Sepsis Associated Encephalopathy

Neera Chaudhry, Ashish Kumar Duggal, Neera Chaudhry, Ashish Kumar Duggal

Abstract

Sepsis associated encephalopathy (SAE) is a common but poorly understood neurological complication of sepsis. It is characterized by diffuse brain dysfunction secondary to infection elsewhere in the body without overt CNS infection. The pathophysiology of SAE is complex and multifactorial including a number of intertwined mechanisms such as vascular damage, endothelial activation, breakdown of the blood brain barrier, altered brain signaling, brain inflammation, and apoptosis. Clinical presentation of SAE may range from mild symptoms such as malaise and concentration deficits to deep coma. The evaluation of cognitive dysfunction is made difficult by the absence of any specific investigations or biomarkers and the common use of sedation in critically ill patients. SAE thus remains diagnosis of exclusion which can only be made after ruling out other causes of altered mentation in a febrile, critically ill patient by appropriate investigations. In spite of high mortality rate, management of SAE is limited to treatment of the underlying infection and symptomatic treatment for delirium and seizures. It is important to be aware of this condition because SAE may present in early stages of sepsis, even before the diagnostic criteria for sepsis can be met. This review discusses the diagnostic approach to patients with SAE along with its epidemiology, pathophysiology, clinical presentation, and differential diagnosis.

Figures

Figure 1
Figure 1
Pathophysiology of sepsis associated encephalopathy. Altered brain signalling during sepsis occurring as a result of centrally and peripherally acting cytokines results in production of various inflammatory cytokines that cause activation of various behavioral, neuroendocrine, and neurovegetative centers which can cause altered behaviour. In addition these cytokines cause microglial activation thus perpetuating the production of inflammatory cytokines and reactive oxygen species. Peripherally produced LPS, cytokines, and NO cause further damage to the BBB thereby causing a vicious cycle of brain damage. The excessive production of LPS and cytokines causes increased production of NO and other ROS thereby causing mitochondrial dysfunction and apoptosis. Altered amino acid balance because of excessive muscle proteolysis is responsible for production of false neurotransmitters which can also contribute to the pathogenesis of SAE. Disturbed cerebral autoregulation and direct cerebral localization may play a minor role. NO: nitrous oxide, ROS: reactive oxygen species, LPS: lipopolysaccharide, TNF-α: tumor necrosis factor-α, AAA: aromatic amino acids, and BBB: blood brain barrier.
Figure 2
Figure 2
Algorithm for diagnosis of sepsis associated encephalopathy. RASS: Richmond Agitation-Sedation Scale, FOUR: Full Outline of Unresponsiveness, GCS: Glasgow coma scale, SEP: somatosensory evoked potentials, NSE: neuron specific enolase, CAM/CAM-ICU: Confusion Assessment Method (Intensive Care Unit), and ATICE: Assessment to Intensive Care Environment.

References

    1. Rezende E., Silva J. M., Jr., Isola A. M., Campos E. V., Amendola C. P., Almeida S. L. Epidemiology of severe sepsis in the emergency department and difficulties in the initial assistance. Clinics. 2008;63(4):457–464. doi: 10.1590/S1807-59322008000400008.
    1. Vincent J.-L., Sakr Y., Sprung C. L., et al. Sepsis in European intensive care units: results of the SOAP study. Critical Care Medicine. 2006;34(2):344–353. doi: 10.1097/01.CCM.0000194725.48928.3A.
    1. Lacobone E., Bailly-Salin J., Polito A., Friedman D., Stevens R. D., Sharshar T. Sepsis-associated encephalopathy and its differential diagnosis. Critical Care Medicine. 2009;37(10):S331–S336. doi: 10.1097/CCM.0b013e3181b6ed58.
    1. Young G. B., Bolton C. F., Austin T. W., Archibald Y. M., Gonder J., Wells G. A. The encephalopathy associated with septic illness. Clinical and Investigative Medicine. 1990;13(6):297–304.
    1. Sprung C. L., Peduzzi P. N., Shatney C. H., et al. Impact of encephalopathy on mortality in the sepsis syndrome. Critical Care Medicine. 1990;18(8):801–806. doi: 10.1097/00003246-199008000-00001.
    1. Kreger B. E., Craven D. E., Carling P. C., McCabe W. R. Gram-negative bacteremia. III. The American Journal of Medicine. 1980;68(3):332–343. doi: 10.1016/0002-9343(80)90101-1.
    1. Iwashyna T. J., Ely E. W., Smith D. M., Langa K. M. Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA—Journal of the American Medical Association. 2010;304(16):1787–1794. doi: 10.1001/jama.2010.1553.
    1. Bone R. C., Balk R. A., Cerra F. B., et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis: the ACCP/SCCM Consensus Conference Committee: American College of Chest Physicians/Society of Critical Care Medicine. 1992. Chest. 2009;13(5):p. e28. doi: 10.1378/chest.09-2267.
    1. Levy M. M., Fink M. P., Marshall J. C., et al. 2001 SCCM/ESICM/ACCP/ATS/SIS international sepsis definitions conference. Critical Care Medicine. 2003;31(4):1250–1256. doi: 10.1097/01.CCM.0000050454.01978.3B.
    1. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 4th. American Psychiatric Association; 2000.
    1. Zampieri F. G., Park M., Machado F. S., Azevedo L. C. P. Sepsis-associated encephalopathy: not just delirium. Clinics. 2011;66(10):1823–1831. doi: 10.1590/S1807-59322011001000024.
    1. Ebersoldt M., Sharshar T., Annane D. Sepsis-associated delirium. Intensive Care Medicine. 2007;33(6):941–950. doi: 10.1007/s00134-007-0622-2.
    1. Jones K. Delirium in febrile conditions. Dublin Journal of Medical Science. 1903;115:420–422.
    1. Zhang L.-N., Wang X.-T., Ai Y.-H., et al. Epidemiological features and risk factors of sepsis-associated encephalopathy in intensive care unit patients: 2008–2011. Chinese Medical Journal. 2012;125(5):828–831. doi: 10.3760/cma.j.issn.0366-6999.2012.05.018.
    1. Bleck T. P., Smith M. C., Pierre-Louis S. J.-C., Jares J. J., Murray J., Hansen C. A. Neurologic complications of critical medical illnesses. Critical Care Medicine. 1993;21(1):98–103. doi: 10.1097/00003246-199301000-00019.
    1. Eidelman L. A., Putterman D., Putterman C., Sprung C. L. The spectrum of septic encephalopathy: definitions, etioloqies, and mortalities. The Journal of the American Medical Association. 1996;275(6):470–473. doi: 10.1001/jama.1996.03530300054040.
    1. Young G. B., Bolton C. F., Archibald Y. M., Austin T. W., Wells G. A. The electroencephalogram in sepsis-associated encephalopathy. Journal of Clinical Neurophysiology. 1992;9(1):145–152. doi: 10.1097/00004691-199201000-00016.
    1. Zauner C., Gendo A., Kramer L., et al. Impaired subcortical and cortical sensory evoked potential pathways in septic patients. Critical Care Medicine. 2002;30(5):1136–1139. doi: 10.1097/00003246-200205000-00030.
    1. Zauner C., Gendo A., Kramer L., Kranz A., Grimm G., Madl C. Metabolic encephalopathy in critically ill patients suffering from septic or nonseptic multiple organ failure. Critical Care Medicine. 2000;28(5):1310–1315. doi: 10.1097/00003246-200005000-00009.
    1. Straver J. S., Keunen R. W. M., Stam C. J., et al. Nonlinear analysis of EEG in septic encephalopathy. Neurological Research. 1998;20(2):100–106.
    1. Bolton C. F., Young G. B., Zochodne D. W. The neurological complications of sepsis. Annals of Neurology. 1993;33(1):94–100. doi: 10.1002/ana.410330115.
    1. Bone R. C., Sprung C. L., Sibbald W. J. Definitions of sepsis and multiple organ failure. Critical Care Medicine. 1992;20(6):724–726.
    1. Hopkins R. O., Weaver L. K., Chan K. J., Orme J. F., Jr. Quality of life, emotional, and cognitive function following acute respiratory distress syndrome. Journal of the International Neuropsychological Society. 2004;10(7):1005–1017. doi: 10.1017/S135561770410711X.
    1. Flierl M. A., Rittirsch D., Huber-Lang M. S., Stahel P. F. Pathophysiology of septic encephalopathy—an unsolved puzzle. Critical Care. 2010;14(3, article 165) doi: 10.1186/cc9035.
    1. Zhan R.-Z., Fujiwara N., Shimoji K. Regionally different elevation of intracellular free calcium in hippocampus of septic rat brain. Shock. 1996;6(4):293–297. doi: 10.1097/00024382-199610000-00012.
    1. Akrout N., Sharshar T., Annane D. Mechanisms of brain signaling during sepsis. Current Neuropharmacology. 2009;7(4):296–301. doi: 10.2174/157015909790031175.
    1. Roth J., Harré E.-M., Rummel C., Gerstberger R., Hübschle T. Signaling the brain in systemic inflammation: role of sensory circumventricular organs. Frontiers in Bioscience. 2004;9:290–300. doi: 10.2741/1241.
    1. Sako K., Okuma Y., Hosoi T., Nomura Y. STAT3 activation and c-FOS expression in the brain following peripheral administration of bacterial DNA. Journal of Neuroimmunology. 2005;158(1-2):40–49. doi: 10.1016/j.jneuroim.2004.08.013.
    1. Laflamme N., Rivest S. Toll-like receptor 4: the missing link of the cerebral innate immune response triggered by circulating gram-negative bacterial cell wall components. The FASEB Journal. 2001;15(1):155–163. doi: 10.1096/fj.00-0339com.
    1. Lacroix S., Feinstein D., Rivest S. The bacterial endotoxin lipopolysaccharide has the ability to target the brain in upregulating its membrane CD14 receptor within specific cellular populations. Brain Pathology. 1998;8(4):625–640. doi: 10.1111/j.1750-3639.1998.tb00189.x.
    1. Cunningham E. T., Jr., Wada E., Carter D. B., Tracey D. E., Battey J. F., De Souza E. B. In situ histochemical localization of type I interleukin-1 receptor messenger RNA in the central nervous system, pituitary, and adrenal gland of the mouse. Journal of Neuroscience. 1992;12(3):1101–1114.
    1. Vallières L., Rivest S. Regulation of the genes encoding interleukin-6, its receptor, and gp130 in the rat brain in response to the immune activator lipopolysaccharide and the proinflammatory cytokine interleukin-1β . Journal of Neurochemistry. 1997;69(4):1668–1683.
    1. Nadeau S., Rivest S. Effects of circulating tumor necrosis factor on the neuronal activity and expression of the genes encoding the tumor necrosis factor receptors (p55 and p75) in the rat brain: a view from the blood-brain barrier. Neuroscience. 1999;93(4):1449–1464. doi: 10.1016/S0306-4522(99)00225-0.
    1. Stellwagen D., Malenka R. C. Synaptic scaling mediated by glial TNF-α. Nature. 2006;440(7087):1054–1059. doi: 10.1038/nature04671.
    1. Sonneville R., Verdonk F., Rauturier C., et al. Understanding brain dysfunction in sepsis. Annals of Intensive Care. 2013;3, article 15 doi: 10.1186/2110-5820-3-15.
    1. Sharshar T., Annane D., De La Grandmaison G. L., Brouland J. P., Hopkinson N. S., Gray F. The Neuropathology of Septic Shock. Brain Pathology. 2004;14(1):21–33. doi: 10.1111/j.1750-3639.2004.tb00494.x.
    1. Sharshar T., Gray F., Poron F., Raphael J. C., Gajdos P., Annane D. Multifocal necrotizing leukoencephalopathy in septic shock. Critical Care Medicine. 2002;30(10):2371–2375. doi: 10.1097/00003246-200210000-00031.
    1. Pytel P., Alexander J. J. Pathogenesis of septic encephalopathy. Current Opinion in Neurology. 2009;22(3):283–287. doi: 10.1097/WCO.0b013e32832b3101.
    1. Handa O., Stephen J., Cepinskas G. Role of endothelial nitric oxide synthase-derived nitric oxide in activation and dysfunction of cerebrovascular endothelial cells during early onsets of sepsis. The American Journal of Physiology—Heart and Circulatory Physiology. 2008;295(4):H1712–H1719. doi: 10.1152/ajpheart.00476.2008.
    1. Sharshar T., Carlier R., Bernard F., et al. Brain lesions in septic shock: a magnetic resonance imaging study. Intensive Care Medicine. 2007;33(5):798–806. doi: 10.1007/s00134-007-0598-y.
    1. Davies D. C. Blood-brain barrier breakdown in septic encephalopathy and brain tumours. Journal of Anatomy. 2002;200(6):639–646. doi: 10.1046/j.1469-7580.2002.00065.x.
    1. Taccone F. S., Castanares-Zapatero D., Peres-Bota D., Vincent J.-L., Berre' J., Melot C. Cerebral autoregulation is influenced by carbon dioxide levels in patients with septic shock. Neurocritical Care. 2010;12(1):35–42. doi: 10.1007/s12028-009-9289-6.
    1. Terborg C., Schummer W., Albrecht M., Reinhart K., Weiller C., Rötner J. Dysfunction of vasomotor reactivity in severe sepsis and septic shock. Intensive Care Medicine. 2001;27(1):1231–1234. doi: 10.1007/s001340101005.
    1. Matta B. F., Stow P. J. Sepsis-induced vasoparalysis does not involve the cerebral vasculature: indirect evidence from autoregulation and carbon dioxide reactivity studies. The British Journal of Anaesthesia. 1996;76(6):790–794. doi: 10.1093/bja/76.6.790.
    1. Fülesdi B., Szatmári S., Antek C., et al. Cerebral vasoreactivity to acetazolamide is not impaired in patients with severe sepsis. Journal of Critical Care. 2012;27(4):337–343. doi: 10.1016/j.jcrc.2011.11.002.
    1. Han L., McCusker J., Cole M., Abrahamowicz M., Primeau F., Élie M. Use of medications with anticholinergic effect predicts clinical severity of delirium symptoms in older medical inpatients. Archives of Internal Medicine. 2001;161(8):1099–1105. doi: 10.1001/archinte.161.8.1099.
    1. Kadoi Y., Saito S. An alteration in the γ-aminobutyric acid receptor system in experimentally induced septic shock in rats. Critical Care Medicine. 1996;24(2):298–305. doi: 10.1097/00003246-199602000-00020.
    1. Gunther M. L., Morandi A., Ely E. W. Pathophysiology of delirium in the intensive care unit. Critical Care Clinics. 2008;24(1):45–65. doi: 10.1016/j.ccc.2007.10.002.
    1. van Gool W. A., van de Beek D., Eikelenboom P. Systemic infection and delirium: when cytokines and acetylcholine collide. The Lancet. 2010;375(9716):773–775. doi: 10.1016/S0140-6736(09)61158-2.
    1. Jacob A., Brorson J. R., Alexander J. J. Septic encephalopathy: inflammation in man and mouse. Neurochemistry International. 2011;58(4):472–476. doi: 10.1016/j.neuint.2011.01.004.
    1. Hshieh T. T., Fong T. G., Marcantonio E. R., Inouye S. K. Cholinergic deficiency hypothesis in delirium: a synthesis of current evidence. Journals of Gerontology A Biological Sciences and Medical Sciences. 2008;63(7):764–772. doi: 10.1093/gerona/63.7.764.
    1. van Eijk M. M. J., Roes K. C. B., Honing M. L. H., et al. Effect of rivastigmine as an adjunct to usual care with haloperidol on duration of delirium and mortality in critically ill patients: a multicentre, double-blind, placebo-controlled randomised trial. The Lancet. 2010;376(9755):1829–1837. doi: 10.1016/S0140-6736(10)61855-7.
    1. Basler T., Meier-Hellmann A., Bredle D., Reinhart K. Amino acid imbalance early in septic encephalopathy. Intensive Care Medicine. 2002;28(3):293–298. doi: 10.1007/s00134-002-1217-6.
    1. Orlikowski D., Chazaud B., Plonquet A., et al. Monocyte chemoattractant protein 1 and chemokine receptor CCR2 productions in Guillain-Barré syndrome and experimental autoimmune neuritis. Journal of Neuroimmunology. 2003;134(1-2):118–127. doi: 10.1016/S0165-5728(02)00393-4.
    1. Freund H. R., Muggia-Sullam M., Peiser J., Melamed E. Brain neurotransmitter profile is deranged during sepsis and septic encephalopathy in the rat. Journal of Surgical Research. 1985;38(3):267–271. doi: 10.1016/0022-4804(85)90037-X.
    1. Winder T. R., Minuk G. Y., Sargeant E. J., Seland T. P. Gamma-aminobutyric acid (GABA) and sepsis-related encephalopathy. Canadian Journal of Neurological Sciences. 1988;15(1):23–25.
    1. Soejima Y., Fujii Y., Ishikawa T., Takeshita H., Maekawa T. Local cerebral glucose utilization in septic rats. Critical Care Medicine. 1990;18(4):423–427. doi: 10.1097/00003246-199004000-00015.
    1. Pandharipande P. P., Sanders R. D., Girard T. D., et al. Effect of dexmedetomidine versus lorazepam on outcome in patients with sepsis: an a priori-designed analysis of the MENDS randomized controlled trial. Critical Care. 2010;14(2, article R38) doi: 10.1186/cc8916.
    1. Pandharipande P. P., Pun B. T., Herr D. L., et al. Effect of sedation with dexmedetomidine vs lorazepam on acute brain dysfunction in mechanically ventilated patients: the MENDS randomized controlled trial. Journal of the American Medical Association. 2007;298(22):2644–2653. doi: 10.1001/jama.298.22.2644.
    1. Alexander J. J., Jacob A., Cunningham P., Hensley L., Quigg R. J. TNF is a key mediator of septic encephalopathy acting through its receptor, TNF receptor-1. Neurochemistry International. 2008;52(3):447–456. doi: 10.1016/j.neuint.2007.08.006.
    1. Ikeda-Matsuo Y., Ikegaya Y., Matsuki N., Uematsu S., Akira S., Sasaki Y. Microglia-specific expression of microsomal prostaglandin E2 synthase-1 contributes to lipopolysaccharide-induced prostaglandin E2 production. Journal of Neurochemistry. 2005;94(6):1546–1558. doi: 10.1111/j.1471-4159.2005.03302.x.
    1. Jacob A., Hensley L. K., Safratowich B. D., Quigg R. J., Alexander J. J. The role of the complement cascade in endotoxin-induced septic encephalopathy. Laboratory Investigation. 2007;87(12):1186–1194. doi: 10.1038/labinvest.3700686.
    1. Azevedo L. C. P. Mitochondrial dysfunction during sepsis. Endocrine, Metabolic and Immune Disorders: Drug Targets. 2010;10(3):214–223. doi: 10.2174/187153010791936946.
    1. Moncada S., Bolaños J. P. Nitric oxide, cell bioenergetics and neurodegeneration. Journal of Neurochemistry. 2006;97(6):1676–1689. doi: 10.1111/j.1471-4159.2006.03988.x.
    1. Brown G. C. Mechanisms of inflammatory neurodegeneration: iNOS and NADPH oxidase. Biochemical Society Transactions. 2007;35(5):1119–1121. doi: 10.1042/BST0351119.
    1. Calabrese V., Mancuso C., Calvani M., Rizzarelli E., Butterfield D. A., Stella A. M. G. Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nature Reviews Neuroscience. 2007;8(10):766–775. doi: 10.1038/nrn2214.
    1. Papadopoulos M. C., Davies D. C., Moss R. F., Tighe D., Bennett E. D. Pathophysiology of septic encephalopathy: a review. Critical Care Medicine. 2000;28(8):3019–3024. doi: 10.1097/00003246-200008000-00057.
    1. Chelazzi C., Consales G., De Gaudio A. R. Sepsis associated encephalopathy. Current Anaesthesia and Critical Care. 2008;19(1):15–21. doi: 10.1016/j.cacc.2007.07.009.
    1. Wilson J. X., Young G. B. Sepsis-associated encephalopathy: evolving concepts. Neurological Journal of South East Asia. 2003;8:p. 65.
    1. Mackenzie I. M. J. The haemodynamics of human septic shock. Anaesthesia. 2001;56(2):130–144. doi: 10.1046/j.1365-2044.2001.01866.x.
    1. Wilson J. X., Young G. B. Progress in clinical neurosciences: sepsis-associated encephalopathy: evolving concepts. Canadian Journal of Neurological Sciences. 2003;30(2):98–105.
    1. Consales G., De Gaudio A. R. Sepsis associated encephalopathy. Minerva Anestesiologica. 2005;71(1-2):39–52.
    1. ACCP/SSCM Medicine Consensus Committee: definition of sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Critical Care Medicine. 1992;20:864–874.
    1. Khan B. A., Zawahiri M., Campbell N. L., et al. Delirium in hospitalized patients: Implications of current evidence on clinical practice and future avenues for research—a systematic evidence review. Journal of Hospital Medicine. 2012;7(7):580–589. doi: 10.1002/jhm.1949.
    1. Inouye S. K., Van Dyck C. H., Alessi C. A., Balkin S., Siegal A. P., Horwitz R. I. Clarifying confusion: the confusion assessment method: a new method for detection of delirium. Annals of Internal Medicine. 1990;113(12):941–948. doi: 10.7326/0003-4819-113-12-941.
    1. Reade M. C., Eastwood G. M., Peck L., Bellomo R., Baldwin I. Routine use of the Confusion Assessment Method for the Intensive Care Unit (CAM-ICU) by bedside nurses may underdiagnose delirium. Critical Care and Resuscitation. 2011;13(4):217–224.
    1. Van Eijk M. M., Van Den Boogaard M., Van Marum R. J., et al. Routine use of the confusion assessment method for the intensive care unit: a multicenter study. American Journal of Respiratory and Critical Care Medicine. 2011;184(3):340–344. doi: 10.1164/rccm.201101-0065OC.
    1. De Jonghe B., Cook D., Griffith L., et al. Adaptation to the Intensive Care Environment (ATICE): development and validation of a new sedation assessment instrument. Critical Care Medicine. 2003;31(9):2344–2354. doi: 10.1097/01.CCM.0000084850.16444.94.
    1. Bergeron N., Dubois M.-J., Dumont M., Dial S., Skrobik Y. Intensive care delirium screening checklist: evaluation of a new screening tool. Intensive Care Medicine. 2001;27(5):859–864. doi: 10.1007/s001340100909.
    1. Tomasi C. D., Grandi C., Salluh J., et al. Comparison of CAM-ICU and ICDSC for the detection of delirium in critically ill patients focusing on relevant clinical outcomes. Journal of Critical Care. 2012;27(2):212–217. doi: 10.1016/j.jcrc.2011.05.015.
    1. Kress J. P., Pohlman A. S., O'Connor M. F., Hall J. B. Daily interruption of sedative infusions in critically ill patients undergoing mechanical ventilation. The New England Journal of Medicine. 2000;342(20):1471–1477. doi: 10.1056/NEJM200005183422002.
    1. Schweickert W. D., Gehlbach B. K., Pohlman A. S., Hall J. B., Kress J. P. Daily interruption of sedative infusions and complications of critical illness in mechanically ventilated patients. Critical Care Medicine. 2004;32(6):1272–1276. doi: 10.1097/01.CCM.0000127263.54807.79.
    1. Ely E. W., Truman B., Shintani A., et al. Monitoring sedation status over time in ICU patients: reliability and validity of the Richmond Agitation-Sedation Scale (RASS) Journal of the American Medical Association. 2003;289(22):2983–2991. doi: 10.1001/jama.289.22.2983.
    1. Bruno M.-A., Ledoux D., Lambermont B., et al. Comparison of the full outline of unresponsiveness and Glasgow Liege Scale/Glasgow Coma Scale in an intensive care unit population. Neurocritical Care. 2011;15(3):447–453. doi: 10.1007/s12028-011-9547-2.
    1. Sharshar T., Porcher R., Siami S., et al. Brainstem responses can predict death and delirium in sedated patients in intensive care unit. Critical Care Medicine. 2011;39(8):1960–1967. doi: 10.1097/CCM.0b013e31821b843b.
    1. Gofton T. E., Bryan Young G. Sepsis-associated encephalopathy. Nature Reviews Neurology. 2012;8(10):557–566. doi: 10.1038/nrneurol.2012.183.
    1. Oddo M., Carrera E., Claassen J., Mayer S. A., Hirsch L. J. Continuous electroencephalography in the medical intensive care unit. Critical Care Medicine. 2009;37(6):2051–2056. doi: 10.1097/CCM.0b013e3181a00604.
    1. Cotena S., Piazza O. Sepsis-associated encephalopathy. Translational Medicine @ UniSa. 2012;2:20–27.
    1. Bartynski W. S., Boardman J. F., Zeigler Z. R., Shadduck R. K., Lister J. Posterior reversible encephalopathy syndrome in infection, sepsis, and shock. The American Journal of Neuroradiology. 2006;27(10):2179–2190.
    1. Finelli P. F., Uphoff D. F. Magnetic resonance imaging abnormalities with septic encephalopathy. Journal of Neurology, Neurosurgery & Psychiatry. 2004;75(8):1189–1191. doi: 10.1136/jnnp.2003.030833.
    1. Gunther M. L., Morandi A., Krauskopf E., et al. The association between brain volumes, delirium duration, and cognitive outcomes in intensive care unit survivors: the VISIONS cohort magnetic resonance imaging study. Critical Care Medicine. 2012;40(7):2022–2032. doi: 10.1097/CCM.0b013e318250acc0.
    1. Schramm P., Klein K. U., Falkenberg L., et al. Impaired cerebrovascular autoregulation in patients with severe sepsis and sepsis-associated delirium. Critical Care. 2012;16(5) article R181 doi: 10.1186/cc11665.
    1. Nguyen D. N., Spapen H., Su F., et al. Elevated serum levels of S-100β protein and neuron-specific enolase are associated with brain injury in patients with severe sepsis and septic shock. Critical Care Medicine. 2006;34(7):1967–1974. doi: 10.1097/01.CCM.0000217218.51381.49.
    1. Gray F., Sharshar T., Lorin de la Grandmaison G., Annane D. Neuropathology of septic shock. Neuropathology and Applied Neurobiology. 2002;28(2):159–165.
    1. Hsu A. A., Fenton K., Weinstein S., Carpenter J., Dalton H., Bell M. J. Neurological injury markers in children with septic shock. Pediatric Critical Care Medicine. 2008;9(3):245–251. doi: 10.1097/PCC.0b013e3181727b22.
    1. Sonneville R., Mirabel M., Hajage D., et al. Neurologic complications and outcomes of infective endocarditis in critically ill patients: the ENDOcardite en REAnimation prospective multicenter study. Critical Care Medicine. 2011;39(6):1474–1481. doi: 10.1097/CCM.0b013e3182120b41.
    1. Klein I., Iung B., Labreuche J., et al. Cerebral microbleeds are frequent in infective endocarditis: a case-control study. Stroke. 2009;40(11):3461–3465. doi: 10.1161/STROKEAHA.109.562546.
    1. Gaieski D. F., Mikkelsen M. E., Band R. A., et al. Impact of time to antibiotics on survival in patients with severe sepsis or septic shock in whom early goal-directed therapy was initiated in the emergency department. Critical Care Medicine. 2010;38(4):1045–1053. doi: 10.1097/CCM.0b013e3181cc4824.
    1. Johnson M. T., Reichley R., Hoppe-Bauer J., Dunne W. M., Micek S., Kollef M. Impact of previous antibiotic therapy on outcome of Gram-negative severe sepsis. Critical Care Medicine. 2011;39(8):1859–1865. doi: 10.1097/CCM.0b013e31821b85f4.
    1. Verhoef J., Hustinx W. M. N., Frasa H., Hoepelman A. I. M. Issues in the adjunct therapy of severe sepsis. Journal of Antimicrobial Chemotherapy. 1996;38(2):167–182. doi: 10.1093/jac/38.2.167.
    1. Sibbald W. J., Vincent J.-L. Round table conference on clinical trials for the treatment of sepsis. Critical Care Medicine. 1995;23(2):394–399. doi: 10.1097/00003246-199502000-00027.
    1. Munford R. S. Severe sepsis and septic shock. In: Longo D. L., Fauci A. S., Kasper D. L., Hauser S. L., Jameson J. L., Loscalzo J., editors. Harrisons Principles of Internal Medicine. 18th. New York, NY, USA: McGraw-Hill; 2012. pp. 2223–2232.
    1. Safdar N., Handelsman J., Maki D. G. Does combination antimicrobial therapy reduce mortality in Gram-negative bacteraemia? A meta-analysis. The Lancet Infectious Diseases. 2004;4(8):519–527. doi: 10.1016/S1473-3099(04)01108-9.
    1. Paul M., Benuri-Silbiger I., Soares-Weiser K., Leibovici L. β lactam monotherapy versus β lactam-aminoglycoside combination therapy for sepsis in immunocompetent patients: systematic review and meta-analysis of randomised trials. British Medical Journal. 2004;328(7441):668–672. doi: 10.1136/bmj.38028.520995.63.
    1. Paul M., Lador A., Grozinsky-Glasberg S., Leibovici L. Beta lactam antibiotic monotherapy versus beta lactamaminoglycoside antibiotic combination therapy for sepsis. Cochrane Database of Systematic Reviews. 2014;1CD003344
    1. Dellinger R. P., Levy M. M., Carlet J. M. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Critical Care Medicine. 2008;36(4):1394–1396. doi: 10.1097/CCM.0b013e31816e6d16.
    1. Inouye S. K., Bogardus S. T., Jr., Charpentier P. A., et al. A multicomponent intervention to prevent delirium in hospitalized older patients. The New England Journal of Medicine. 1999;340(9):669–676. doi: 10.1056/NEJM199903043400901.
    1. Young G. B., Doig G. S. Continuous EEG monitoring in comatose intensive care patients: epileptiform activity in etiologically distinct groups. Neurocritical Care. 2005;2(1):5–10. doi: 10.1385/NCC:2:1:005.
    1. Bernard G. R., Vincent J.-L., Laterre P.-F., et al. Efficacy and safety of recombinant human activated protein C for severe sepsis. The New England Journal of Medicine. 2001;344(10):699–709. doi: 10.1056/NEJM200103083441001.
    1. Spapen H., Nguyen D. N., Troubleyn J., Huyghens L., Schiettecatte J. Drotrecogin alfa (activated) may attenuate severe sepsis-associated encephalopathy in clinical septic shock. Critical Care. 2010;14(2, article R54) doi: 10.1186/cc8947.
    1. Ranieri V. M., Thompson B. T., Barie P. S., et al. Drotrecogin alfa (activated) in adults with septic shock. The New England Journal of Medicine. 2012;366(22):2055–2064. doi: 10.1056/NEJMoa1202290.
    1. Martí-Carvajal A. J., Solà I., Lathyris D., Cardona A. F. Human recombinant activated protein C for severe sepsis. Cochrane Database of Systematic Reviews. 2012;(3) doi: 10.1002/14651858.CD004388.pub5.CD004388
    1. Schelling G., Roozendaal B., Krauseneck T., Schmoelz M., de Quervain D., Briegel J. Efficacy of hydrocortisone in preventing posttraumatic stress disorder following critical illness and major surgery. Annals of the New York Academy of Sciences. 2006;1071:46–53. doi: 10.1196/annals.1364.005.
    1. van den Berghe G., Wouters P., Weekers F., et al. Intensive insulin therapy in critically ill patients. The New England Journal of Medicine. 2001;345(19):1359–1367. doi: 10.1056/NEJMoa011300.
    1. NICE-SUGAR Study Investigators, Finfer S., Chittock D. R., et al. Intensive versus conventional glucose control in critically ill patients. The New England Journal of Medicine. 2009;360:1283–1297.
    1. Flierl M. A., Stahel P. F., Rittirsch D., et al. Inhibition of complement C5a prevents breakdown of the blood-brain barrier and pituitary dysfunction in experimental sepsis. Critical Care. 2009;13, article R12 doi: 10.1186/cc7710.
    1. Guo R. F., Riedemann N. C., Ward P. A. Role of C5a-C5aR interaction in sepsis. Shock. 2004;21(1):1–7.
    1. Toklu H. Z., Uysal M. K., Kabasakal L., Sirvanci S., Ercan F., Kaya M. The effects of riluzole on neurological, brain biochemical, and histological changes in early and late term of sepsis in rats. Journal of Surgical Research. 2009;152(2):238–248. doi: 10.1016/j.jss.2008.03.013.
    1. Wilson J. X. Mechanism of action of vitamin C in sepsis: ascorbate modulates redox signaling in endothelium. BioFactors. 2009;35(1):5–13. doi: 10.1002/biof.7.
    1. Freund H. R., Ryan J. A., Jr., Fischer J. E. Amino acid derangements in patients with sepsis: treatment with branched chain amino acid rich infusions. Annals of Surgery. 1978;188(3):423–430. doi: 10.1097/00000658-197809000-00017.
    1. Rothenhäusler H. B., Ehrentraut S., Stoll C., Schelling G., Kapfhammer H. P. The relationship between cognitive performance and employment and health status in long-term survivors of the acute respiratory distress syndrome: results of an exploratory study. General Hospital Psychiatry. 2001;23(2):90–96. doi: 10.1016/S0163-8343(01)00123-2.
    1. Scragg P., Jones A., Fauvel N. Psychological problems following ICU treatment. Anaesthesia. 2001;56(1):9–14. doi: 10.1046/j.1365-2044.2001.01714.x.
    1. Girard T. D., Jackson J. C., Pandharipande P. P., et al. Delirium as a predictor of long-term cognitive impairment in survivors of critical illness. Critical Care Medicine. 2010;38(7):1513–1520. doi: 10.1097/CCM.0b013e3181e47be1.
    1. Semmler A., Widmann C. N., Okulla T., et al. Persistent cognitive impairment, hippocampal atrophy and EEG changes in sepsis survivors. Journal of Neurology, Neurosurgery and Psychiatry. 2013;84(1):62–69. doi: 10.1136/jnnp-2012-302883.

Source: PubMed

3
Abonneren