Parallel Interdigitated Distributed Networks within the Individual Estimated by Intrinsic Functional Connectivity

Rodrigo M Braga, Randy L Buckner, Rodrigo M Braga, Randy L Buckner

Abstract

Certain organizational features of brain networks present in the individual are lost when central tendencies are examined in the group. Here we investigated the detailed network organization of four individuals each scanned 24 times using MRI. We discovered that the distributed network known as the default network is comprised of two separate networks possessing adjacent regions in eight or more cortical zones. A distinction between the networks is that one is coupled to the hippocampal formation while the other is not. Further exploration revealed that these two networks were juxtaposed with additional networks that themselves fractionate group-defined networks. The collective networks display a repeating spatial progression in multiple cortical zones, suggesting that they are embedded within a broad macroscale gradient. Regions contributing to the newly defined networks are spatially variable across individuals and adjacent to distinct networks, raising issues for network estimation in group-averaged data and applied endeavors, including targeted neuromodulation.

Keywords: association cortex; brain systems; default network; dorsal attention network; frontoparietal network; hippocampus; memory.

Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

Figures

Figure 1
Figure 1
Two Parallel Interdigitated Distributed Networks at or near the Canonical Default Network Are Revealed by Functional Connectivity within Individuals Each row illustrates functional connectivity (FC) maps from a single subject (S1–S4). Two networks were observed in each individual. Subject-specific seed regions were placed in the left lateral PFC of the discovery dataset (white filled-in circle). The seed region labeled A∗ yielded Hypothesized Network A (left) and the seed region labeled B∗ yielded Hypothesized Network B (right). Note that throughout the cortex, Networks A and B are adjacent to one another with slightly varied positions from individual to individual. Hypothesized Network A includes posterior inferior parietal lobule, lateral temporal cortex, ventromedial PFC, retrosplenial/ventral posteromedial cortex, and parahippocampal cortex. Hypothesized Network B includes the temporoparietal junction, lateral temporal cortex, an inferior region of ventromedial PFC, a dorsal region of anteromedial PFC, and posterior cingulate cortex. Regions (hollow circles A and B) were selected to formally test the distinction between the two networks in independent data. The surfaces are rotated by 19° along the y plane to better show the ventromedial PFC and intraparietal sulcus. The same views are used in accompanying figures.
Figure 2
Figure 2
Parallel Distributed Networks Are Statistically Dissociated Using Independent Data Functional correlation strength was computed between the two PFC seed regions yielding Network A and Network B and the pairs of adjacent seed regions in lateral temporal (Temporal), inferior parietal (Parietal), Posteromedial, and Medial PFC cortices (regions shown in Figure 1). This yielded a 2 × 2 contrast for each zone of cortex (e.g., Networks A and B’s PFC regions against Networks A and B’s Temporal regions). An additional seed region in PHC was grouped with Network B’s posteromedial region. Correlations with Network A’s PFC region are shown in yellow and Network B’s in red. Bars represent the mean from the 12 sessions of the hypothesis-testing dataset with SEM. All 20 2 × 2 ANOVA tests were significant (∗∗p < 0.01), with most showing a cross-over interaction.
Figure 3
Figure 3
Parallel Distributed Networks Contain Juxtaposed Regions in Numerous Cortical Zones The two dissociated networks near the canonical default network, Network A and Network B, are shown for two subjects (S1 and S4) in a schematic form on the same cortical surface representation. The dashed boxes highlight nine cortical zones where neighboring representations of the two networks were found including: (1) dorsolateral PFC, (2) inferior PFC, (3) lateral temporal cortex, (4) inferior parietal lobule extending into the temporoparietal junction, (5) posteromedial cortex, (6) midcingulate cortex, (7) dorsomedial PFC, (8) ventromedial PFC, and (9) anteromedial PFC. Some zones, including the dorsal region along the PFC (labeled 7), are subtle, but consistent, in all subjects, suggesting that there exists small, closely juxtaposed components of the two dissociated networks.
Figure 4
Figure 4
Multiple Parallel Interdigitated Distributed Networks at or near the Canonical Frontoparietal Control and Dorsal Attention Networks Estimated by Functional Connectivity within Individuals Best estimate maps (using all 24 sessions in each individual) of Networks A and B that fractionate the default network are illustrated (top). Maps from two subjects (S1 and S4) are displayed. The canonical Frontoparietal Network (middle) and Dorsal Attention Network (bottom) also each fractionate into two juxtaposed networks. Seed regions are illustrated by filled white circles.
Figure 5
Figure 5
Relationship of Parallel Interdigitated Networks to Canonical Networks from Group-Averaged Data Each row illustrates how the networks identified in two individuals (S1 and S4) correspond to the well-characterized topography of group-derived networks. The black border represents the outline of the canonical default, frontoparietal control, and dorsal attention networks (top to bottom) calculated using data from 1,000 subjects that were parcellated into seven networks (from Yeo et al., 2011). The correlation maps from each seed (white filled circle) are shown in color. Broadly, the networks can be seen to occupy separate, closely juxtaposed regions that fall within the canonical network borders in most cases. Exceptions can also be found, such as in the inferior frontal cortex in Default Network A and in the parietal lobe in Frontoparietal Control Network B, where the individual’s connectivity map strays outside the group network borders.
Figure 6
Figure 6
Detailed Anatomy of Six Distinct Networks: Parietal and Medial Prefrontal Cortices The fine-scale interdigitation of the six identified networks is highlighted in regions where the macroscale organization is evident. White lines serve as landmarks so that the relative position of each network can be appreciated across panels: Networks A and B of the Default Network (DN-A, DN-B), Frontoparietal Control Network (FPN-A, FPN-B), and Dorsal Attention Network (dATN-A, dATN-B). In each row, FC maps from an individual are displayed for either medial frontal cortex (top two rows) or lateral parietal cortex (bottom two rows).
Figure 7
Figure 7
Detailed Anatomy of Six Distinct Networks: Lateral Temporal Cortex In a similar format to Figure 6, each column displays FC maps from an individual to illustrate the fine-scale interdigitation in the lateral temporal cortex.
Figure 8
Figure 8
Diagrammatic Representation of Six Parallel Distributed Networks within One Individual The central figure shows an illustration of the six networks overlaid on the same cortical surface. The top panel shows the lateral view, and the lower panel shows the medial view. The different colors correspond to the canonical network that each network resembles (red, Default Network, DN-A and DN-B; blue, Frontoparietal Network, FPN-A and FPN-B; green, Dorsal Attention Network, dATN-A and dATN-B). The names of the networks are based on prior literature, recognizing that the novel organization identified here may lead to a reconsideration of the functional domains. Data shown are from S4 (see also Figure S6).

References

    1. Amunts K., Schleicher A., Bürgel U., Mohlberg H., Uylings H.B., Zilles K. Broca’s region revisited: cytoarchitecture and intersubject variability. J. Comp. Neurol. 1999;412:319–341.
    1. Amunts K., Malikovic A., Mohlberg H., Schormann T., Zilles K. Brodmann’s areas 17 and 18 brought into stereotaxic space-where and how variable? Neuroimage. 2000;11:66–84.
    1. Andersen R.A., Asanuma C., Essick G., Siegel R.M. Corticocortical connections of anatomically and physiologically defined subdivisions within the inferior parietal lobule. J. Comp. Neurol. 1990;296:65–113.
    1. Andreasen N.C., O’Leary D.S., Cizadlo T., Arndt S., Rezai K., Watkins G.L., Ponto L.L., Hichwa R.D. Remembering the past: two facets of episodic memory explored with positron emission tomography. Am. J. Psychiatry. 1995;152:1576–1585.
    1. Andrews-Hanna J.R., Reidler J.S., Sepulcre J., Poulin R., Buckner R.L. Functional-anatomic fractionation of the brain’s default network. Neuron. 2010;65:550–562.
    1. Andrews-Hanna J.R., Saxe R., Yarkoni T. Contributions of episodic retrieval and mentalizing to autobiographical thought: evidence from functional neuroimaging, resting-state connectivity, and fMRI meta-analyses. Neuroimage. 2014;91:324–335.
    1. Beckmann C.F., DeLuca M., Devlin J.T., Smith S.M. Investigations into resting-state connectivity using independent component analysis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2005;360:1001–1013.
    1. Binder J.R., Desai R.H., Graves W.W., Conant L.L. Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb. Cortex. 2009;19:2767–2796.
    1. Biswal B., Yetkin F.Z., Haughton V.M., Hyde J.S. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 1995;34:537–541.
    1. Blatt G.J., Pandya D.N., Rosene D.L. Parcellation of cortical afferents to three distinct sectors in the parahippocampal gyrus of the rhesus monkey: an anatomical and neurophysiological study. J. Comp. Neurol. 2003;466:161–179.
    1. Boussaoud D., Ungerleider L.G., Desimone R. Pathways for motion analysis: cortical connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaque. J. Comp. Neurol. 1990;296:462–495.
    1. Braga R.M., Leech R. Echoes of the brain: local-scale representation of whole-brain functional networks within transmodal cortex. Neuroscientist. 2015;21:540–551.
    1. Buckner R.L., Krienen F.M. The evolution of distributed association networks in the human brain. Trends Cogn. Sci. 2013;17:648–665.
    1. Buckner R.L., Andrews-Hanna J.R., Schacter D.L. The brain’s default network: anatomy, function, and relevance to disease. Ann. N Y Acad. Sci. 2008;1124:1–38.
    1. Buckner R.L., Krienen F.M., Yeo B.T. Opportunities and limitations of intrinsic functional connectivity MRI. Nat. Neurosci. 2013;16:832–837.
    1. Caspers S., Geyer S., Schleicher A., Mohlberg H., Amunts K., Zilles K. The human inferior parietal cortex: cytoarchitectonic parcellation and interindividual variability. Neuroimage. 2006;33:430–448.
    1. Corbetta M., Shulman G.L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 2002;3:201–215.
    1. Cowan W.M., Gottlieb D.I., Hendrickson A.E., Price J.L., Woolsey T.A. The autoradiographic demonstration of axonal connections in the central nervous system. Brain Res. 1972;37:21–51.
    1. De Luca M., Beckmann C.F., De Stefano N., Matthews P.M., Smith S.M. fMRI resting state networks define distinct modes of long-distance interactions in the human brain. Neuroimage. 2006;29:1359–1367.
    1. Doucet G., Naveau M., Petit L., Delcroix N., Zago L., Crivello F., Jobard G., Tzourio-Mazoyer N., Mazoyer B., Mellet E., Joliot M. Brain activity at rest: a multiscale hierarchical functional organization. J. Neurophysiol. 2011;105:2753–2763.
    1. Evans A.C., Marrett S., Neelin P., Collins L., Worsley K., Dai W., Milot S., Meyer E., Bub D. Anatomical mapping of functional activation in stereotactic coordinate space. Neuroimage. 1992;1:43–53.
    1. Fedorenko E., Hsieh P.J., Nieto-Castañón A., Whitfield-Gabrieli S., Kanwisher N. New method for fMRI investigations of language: defining ROIs functionally in individual subjects. J. Neurophysiol. 2010;104:1177–1194.
    1. Fedorenko E., Duncan J., Kanwisher N. Language-selective and domain-general regions lie side by side within Broca’s area. Curr. Biol. 2012;22:2059–2062.
    1. Felleman D.J., Van Essen D.C. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex. 1991;1:1–47.
    1. Fischl B. FreeSurfer. Neuroimage. 2012;62:774–781.
    1. Fischl B., Sereno M.I., Dale A.M. Cortical surface-based analysis. II: inflation, flattening, and a surface-based coordinate system. Neuroimage. 1999;9:195–207.
    1. Fischl B., Rajendran N., Busa E., Augustinack J., Hinds O., Yeo B.T.T., Mohlberg H., Amunts K., Zilles K. Cortical folding patterns and predicting cytoarchitecture. Cereb. Cortex. 2008;18:1973–1980.
    1. Fox M.D., Raichle M.E. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 2007;8:700–711.
    1. Fox P.T., Perlmutter J.S., Raichle M.E. A stereotactic method of anatomical localization for positron emission tomography. J. Comput. Assist. Tomogr. 1985;9:141–153.
    1. Fox M.D., Corbetta M., Snyder A.Z., Vincent J.L., Raichle M.E. Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc. Natl. Acad. Sci. USA. 2006;103:10046–10051.
    1. Fox M.D., Buckner R.L., Liu H., Chakravarty M.M., Lozano A.M., Pascual-Leone A. Resting-state networks link invasive and noninvasive brain stimulation across diverse psychiatric and neurological diseases. Proc. Natl. Acad. Sci. USA. 2014;111:E4367–E4375.
    1. Fransson P., Marrelec G. The precuneus/posterior cingulate cortex plays a pivotal role in the default mode network: Evidence from a partial correlation network analysis. Neuroimage. 2008;42:1178–1184.
    1. Friston K.J., Ashburner J., Frith C.D., Poline J.B., Heather J.D., Frackowiak R.S.J. Spatial registration and normalization of images. Hum. Brain Mapp. 1995;3:165–189.
    1. Geschwind N. Disconnexion syndromes in animals and man. I. Brain. 1965;88:237–294.
    1. Geschwind N. Disconnexion syndromes in animals and man. II. Brain. 1965;88:585–644.
    1. Glasser M.F., Sotiropoulos S.N., Wilson J.A., Coalson T.S., Fischl B., Andersson J.L., Xu J., Jbabdi S., Webster M., Polimeni J.R., WU-Minn HCP Consortium The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage. 2013;80:105–124.
    1. Glasser M.F., Coalson T.S., Robinson E.C., Hacker C.D., Harwell J., Yacoub E., Ugurbil K., Andersson J., Beckmann C.F., Jenkinson M. A multi-modal parcellation of human cerebral cortex. Nature. 2016;536:171–178.
    1. Goldman-Rakic P.S. Topography of cognition: parallel distributed networks in primate association cortex. Annu. Rev. Neurosci. 1988;11:137–156.
    1. Gordon E.M., Laumann T.O., Adeyemo B., Petersen S.E. Individual variability of the system-level organization of the human brain. Cereb. Cortex. 2017;27:386–399.
    1. Gordon E.M., Laumann T.O., Adeyemo B., Gilmore A.W., Nelson S.M., Dosenbach N.U., Petersen S.E. Individual-specific features of brain systems identified with resting state functional correlations. Neuroimage. 2017;146:918–939.
    1. Greicius M.D., Krasnow B., Reiss A.L., Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. USA. 2003;100:253–258.
    1. Greicius M.D., Srivastava G., Reiss A.L., Menon V. Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc. Natl. Acad. Sci. USA. 2004;101:4637–4642.
    1. Greve D.N., Fischl B. Accurate and robust brain image alignment using boundary-based registration. Neuroimage. 2009;48:63–72.
    1. Gusnard D.A., Raichle M.E. Searching for a baseline: functional imaging and the resting human brain. Nat. Rev. Neurosci. 2001;2:685–694.
    1. Henssen A., Zilles K., Palomero-Gallagher N., Schleicher A., Mohlberg H., Gerboga F., Eickhoff S.B., Bludau S., Amunts K. Cytoarchitecture and probability maps of the human medial orbitofrontal cortex. Cortex. 2016;75:87–112.
    1. Hill J., Inder T., Neil J., Dierker D., Harwell J., Van Essen D. Similar patterns of cortical expansion during human development and evolution. Proc. Natl. Acad. Sci. USA. 2010;107:13135–13140.
    1. Holmes A.J., Hollinshead M.O., O’Keefe T.M., Petrov V.I., Fariello G.R., Wald L.L., Fischl B., Rosen B.R., Mair R.W., Roffman J.L. Brain Genomics Superstruct Project initial data release with structural, functional, and behavioral measures. Sci. Data. 2015;2:150031.
    1. Huth A.G., de Heer W.A., Griffiths T.L., Theunissen F.E., Gallant J.L. Natural speech reveals the semantic maps that tile human cerebral cortex. Nature. 2016;532:453–458.
    1. Jakobsen E., Liem F., Klados M.A., Bayrak Ş., Petrides M., Margulies D.S. Automated individual-level parcellation of Broca’s region based on functional connectivity. Neuroimage. 2016 Published online September 30, 2016.
    1. Jenkinson M., Bannister P., Brady M., Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage. 2002;17:825–841.
    1. Jones E.G., Powell T.P. An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain. 1970;93:793–820.
    1. Kahn I., Andrews-Hanna J.R., Vincent J.L., Snyder A.Z., Buckner R.L. Distinct cortical anatomy linked to subregions of the medial temporal lobe revealed by intrinsic functional connectivity. J. Neurophysiol. 2008;100:129–139.
    1. Krienen F.M., Buckner R.L. Human association cortex: expanded, untethered, neotenous, and plastic. In: Kaas J., editor. Volume 4. Elsevier; 2017. pp. 169–183. (Evolution of Nervous Systems 2e).
    1. Laird A.R., Fox P.M., Eickhoff S.B., Turner J.A., Ray K.L., McKay D.R., Glahn D.C., Beckmann C.F., Smith S.M., Fox P.T. Behavioral interpretations of intrinsic connectivity networks. J. Cogn. Neurosci. 2011;23:4022–4037.
    1. Laumann T.O., Gordon E.M., Adeyemo B., Snyder A.Z., Joo S.J., Chen M.-Y., Gilmore A.W., McDermott K.B., Nelson S.M., Dosenbach N.U.F. Functional system and areal organization of a highly sampled individual human brain. Neuron. 2015;87:657–670.
    1. Lavenex P., Suzuki W.A., Amaral D.G. Perirhinal and parahippocampal cortices of the macaque monkey: projections to the neocortex. J. Comp. Neurol. 2002;447:394–420.
    1. Leech R., Sharp D.J. The role of the posterior cingulate cortex in cognition and disease. Brain. 2014;137:12–32.
    1. Leech R., Kamourieh S., Beckmann C.F., Sharp D.J. Fractionating the default mode network: distinct contributions of the ventral and dorsal posterior cingulate cortex to cognitive control. J. Neurosci. 2011;31:3217–3224.
    1. Leech R., Braga R., Sharp D.J. Echoes of the brain within the posterior cingulate cortex. J. Neurosci. 2012;32:215–222.
    1. Marcus D.S., Harwell J., Olsen T., Hodge M., Glasser M.F., Prior F., Jenkinson M., Laumann T., Curtiss S.W., Van Essen D.C. Informatics and data mining tools and strategies for the human connectome project. Front. Neuroinform. 2011;5:4.
    1. Margulies D.S., Kelly A.M., Uddin L.Q., Biswal B.B., Castellanos F.X., Milham M.P. Mapping the functional connectivity of anterior cingulate cortex. Neuroimage. 2007;37:579–588.
    1. Margulies D.S., Vincent J.L., Kelly C., Lohmann G., Uddin L.Q., Biswal B.B., Villringer A., Castellanos F.X., Milham M.P., Petrides M. Precuneus shares intrinsic functional architecture in humans and monkeys. Proc. Natl. Acad. Sci. USA. 2009;106:20069–20074.
    1. Margulies D.S., Ghosh S.S., Goulas A., Falkiewicz M., Huntenburg J.M., Langs G., Bezgin G., Eickhoff S.B., Castellanos F.X., Petrides M. Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc. Natl. Acad. Sci. USA. 2016;113:12574–12579.
    1. Markov N.T., Vezoli J., Chameau P., Falchier A., Quilodran R., Huissoud C., Lamy C., Misery P., Giroud P., Ullman S. Anatomy of hierarchy: feedforward and feedback pathways in macaque visual cortex. J. Comp. Neurol. 2014;522:225–259.
    1. Maunsell J.H., van Essen D.C. The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. J. Neurosci. 1983;3:2563–2586.
    1. Mazoyer B., Zago L., Mellet E., Bricogne S., Etard O., Houdé O., Crivello F., Joliot M., Petit L., Tzourio-Mazoyer N. Cortical networks for working memory and executive functions sustain the conscious resting state in man. Brain Res. Bull. 2001;54:287–298.
    1. Mennes M., Jenkinson M., Valabregue R., Buitelaar J.K., Beckmann C., Smith S. Optimizing full-brain coverage in human brain MRI through population distributions of brain size. Neuroimage. 2014;98:513–520.
    1. Menon V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn. Sci. 2011;15:483–506.
    1. Mesulam M.M. A cortical network for directed attention and unilateral neglect. Ann. Neurol. 1981;10:309–325.
    1. Mesulam M.M. Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Ann. Neurol. 1990;28:597–613.
    1. Mesulam M.M. From sensation to cognition. Brain. 1998;121:1013–1052.
    1. Mesulam M.M., Van Hoesen G.W., Pandya D.N., Geschwind N. Limbic and sensory connections of the inferior parietal lobule (area PG) in the rhesus monkey: a study with a new method for horseradish peroxidase histochemistry. Brain Res. 1977;136:393–414.
    1. Michalka S.W., Kong L., Rosen M.L., Shinn-Cunningham B.G., Somers D.C. Short-term memory for space and time flexibly recruit complementary sensory-biased frontal lobe attention networks. Neuron. 2015;87:882–892.
    1. Moeller S., Freiwald W.A., Tsao D.Y. Patches with links: a unified system for processing faces in the macaque temporal lobe. Science. 2008;320:1355–1359.
    1. Mueller S., Wang D., Fox M.D., Yeo B.T.T., Sepulcre J., Sabuncu M.R., Shafee R., Lu J., Liu H. Individual variability in functional connectivity architecture of the human brain. Neuron. 2013;77:586–595.
    1. Mueller S., Wang D., Fox M.D., Pan R., Lu J., Li K., Sun W., Buckner R.L., Liu H. Reliability correction for functional connectivity: theory and implementation. Hum. Brain Mapp. 2015;36:4664–4680.
    1. Murphy K., Birn R.M., Bandettini P.A. Resting-state fMRI confounds and cleanup. Neuroimage. 2013;80:349–359.
    1. Ojemann J.G., Akbudak E., Snyder A.Z., McKinstry R.C., Raichle M.E., Conturo T.E. Anatomic localization and quantitative analysis of gradient refocused echo-planar fMRI susceptibility artifacts. Neuroimage. 1997;6:156–167.
    1. Ongür D., Price J.L. The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb. Cortex. 2000;10:206–219.
    1. Pandya D.N., Seltzer B. Intrinsic connections and architectonics of posterior parietal cortex in the rhesus monkey. J. Comp. Neurol. 1982;204:196–210.
    1. Patel G.H., Yang D., Jamerson E.C., Snyder L.H., Corbetta M., Ferrera V.P. Functional evolution of new and expanded attention networks in humans. Proc. Natl. Acad. Sci. USA. 2015;112:9454–9459.
    1. Power J.D., Cohen A.L., Nelson S.M., Wig G.S., Barnes K.A., Church J.A., Vogel A.C., Laumann T.O., Miezin F.M., Schlaggar B.L., Petersen S.E. Functional network organization of the human brain. Neuron. 2011;72:665–678.
    1. Power J.D., Schlaggar B.L., Petersen S.E. Studying brain organization via spontaneous fMRI signal. Neuron. 2014;84:681–696.
    1. Rademacher J., Caviness V.S., Jr., Steinmetz H., Galaburda A.M. Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology. Cereb. Cortex. 1993;3:313–329.
    1. Rajkowska G., Goldman-Rakic P.S. Cytoarchitectonic definition of prefrontal areas in the normal human cortex: II. Variability in locations of areas 9 and 46 and relationship to the Talairach Coordinate System. Cereb. Cortex. 1995;5:323–337.
    1. Robinson E.C., Jbabdi S., Glasser M.F., Andersson J., Burgess G.C., Harms M.P., Smith S.M., Van Essen D.C., Jenkinson M. MSM: a new flexible framework for Multimodal Surface Matching. Neuroimage. 2014;100:414–426.
    1. Rosene D.L., Van Hoesen G.W. Hippocampal efferents reach widespread areas of cerebral cortex and amygdala in the rhesus monkey. Science. 1977;198:315–317.
    1. Saxe R., Kanwisher N. People thinking about thinking people. The role of the temporo-parietal junction in “theory of mind”. Neuroimage. 2003;19:1835–1842.
    1. Selemon L.D., Goldman-Rakic P.S. Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey. J. Neurosci. 1985;5:776–794.
    1. Selemon L.D., Goldman-Rakic P.S. Common cortical and subcortical targets of the dorsolateral prefrontal and posterior parietal cortices in the rhesus monkey: evidence for a distributed neural network subserving spatially guided behavior. J. Neurosci. 1988;8:4049–4068.
    1. Setsompop K., Gagoski B.A., Polimeni J.R., Witzel T., Wedeen V.J., Wald L.L. Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty. Magn. Reson. Med. 2012;67:1210–1224.
    1. Shadlen M.N., Newsome W.T. Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. J. Neurophysiol. 2001;86:1916–1936.
    1. Shulman G.L., Fiez J.A., Corbetta M., Buckner R.L., Miezin F.M., Raichle M.E., Petersen S.E. Common blood flow changes across visual tasks: II. Decreases in cerebral cortex. J. Cogn. Neurosci. 1997;9:648–663.
    1. Silbersweig D.A., Stern E., Frith C.D., Cahill C., Schnorr L., Grootoonk S., Spinks T., Clark J., Frackowiak R., Jones T. Detection of thirty-second cognitive activations in single subjects with positron emission tomography: a new low-dose H2(15)O regional cerebral blood flow three-dimensional imaging technique. J. Cereb. Blood Flow Metab. 1993;13:617–629.
    1. Smith S.M., Jenkinson M., Woolrich M.W., Beckmann C.F., Behrens T.E., Johansen-Berg H., Bannister P.R., De Luca M., Drobnjak I., Flitney D.E. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage. 2004;23(Suppl 1):S208–S219.
    1. Smith S.M., Miller K.L., Moeller S., Xu J., Auerbach E.J., Woolrich M.W., Beckmann C.F., Jenkinson M., Andersson J., Glasser M.F. Temporally-independent functional modes of spontaneous brain activity. Proc. Natl. Acad. Sci. USA. 2012;109:3131–3136.
    1. Smith S.M., Beckmann C.F., Andersson J., Auerbach E.J., Bijsterbosch J., Douaud G., Duff E., Feinberg D.A., Griffanti L., Harms M.P., WU-Minn HCP Consortium Resting-state fMRI in the Human Connectome Project. Neuroimage. 2013;80:144–168.
    1. Spreng R.N., Mar R.A., Kim A.S. The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: a quantitative meta-analysis. J. Cogn. Neurosci. 2009;21:489–510.
    1. Steinmetz H., Seitz R.J. Functional anatomy of language processing: neuroimaging and the problem of individual variability. Neuropsychologia. 1991;29:1149–1161.
    1. Torous J., Kiang M.V., Lorme J., Onnela J.P. New tools for new research in psychiatry: a scalable and customizable platform to empower data driven smartphone research. JMIR Ment Health. 2016;3:e16.
    1. Ungerleider L.G., Desimone R. Cortical connections of visual area MT in the macaque. J. Comp. Neurol. 1986;248:190–222.
    1. van der Kouwe A.J., Benner T., Fischl B., Schmitt F., Salat D.H., Harder M., Sorensen A.G., Dale A.M. On-line automatic slice positioning for brain MR imaging. Neuroimage. 2005;27:222–230.
    1. van der Kouwe A.J., Benner T., Salat D.H., Fischl B. Brain morphometry with multiecho MPRAGE. Neuroimage. 2008;40:559–569.
    1. Van Dijk K.R., Hedden T., Venkataraman A., Evans K.C., Lazar S.W., Buckner R.L. Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization. J. Neurophysiol. 2010;103:297–321.
    1. Van Essen D.C. A Population-Average, Landmark- and Surface-based (PALS) atlas of human cerebral cortex. Neuroimage. 2005;28:635–662.
    1. Van Essen D.C., Anderson C.H., Felleman D.J. Information processing in the primate visual system: an integrated systems perspective. Science. 1992;255:419–423.
    1. Vincent J.L., Snyder A.Z., Fox M.D., Shannon B.J., Andrews J.R., Raichle M.E., Buckner R.L. Coherent spontaneous activity identifies a hippocampal-parietal memory network. J. Neurophysiol. 2006;96:3517–3531.
    1. Vincent J.L., Patel G.H., Fox M.D., Snyder A.Z., Baker J.T., Van Essen D.C., Zempel J.M., Snyder L.H., Corbetta M., Raichle M.E. Intrinsic functional architecture in the anaesthetized monkey brain. Nature. 2007;447:83–86.
    1. Vincent J.L., Kahn I., Snyder A.Z., Raichle M.E., Buckner R.L. Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. J. Neurophysiol. 2008;100:3328–3342.
    1. Vogt B.A., Vogt L., Laureys S. Cytology and functionally correlated circuits of human posterior cingulate areas. Neuroimage. 2006;29:452–466.
    1. Voyvodic J.T., Glover G.H., Greve D., Gadde S., FBIRN Automated real-time behavioral and physiological data acquisition and display integrated with stimulus presentation for FMRI. Front. Neuroinform. 2011;5:27.
    1. Weiskopf N., Hutton C., Josephs O., Deichmann R. Optimal EPI parameters for reduction of susceptibility-induced BOLD sensitivity losses: a whole-brain analysis at 3 T and 1.5 T. Neuroimage. 2006;33:493–504.
    1. Yeo B.T.T., Krienen F.M., Sepulcre J., Sabuncu M.R., Lashkari D., Hollinshead M., Roffman J.L., Smoller J.W., Zöllei L., Polimeni J.R. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 2011;106:1125–1165.
    1. Yeo B.T.T., Krienen F.M., Chee M.W., Buckner R.L. Estimates of segregation and overlap of functional connectivity networks in the human cerebral cortex. Neuroimage. 2014;88:212–227.
    1. Zou Q.H., Zhu C.Z., Yang Y., Zuo X.N., Long X.Y., Cao Q.J., Wang Y.F., Zang Y.F. An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF. J. Neurosci. Methods. 2008;172:137–141.

Source: PubMed

3
Abonneren