necessary to obtain the optical biometry plus corneal power measurement using the IOLMaster 700 with central topography with that found using the standard IOLMaster 700 in combination with two corneal topographers, when acquiring biometry measurements during cataract evaluation.

Methods: This prospective, observational, controlled study included 96 eyes of 96 cataract patients. Acquisition times were registered for different conditions: time required for one complete measurement with IOLMaster 700 with central topography, time required for one complete measurement with standard IOLMaster 700 (without central topography), time required for one complete measurement with standard IOLMaster 700 plus time required for one complete measurement with Cassini, and time required for one complete measurement with standard IOLMaster 700 plus time required for one complete measurement with Pentacam HR. In addition, the agreement between keratometry (K), total keratometry (TK) and equivalent K reading (EKR) parameters using the three devices was performed.

Results: The post hoc Tukey's test revealed that there were statistically significant differences for all pairwise comparisons (p < 0.001) except for the acquisition times of the IOLMaster with central topography and the standard IOLMaster 700 (p = 0.501). The acquisition time by the IOLMaster 700 with central topography takes approximately three less times than the use of a corneal topographer combined with a biometer. The agreement of K1, K2, TK1, TK2, EKR1 and EKR2 measurements between the three devices revealed statistically significant differences for all possible comparisons (p < 0.001) except for the comparison between the IOLMaster 700 and the Cassini for all parameters (p > 0.05).

Conclusion: We consider that this is an efficient procedure that improves clinical flow. We also conclude that K readings obtained with the three devices cannot be used interchangeably since there are clinically relevant differences that may affect cataract surgery outcomes.

Keywords: IOLMaster 700; Scheimpflug imaging; cataract; color LED; optical biometer.

Conflict of interest statement

The authors report no conflicts of interest in this work.

© 2022 Ruiz-Mesa et al.

Figures

Figure 1
Figure 1
Bland-Altman plots obtained showing the mean difference versus average for the comparison between the different devices for K1 and K2. Mean (continuous line), lower and upper limits of agreement (±1.96SD, standard deviation, peripheral dotted lines) and lower and upper confidence intervals (95%) are depicted.
Figure 2
Figure 2
Bland-Altman plots obtained showing the mean difference versus average for the comparison between the different devices for TK1, TK2, EKR1 and EKR2. Mean (continuous line), lower and upper limits of agreement (±1.96SD, standard deviation, peripheral dotted lines) and lower and upper confidence intervals (95%) are depicted.

References

    1. Koch DD, Ali SF, Weikert MP, Shirayama M, Jenkins R, Wang L. Contribution of posterior corneal astigmatism to total corneal astigmatism. J Cataract Refract Surg. 2012;38(12):2080–2087. doi:10.1016/j.jcrs.2012.08.036
    1. Savini G, Naeser K. An analysis of the factors influencing the residual refractive astigmatism after cataract surgery with toric intraocular lenses. Invest Ophthalmol Vis Sci. 2015;56(2):827–835. doi:10.1167/iovs.14-15903
    1. LaHood BR, Goggin M. Measurement of posterior corneal astigmatism by the IOLMaster 700. J Refract Surg. 2018;34(5):331–336. doi:10.3928/1081597X-20180214-02
    1. Montés-Micó R, Pastor-Pascual F, Ruiz-Mesa R, Tañá-Rivero P. Ocular biometry with swept-source optical coherence tomography. J Cataract Refract Surg. 2021;47(6):802–814. doi:10.1097/j.jcrs.0000000000000551
    1. Wang L, Spektor T, de Souza RG, Koch DD. Evaluation of total keratometry and its accuracy for intraocular lens power calculation in eyes after corneal refractive surgery. J Cataract Refract Surg. 2019;45(10):1416–1421. doi:10.1016/j.jcrs.2019.05.020
    1. Fabian E, Wehner W. Prediction accuracy of total keratometry compared to standard keratometry using different intraocular lens power formulas. J Refract Surg. 2019;35(6):362–368. doi:10.3928/1081597X-20190422-02
    1. Srivannaboon S, Chirapapaisan C. Comparison of refractive outcomes using conventional keratometry or total keratometry for IOL power calculation in cataract surgery. Graefes Arch Clin Exp Ophthalmol. 2019;257(12):2677–2682. doi:10.1007/s00417-019-04443-7
    1. Kern C, El Kaissi L, Kortuem K, et al. Comparing refractive outcomes of a standard industry toric IOL calculator using anterior corneal astigmatism and total corneal refractive power. Graefes Arch Clin Exp Ophthalmol. 2020;258(2):345–350. doi:10.1007/s00417-019-04570-1
    1. Shajari M, Sonntag R, Ramsauer M, et al. Evaluation of total corneal power measurements with a new optical biometer. J Cataract Refract Surg. 2020;46(5):675–681. doi:10.1097/j.jcrs.0000000000000136
    1. Yeo TK, Heng WJ, Pek D, Wong J, Fam HB. Accuracy of intraocular lens formulas using total keratometry in eyes with previous myopic laser refractive surgery. Eye. 2020;35(6):1705–1711. doi:10.1038/s41433-020-01159-5
    1. Lawless M, Jiang JY, Hodge C, Sutton G, Roberts TV, Barrett G. Total keratometry in intraocular lens power calculations in eyes with previous laser refractive surgery. Clin Exp Ophthalmol. 2020;48(6):749–756. doi:10.1111/ceo.13760
    1. Levron A, El Chehab H, Agard E, Chudzinski R, Billant J, Dot C. Impact of measured total keratometry versus anterior keratometry on the refractive outcomes of the AT TORBI 709-MP toric intraocular lens. Graefes Arch Clin Exp Ophthalmol. 2021;259(5):1199–1207. doi:10.1007/s00417-020-05046-3
    1. Savini G, Taroni L, Schiano-Lomoriello D, Hoffer KJ. Repeatability of total Keratometry and standard Keratometry by the IOLMaster 700 and comparison to total corneal astigmatism by Scheimpflug imaging. Eye. 2021;35(1):307–315. doi:10.1038/s41433-020-01245-8
    1. Passi SF, Thompson AC, Gupta PK. Comparison of agreement and efficiency of a swept source-optical coherence tomography device and an optical low-coherence reflectometry device for biometry measurements during cataract evaluation. Clin Ophthalmol. 2018;12:2245–2251. doi:10.2147/OPTH.S182898
    1. McAlinden C, Khadka J, Pesudovs K. Statistical methods for conducting agreement (comparison of clinical tests) and precision (repeatability or reproducibility) studies in optometry and ophthalmology. Ophthalmic Physiol Opt. 2011;31(4):330–338. doi:10.1111/j.1475-1313.2011.00851.x
    1. Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res. 1999;8(2):135–160. doi:10.1177/096228029900800204
    1. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1:307–310. doi:10.1016/S0140-6736(86)90837-8
    1. Ozyol P, Ozyol E. Agreement between swept-source optical biometry and Scheimpflug-based topography measurements of anterior segment parameters. Am J Ophthalmol. 2016;169:73–78. doi:10.1016/j.ajo.2016.06.020
    1. Tañá-Rivero P, Aguilar-Córcoles S, Tello-Elordi C, Pastor-Pascual F, Montés-Micó R. Agreement between 2 swept-source OCT biometers and a Scheimpflug partial coherence interferometer. J Cataract Refract Surg. 2021;47(4):488–495. doi:10.1097/j.jcrs.0000000000000483
    1. Hidalgo IR, Rozema JJ, Dhubhghaill SN, Zakaria N, Koppen C, Tassignon MJ. Repeatability and inter-device agreement for three different methods of keratometry: Placido, Scheimpflug, and color LED corneal topography. J Refract Surg. 2015;31(3):176–181. doi:10.3928/1081597X-20150224-01
    1. Wang L, Canedo ALC, Wang Y, Xie KC, Koch DD. Comparison of central topographic maps from a swept-source OCT biometer and a Placido disk-dual Scheimpflug tomographer. J Cataract Refract Surg. 2021;47(4):482–487. doi:10.1097/j.jcrs.0000000000000459

Source: PubMed

3
Abonneren