Assessment of Worldwide Acute Kidney Injury, Renal Angina and Epidemiology in critically ill children (AWARE): study protocol for a prospective observational study

Rajit K Basu, Ahmad Kaddourah, Tara Terrell, Theresa Mottes, Patricia Arnold, Judd Jacobs, Jennifer Andringa, Stuart L Goldstein, Prospective Pediatric AKI Research Group (ppAKI), David Askenazi, Katja Gist, Scott Sutherland, Olja Couloures, Vince Faustino, Joshua Zaritksy, Matthew Paden, Patrick Brophy, David Selewski, Richard Hackbarth, Vimal Chadha, Vikas Dharnidharka, Thomas Davis, Craig Wong, James Schneider, Fangming Lin, Robert Woroniecki, Geoffrey Fleming, Alyssa Riley, Ayse Arikan, Timothy Bunchman, Duane Williams, Stephen Alexander, Sean Kennedy, Dierdre Hahn, Catherine Morgan, Michael Zappitelli, Ana Peljian, Cherry Mammen, Songming Huang, Eka Hidayati, Risky Prasetyo, Noer Soemyarso, Stephano Picca, Il-Soo Ha, Hee Gyung Kang, Akash Deep, Natasa Stajic, Brankica Spasojevic, Rajit K Basu, Ahmad Kaddourah, Tara Terrell, Theresa Mottes, Patricia Arnold, Judd Jacobs, Jennifer Andringa, Stuart L Goldstein, Prospective Pediatric AKI Research Group (ppAKI), David Askenazi, Katja Gist, Scott Sutherland, Olja Couloures, Vince Faustino, Joshua Zaritksy, Matthew Paden, Patrick Brophy, David Selewski, Richard Hackbarth, Vimal Chadha, Vikas Dharnidharka, Thomas Davis, Craig Wong, James Schneider, Fangming Lin, Robert Woroniecki, Geoffrey Fleming, Alyssa Riley, Ayse Arikan, Timothy Bunchman, Duane Williams, Stephen Alexander, Sean Kennedy, Dierdre Hahn, Catherine Morgan, Michael Zappitelli, Ana Peljian, Cherry Mammen, Songming Huang, Eka Hidayati, Risky Prasetyo, Noer Soemyarso, Stephano Picca, Il-Soo Ha, Hee Gyung Kang, Akash Deep, Natasa Stajic, Brankica Spasojevic

Abstract

Background: Acute kidney injury (AKI) is associated with poor outcome in critically ill children. While data extracted from retrospective study of pediatric populations demonstrate a high incidence of AKI, the literature lacks focused and comprehensive multicenter studies describing AKI risk factors, epidemiology, and outcome. Additionally, very few pediatric studies have examined novel urinary biomarkers outside of the cardiopulmonary bypass population.

Methods/design: This is a prospective observational study. We anticipate collecting data on over 5000 critically ill children admitted to 31 pediatric intensive care units (PICUs) across the world during the calendar year of 2014. Data will be collected for seven days on all children older than 90 days and younger than 25 years without baseline stage 5 chronic kidney disease, chronic renal replacement therapy, and outside of 90 days of a kidney transplant or from surgical correction of congenital heart disease. Data to be collected includes demographic information, admission diagnoses and co-morbidities, and details on fluid and vasoactive resuscitation used. The renal angina index will be calculated integrating risk factors and early changes in serum creatinine and fluid overload. On days 2-7, all hemodynamic and pertinent laboratory values will be captured focusing on AKI pertinent values. Daily calculated values will include % fluid overload, fluid corrected creatinine, and KDIGO AKI stage. Urine will be captured twice daily for biomarker analysis on Days 0-3 of admission. Biomarkers to be measured include neutrophil gelatinase lipocalin (NGAL), kidney injury molecule-1 (KIM-1), liver-type fatty acid binding protein (l-FABP), and interleukin-18 (IL-18). The primary outcome to be quantified is incidence rate of severe AKI on Day 3 (Day 3-AKI). Prediction of Day 3-AKI by the RAI and after incorporation of biomarkers with RAI will be analyzed.

Discussion: The Assessment of Worldwide Acute Kidney Injury, Renal Angina and Epidemiology (AWARE) study, creates the first prospective international pediatric all cause AKI data warehouse and biologic sample repository, providing a broad and invaluable resource for critical care nephrologists seeking to study risk factors, prediction, identification, and treatment options for a disease syndrome with high associated morbidity affecting a significant proportion of hospitalized children.

Trial registration: ClinicalTrials.gov: NCT01987921.

References

    1. Schneider J, Khemani R, Grushkin C, Bart R. Serum creatinine as stratified in the RIFLE score for acute kidney injury is associated with mortality and length of stay for children in the pediatric intensive care unit. Crit Care Med. 2010;38:933–9. doi: 10.1097/CCM.0b013e3181cd12e1.
    1. Bailey D, Phan V, Litalien C, Ducruet T, Merouani A, Lacroix J, et al. Risk factors of acute renal failure in critically ill children: a prospective descriptive epidemiological study. Pediatr Crit Care Med. 2007;8:29–35. doi: 10.1097/01.pcc.0000256612.40265.67.
    1. Zappitelli M, Parikh CR, Akcan-Arikan A, Washburn KK, Moffett BS, Goldstein SL. Ascertainment and epidemiology of acute kidney injury varies with definition interpretation. Clin J Am Soc Nephrol. 2008;3:948–54. doi: 10.2215/CJN.05431207.
    1. Akcan-Arikan A, Zappitelli M, Loftis LL, Washburn KK, Jefferson LS, Goldstein SL. Modified RIFLE criteria in critically ill children with acute kidney injury. Kidney Int. 2007;71:1028–35. doi: 10.1038/sj.ki.5002231.
    1. Basu RK, Zappitelli M, Brunner L, Wang Y, Wong H, Chawla LS, et al. Derivation and validation of the renal angina index to improve the prediction of acute kidney injury in critically ill children. Kidney Int. 2014;85:659–67. doi: 10.1038/ki.2013.349.
    1. Selewski DT, Cornell TT, Heung M, Troost JP, Ehrmann BJ, Blatt NB, et al. Validation of the KDIGO acute kidney injury criteria in a pediatric critical care population. Intensive Care Med. 2014;40:1481–8. doi: 10.1007/s00134-014-3391-8.
    1. Liano G, Pascual J, Madrid Acute Renal Failure Study Group Acute renal failure. Lancet. 1996;347:479.
    1. Nash K, Hafeez A, Hou S. Hospital-acquired renal insufficiency. Am J Kidney Dis. 2002;39:930–6. doi: 10.1053/ajkd.2002.32766.
    1. Venkatachalam MA, Griffin KA, Lan R, Geng H, Saikumar P, Bidani AK. Acute kidney injury: a springboard for progression in chronic kidney disease. Am J Physiol Renal Physiol. 2010;298:F1078–94. doi: 10.1152/ajprenal.00017.2010.
    1. Xue JL, Daniels F, Star RA, Kimmel PL, Eggers PW, Molitors BA, et al. Incidence and mortality of acute renal failure in Medicare beneficiaries, 1992 to 2001. J Am Soc Nephrol. 2006;17:1135–42. doi: 10.1681/ASN.2005060668.
    1. Heringlake M, Knappe M, Vargas Hein O, et al. Renal dysfunction according to the ADQI-RIFLE system and clinical practice patterns after cardiac surgery in Germany. Minerva Anestesiol. 2006;72:645–54.
    1. Uchino S, Bellomo R, Goldsmith D, Bates S, Ronco C. An assessment of the RIFLE criteria for acute renal failure in hospitalized patients. Crit Care Med. 2006;34:1913–7. doi: 10.1097/01.CCM.0000224227.70642.4F.
    1. Ostermann M, Chang RW. Acute kidney injury in the intensive care unit according to RIFLE. Crit Care Med. 2007;35:1837–43. doi: 10.1097/01.CCM.0000277041.13090.0A.
    1. Palevsky PM, Liu KD, Brophy PD, Chawla LS, Parikh CR, Thakar CV, et al. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for acute kidney injury. Am J Kidney Dis. 2013;61:649–72. doi: 10.1053/j.ajkd.2013.02.349.
    1. Kendirli T, Ekim M, Ozcakar ZB, Yuksel S, Acar B, Ozturk-Hiismi B, et al. Renal replacement therapies in pediatric intensive care patients: experiences of one center in Turkey. Pediatr Int. 2007;49:345–8. doi: 10.1111/j.1442-200X.2007.02376.x.
    1. Cruz DN, Bagshaw SM, Maisel A, Lewington A, Thadhani R, Chakravarthi R, et al. Use of biomarkers to assess prognosis and guide management of patients with acute kidney injury. Contrib Nephrol. 2013;182:45–64. doi: 10.1159/000349965.
    1. McCullough PA, Bouchard J, Waikar SS, Siew ED, Endre ZH, Goldstein SL, et al. Implementation of Novel Biomarkers in the Diagnosis, Prognosis, and Management of Acute Kidney Injury: Executive Summary from the Tenth Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Contrib Nephrol. 2013;182:5–12. doi: 10.1159/000349962.
    1. Devarajan P, Mishra J, Supavekin S, Patterson LT, Steven PS. Gene expression in early ischemic renal injury: clues towards pathogenesis, biomarker discovery, and novel therapeutics. Mol Genet Metab. 2003;80:365–76. doi: 10.1016/j.ymgme.2003.09.012.
    1. Han WK, Waikar SS, Johnson A, Betensky RA, Dent CL, Devarajan P, et al. Urinary biomarkers in the early diagnosis of acute kidney injury. Kidney Int. 2008;73:863–9. doi: 10.1038/sj.ki.5002715.
    1. Mishra J, Dent C, Tarabishi R, Mitsnefes MM, Ma Q, Kelly C, et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet. 2005;365:1231–8. doi: 10.1016/S0140-6736(05)74811-X.
    1. Parikh CR, Mishra J, Thiessen-Philbrook H, Dursun B, Ma Q, Kelly C, et al. Urinary IL-18 is an early predictive biomarker of acute kidney injury after cardiac surgery. Kidney Int. 2006;70:199–203. doi: 10.1038/sj.ki.5001527.
    1. Soto K, Papoila AL, Coelho S, Bennett M, Ma Q, Rodrigues B, et al. Plasma NGAL for the Diagnosis of AKI in Patients Admitted from the Emergency Department Setting. Clin J Am Soc Nephrol. 2013;8:2053–63. doi: 10.2215/CJN.12181212.
    1. Al-Ismaili Z, Palijan A, Zappitelli M. Biomarkers of acute kidney injury in children: discovery, evaluation, and clinical application. Pediatr Nephrol. 2011;26:29–40. doi: 10.1007/s00467-010-1576-0.
    1. Ahlstrom A, Tallgren M, Peltonen S, Pettila V. Evolution and predictive power of serum cystatin C in acute renal failure. Clin Nephrol. 2004;62:344–50. doi: 10.5414/CNP62344.
    1. Coca SG, Yalavarthy R, Concato J, Parikh CR. Biomarkers for the diagnosis and risk stratification of acute kidney injury: a systematic review. Kidney Int. 2008;73:1008–16. doi: 10.1038/sj.ki.5002729.
    1. Simmons EM, Himmelfarb J, Sezer MT, Chertow GM, Mehta RL, Paganini EP, et al. Plasma cytokine levels predict mortality in patients with acute renal failure. Kidney Int. 2004;65:1357–65. doi: 10.1111/j.1523-1755.2004.00512.x.
    1. Zappitelli M, Washburn KK, Arikan AA, Loftis L, Ma Q, Devarajan P, et al. Urine neutrophil gelatinase-associated lipocalin is an early marker of acute kidney injury in critically ill children: a prospective cohort study. Crit Care. 2007;11:R84. doi: 10.1186/cc6089.
    1. Basu RK, Chawla LS, Wheeler DS, Goldstein SL. Renal angina: an emerging paradigm to identify children at risk for acute kidney injury. Pediatr Nephrol. 2012;27:1067–78. doi: 10.1007/s00467-011-2024-5.
    1. Goldstein SL, Chawla LS. Renal angina. Clin J Am Soc Nephrol. 2010;5:943–9. doi: 10.2215/CJN.07201009.
    1. Basu RK, Wang Y, Wong HR, Chawla LS, Wheeler DS, Goldstein SL. Incorporation of biomarkers with the renal angina index for prediction of severe AKI in critically ill children. Clin J Am Soc Nephrol. 2014;9:654–62. doi: 10.2215/CJN.09720913.
    1. Goldstein SL, Currier H, Graf C, Cosio CC, Brewer ED, Sachdeva R. Outcome in children receiving continuous venovenous hemofiltration. Pediatrics. 2001;107:1309–12. doi: 10.1542/peds.107.6.1309.
    1. Basu RK, Andrews A, Krawczeski C, Manning P, Wheeler DS, Goldstein SL. Acute kidney injury based on corrected serum creatinine is associated with increased morbidity in children following the arterial switch operation. Pediatr Crit Care Med. 2013;14:e218–24. doi: 10.1097/PCC.0b013e3182772f61.
    1. Group KDIGOKAKIW. KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney Int Suppl. 2012;2:1–138. doi: 10.1038/kisup.2012.1.
    1. Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, Morgera S, et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005;294:813–8. doi: 10.1001/jama.294.7.813.
    1. Kellum JA, Bellomo R, Ronco C. Kidney attack. JAMA. 2012;307:2265–6. doi: 10.1001/jama.2012.4315.

Source: PubMed

3
Abonneren