Clinical review: the meaning of acid-base abnormalities in the intensive care unit part I - epidemiology

Kyle J Gunnerson, Kyle J Gunnerson

Abstract

Acid-base abnormalities are common in critically ill patients. Our ability to describe acid-base disorders must be precise. Small differences in corrections for anion gap, different types of analytical processes, and the basic approach used to diagnose acid-base aberrations can lead to markedly different interpretations and treatment strategies for the same disorder. By applying a quantitive acid-base approach, clinicians are able to account for small changes in ion distribution that may have gone unrecognized with traditional techniques of acid-base analysis. Outcome prediction based on the quantitative approach remains controversial. This is in part due to use of various technologies to measure acid-base variables, administration of fluid or medication that can alter acid-base results, and lack of standardized nomenclature. Without controlling for these factors it is difficult to appreciate the full effect that acid-base disorders have on patient outcomes, ultimately making results of outcome studies hard to compare.

Figures

Figure 1
Figure 1
Distribution of patients and contributing ion responsible for majority of metabolic acidosis present. Shown is the distribution of patients within different types of intensive care unit (ICU) locations and their respective hospital mortality associated with the major ion contributing to the metabolic acidosis. These results were obtained from a large teaching institution comprised of two hospitals and seven ICUs over a 1 year period and included patients with a suspected lactic acidosis. No metabolic acidosis is defined as a standard base excess of -2 mEq/l or higher. CCU, cardiac (nonsurgical) ICU; CTICU, cardiothoracic ICU; LTICU, liver transplant ICU; Med, medical ICU; Neuro, neurosurgical and neurological ICU; Surg, general surgical ICU; Trauma, trauma ICU.
Figure 2
Figure 2
Proposed metabolic acidosis classification flow diagram based on the contributing anion group. This flow diagram is one proposed way to classify metabolic acidosis based on the major contributing anion group. The definition of metabolic acidosis component is a standard base excess (SBE) below -2 mEq/l. It is not based on pH because of the possibility of respiratory compensation. SIDa, apparent strong ion difference; SIDe, effective strong ion difference; SIG, strong ion gap.

References

    1. Kellum JA, Song M, Subramanian S. Acidemia: good, bad or inconsequential? In: Vincent JL, editor. Yearbook of Intensive Care and Emergency Medicine. Berlin: Springer; 2002. pp. 510–516.
    1. Li J, Hoskote A, Hickey C, Stephens D, Bohn D, Holtby H, Van Arsdell G, Redington AN, Adata I. Effect of carbon dioxide on systemic oxygenation, oxygen consumption, and blood lactate levels after bidirectional superior cavopulmonary anastomosis. Crit Care Med. 2005;33:984–989. doi: 10.1097/01.CCM.0000162665.08685.E2.
    1. Broder G, Weil MH. Excess lactate: an index of reversibility of shock in human patients. Science. 1964;143:1457.
    1. Hickling KG, Walsh J, Henderson S, Jackson R. Low mortality rate in adult respiratory distress syndrome using low-volume, pressure-limited ventilation with permissive hypercapnia: a prospective study. Crit Care Med. 1994;22:1568–1578.
    1. Stacpoole PW, Lorenz AC, Thomas RG, Harman EM. Dichloroacetate in the treatment of lactic acidosis. Ann Intern Med. 1988;108:58–63.
    1. Gunnerson KJ, Kellum JA. Acid-base and electrolyte analysis in critically ill patients: are we ready for the new millennium? Curr Opin Crit Care. 2003;9:468–473. doi: 10.1097/00075198-200312000-00002.
    1. Corey HE. Stewart and beyond: new models of acid-base balance. Kidney Int. 2003;64:777–787. doi: 10.1046/j.1523-1755.2003.00177.x.
    1. Kellum JA. Determinants of blood pH in health and disease. Crit Care. 2000;4:6–14. doi: 10.1186/cc644.
    1. Stewart P. Modern quantitative acid-base chemistry. Can J Physiol Pharmacol. 1983;61:1444–1461.
    1. Stewart PA. How to Understand Acid-base A Quantitative Acid-base Primer for Biology and Medicine. New York: Elsevier; 1981.
    1. Sirker AA, Rhodes A, Grounds RM, Bennett ED. Acid-base physiology: the 'traditional' and the 'modern' approaches. Anaesthesia. 2002;57:348–356. doi: 10.1046/j.0003-2409.2001.02447.x.
    1. Gunnerson KJ, Roberts G, Kellum JA. What is a normal strong ion gap (SIG) in healthy subjects and critically ill patients without acid-base abnormalities? [abstract] Crit Care Med. 2003. p. A111.
    1. Salem MM, Mujais SK. Gaps in the anion gap. Arch Intern Med. 1992;152:1625–1629. doi: 10.1001/archinte.152.8.1625.
    1. Fencl V, Jabor A, Kazda A, Figge J. Diagnosis of metabolic acid-base disturbances in critically ill patients. Am J Respir Crit Care Med. 2000;162:2246–2251.
    1. Balasubramanyan N, Havens PL, Hoffman GM. Unmeasured anions identified by the Fencl-Stewart method predict mortality better than base excess, anion gap, and lactate in patients in the pediatric intensive care unit. Crit Care Med. 1999;27:1577–1581. doi: 10.1097/00003246-199908000-00030.
    1. Story DA, Poustie S, Bellomo R. Estimating unmeasured anions in critically ill patients: anion-gap, base-deficit, and strong-ion-gap. Anaesthesia. 2002;57:1109–1114. doi: 10.1046/j.1365-2044.2002.02782_2.x.
    1. Durward A, Mayer A, Skellett S, Taylor D, Hanna S, Tibby SM, Murdoch IA. Hypoalbuminaemia in critically ill children: incidence, prognosis, and influence on the anion gap. Arch Dis Child. 2003;88:419–422. doi: 10.1136/adc.88.5.419.
    1. Hatherill M, Waggie Z, Purves L, Reynolds L, Argent A. Correction of the anion gap for albumin in order to detect occult tissue anions in shock. Arch Dis Child. 2002;87:526–529. doi: 10.1136/adc.87.6.526.
    1. Kellum JA, Kramer DJ, Pinsky MR. Strong ion gap: a methodology for exploring unexplained anions. J Crit Care. 1995;10:51–55. doi: 10.1016/0883-9441(95)90016-0.
    1. Cusack RJ, Rhodes A, Lochhead P, Jordan B, Perry S, Ball JA, Grounds RM, Bennett ED. The strong ion gap does not have prognostic value in critically ill patients in a mixed medical/surgical adult ICU. Intensive Care Med. 2002;28:864–869. doi: 10.1007/s00134-002-1318-2.
    1. Moviat M, van Haren F, van der HH. Conventional or physicochemical approach in intensive care unit patients with metabolic acidosis. Crit Care. 2003;7:R41–R45. doi: 10.1186/cc2184.
    1. Wilkes P. Hypoproteinemia, strong-ion difference, and acid-base status in critically ill patients. J Appl Physiol. 1998;84:1740–1748.
    1. Kaplan LJ, Kellum JA. Initial pH, base deficit, lactate, anion gap, strong ion difference, and strong ion gap predict outcome from major vascular injury. Crit Care Med. 2004;32:1120–1124. doi: 10.1097/01.CCM.0000125517.28517.74.
    1. Rocktaeschel J, Morimatsu H, Uchino S, Bellomo R. Unmeasured anions in critically ill patients: can they predict mortality? Crit Care Med. 2003;31:2131–2136. doi: 10.1097/01.CCM.0000079819.27515.8E.
    1. Sumpelmann R, Schurholz T, Marx G, Thorns E, Zander R. Alteration of anion gap during almost total plasma replacement with synthetic colloids in piglets. Intensive Care Med. 1999;25:1287–1290. doi: 10.1007/s001340051059.
    1. Hayhoe M, Bellomo R, Liu G, McNicol L, Buxton B. The aetiology and pathogenesis of cardiopulmonary bypass-associated metabolic acidosis using polygeline pump prime. Intensive Care Med. 1999;25:680–685. doi: 10.1007/s001340050930.
    1. Figge J, Jabor A, Kazda A, Fencl V. Anion gap and hypoalbuminemia. Crit Care Med. 1998;26:1807–1810.
    1. Gunnerson KJ, Saul M, Kellum JA. Lactic versus non-lactic metabolic acidosis: outcomes in critically ill patients. [abstract] Crit Care. 2003. p. S8.
    1. Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P. Acute renal failure – definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2004;8:R204–R212. doi: 10.1186/cc2872.
    1. Durward A, Skellett S, Mayer A, Taylor D, Tibby SM, Murdoch IA. The value of the chloride: sodium ratio in differentiating the aetiology of metabolic acidosis. Intensive Care Med. 2001;27:828–835. doi: 10.1007/s001340100915.
    1. Kellum JA, Bellomo R, Kramer DJ, Pinsky MR. Etiology of metabolic acidosis during saline resuscitation in endotoxemia. Shock. 1998;9:364–368.
    1. Kellum JA. Saline-induced hyperchloremic metabolic acidosis. Crit Care Med. 2002;30:259–261.
    1. Prough DS. Acidosis associated with perioperative saline administration: dilution or delusion? Anesthesiol. 2000;93:1167–1169. doi: 10.1097/00000542-200011000-00005.
    1. De Backer D. Lactic acidosis. Minerva Anestesiol. 2003;69:281–284.
    1. Luft FC. Lactic acidosis update for critical care clinicians. J Am Soc Nephrol. 2001. pp. S15–S19.
    1. Vincent JL, Dufaye P, Berre J, Leeman M, Degaute JP, Kahn RJ. Serial lactate determinations during circulatory shock. Crit Care Med. 1983;11:449–451.
    1. James JH, Luchette FA, McCarter FD, Fischer JE. Lactate is an unreliable indicator of tissue hypoxia in injury or sepsis. Lancet. 1999;354:505–508. doi: 10.1016/S0140-6736(98)91132-1.
    1. Bellomo R, Kellum JA, Pinsky MR. Transvisceral lactate fluxes during early endotoxemia. Chest. 1996;110:198–204.
    1. De Backer D, Creteur J, Zhang H, Norrenberg M, Vincent JL. Lactate production by the lungs in acute lung injury. Am J Respir Crit Care Med. 1997;156:1099–1104.
    1. Dondorp AM, Chau TT, Phu NH, Mai NT, Loc PP, Chuong LV, Sinh DX, Taylor A, Hien TT, White NJ, et al. Unidentified acids of strong prognostic significance in severe malaria. Crit Care Med. 2004;32:1683–1688. doi: 10.1097/.
    1. Forsythe SM, Schmidt GA. Sodium bicarbonate for the treatment of lactic acidosis. Chest. 2000;117:260–267. doi: 10.1378/chest.117.1.260.
    1. Davis JW, Parks SN, Kaups KL, Gladen HE, O'Donnell-Nicol S. Admission base deficit predicts transfusion requirements and risk of complications. J Trauma. 1996;41:769–774.
    1. Dunham CM, Siegel JH, Weireter L, Fabian M, Goodarzi S, Guadalupi P, Gettings L, Linberg SE, Very TC. Oxygen debt and metabolic acidemia as quantitative predictors of mortality and the severity of the ischemic insult in hemorrhagic shock. Crit Care Med. 1991;19:231–243.
    1. Smith I, Kumar P, Molloy S, Rhodes A, Newman PJ, Grounds RM, Bennett ED. Base excess and lactate as prognostic indicators for patients admitted to intensive care. Intensive Care Med. 2001;27:74–83. doi: 10.1007/s001340051352.
    1. Kellum JA, Bellomo R, Kramer DJ, Pinsky MR. Etiology of metabolic acidosis during saline resuscitation in endotoxemia. Shock. 1998;9:364–368.
    1. Rehm M, Orth V, Scheingraber S, Kreimeier U, Brechtelsbauer H, Finsterer U. Acid-base changes caused by 5% albumin versus 6% hydroxyethyl starch solution in patients undergoing acute normovolemic hemodilution: a randomized prospective study. Anesthesiol. 2000;93:1174–1183. doi: 10.1097/00000542-200011000-00007.
    1. Scheingraber S, Rehm M, Sehmisch C, Finsterer U. Rapid saline infusion produces hyperchloremic acidosis in patients undergoing gynecologic surgery. Anesthesiol. 1999;90:1265–1270. doi: 10.1097/00000542-199905000-00007.
    1. Waters JH, Miller LR, Clack S, Kim JV. Cause of metabolic acidosis in prolonged surgery. Crit Care Med. 1999;27:2142–2146. doi: 10.1097/00003246-199910000-00011.
    1. Deusch E, Kozek-Langenecker S. Effects of hydroxyethyl starch and calcium on platelet activation. Anesth Analg. 2005;100:1538–1539. doi: 10.1213/01.ANE.0000149041.17161.FF.
    1. Wilkes NJ, Woolf R, Mutch M, Mallett SV, Peachey T, Stephens R, Mythen MG. The effects of balanced versus saline-based hetastarch and crystalloid solutions on acid-base and electrolyte status and gastric mucosal perfusion in elderly surgical patients. Anesth Analg. 2001;93:811–816. doi: 10.1097/00000539-200110000-00003.
    1. Gan TJ, Bennett-Guerrero E, Phillips-Bute B, Wakeling H, Moskowitz DM, Olufolabi Y, Konstadt SN, Bradford C, Glass PS, Machin SJ, et al. Hextend, a physiologically balanced plasma expander for large volume use in major surgery: a randomized phase III clinical trial. Hextend Study Group. Anesth Analg. 1999;88:992–998. doi: 10.1097/00000539-199905000-00005.
    1. Williams EL, Hildebrand KL, McCormick SA, Bedel MJ. The effect of intravenous lactated Ringer's solution versus 0.9% sodium chloride solution on serum osmolality in human volunteers. Anesth Analg. 1999;88:999–1003. doi: 10.1097/00000539-199905000-00006.
    1. Bushinsky DA, Coe FL. Hyperkalemia during acute ammonium chloride acidosis in man. Nephron. 1985;40:38.
    1. Wilcox CS. Regulation of renal blood flow by plasma chloride. J Clin Invest. 1983;71:726–735.
    1. Meakins J, Long C. Oxygen consumption, oxygen debt and lactic acid in circulatory failure. J Clin Invest. 1927;4:273.
    1. Gladden LB. Lactate metabolism: a new paradigm for the third millennium. J Physiol. 2004;558:5–30. doi: 10.1113/jphysiol.2003.058701.
    1. Pittard AJ. Does blood lactate measurement have a role in the management of the critically ill patient? Ann Clin Biochem. 1999;36:401–407.
    1. Cohen R, Woods H. The clinical presentations and classifications of lactic acidosis. In: Cohen R, Woods H, editor. Clinical and Biochemical Aspects of Lactic Acidosis. Boston: Blackwell Scientific Publications; 1976. pp. 40–76.
    1. James JH, Fang CH, Schrantz SJ, Hasselgren PO, Paul RJ, Fischer JE. Linkage of aerobic glycolysis to sodium-potassium transport in rat skeletal muscle. Implications for increased muscle lactate production in sepsis. J Clin Invest. 1996;98:2388–2397.
    1. Gore DC, Jahoor F, Hibbert JM, DeMaria EJ. Lactic acidosis during sepsis is related to increased pyruvate production, not deficits in tissue oxygen availability. Ann Surg. 1996;224:97–102. doi: 10.1097/00000658-199607000-00015.
    1. Levraut J, Ciebiera JP, Chave S, Rabary O, Jambou P, Carles M, Grimaud D. Mild hyperlactatemia in stable septic patients is due to impaired lactate clearance rather than overproduction. Am J Respir Crit Care Med. 1998;157:1021–1026.
    1. Margaria R, Edwards R, Dill D. The possible mechanisms of contracting and paying the oxygen debt and the role of lactic acid in muscular contraction. Am J Physiol. 1933;106:689–715.
    1. Cowley RA, Attar S, LaBrosse E, McLaughlin J, Scanlan E, Wheeler S, Hanashiro P, Grumberg I, Vitek V, Mansberger A, et al. Some significant biochemical parameters found in 300 shock patients. J Trauma. 1969;9:926–938.
    1. Schweizer O, Howland WS. Prognostic significance of high lactate levels. Anesth Analg. 1968;47:383–388.
    1. Weil MH, Afifi AA. Experimental and clinical studies on lactate and pyruvate as indicators of the severity of acute circulatory failure (shock) Circulation. 1970;41:989–1001.
    1. Bakker J, Gris P, Coffernils M, Kahn RJ, Vincent JL. Serial blood lactate levels can predict the development of multiple organ failure following septic shock. Am J Surg. 1996;171:221–226. doi: 10.1016/S0002-9610(97)89552-9.
    1. Abramson D, Scalea TM, Hitchcock R, Trooskin SZ, Henry SM, Greenspan J. Lactate clearance and survival following injury. J Trauma. 1993;35:584–588.
    1. Bakker J, Coffernils M, Leon M, Gris P, Vincent JL. Blood lactate levels are superior to oxygen-derived variables in predicting outcome in human septic shock. Chest. 1991;99:956–962.
    1. Nguyen HB, Rivers EP, Knoblich BP, Jacobsen G, Muzzin A, Ressler JA, Tomlanovich MC. Early lactate clearance is associated with improved outcome in severe sepsis and septic shock. Crit Care Med. 2004;32:1637–1642. doi: 10.1097/01.CCM.0000132904.35713.A7.
    1. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M, for the Early Goal-Directed Therapy Collaborative Group Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345:1368–1377. doi: 10.1056/NEJMoa010307.
    1. Rossi AF, Khan DM, Hannan R, Bolivar J, Zaidenweber M, Burke R. Goal-directed medical therapy and point-of-care testing improve outcomes after congenital heart surgery. Intensive Care Med. 2005;31:98–104. doi: 10.1007/s00134-004-2504-1.
    1. Burns RF, Russell LJ. Ion-selective electrode technology: an overview. Contemp Issues Clin Biochem. 1985;2:121–130.
    1. Fogh-Andersen N, Wimberley PD, Thode J, Siggaard-Andersen O. Determination of sodium and potassium with ion-selective electrodes. Clin Chem. 1984;30:433–436.
    1. Worth HG. A comparison of the measurement of sodium and potassium by flame photometry and ion-selective electrode. Ann Clin Biochem. 1985;22:343–350.
    1. Artiss JD, Zak B. Problems with measurements caused by high concentrations of serum solids. Crit Rev Clin Lab Sci. 1987;25:19–41.
    1. Stone JA, Moriguchi JR, Notto DR, Murphy PE, Dass CJ, Wessels LM, Freier EF. Discrepancies between sodium concentrations measured by the Kodak Ektachem 700 and by dilutional and direct ion-selective electrode analyzers. Clin Chem. 1992;38:2419–2422.
    1. Morimatsu H, Rocktaschel J, Bellomo R, Uchino S, Goldsmith D, Gutteridge G. Comparison of point-of-care versus central laboratory measurement of electrolyte concentrations on calculations of the anion gap and the strong ion difference. Anesthesiol. 2003;98:1077–1084. doi: 10.1097/00000542-200305000-00009.
    1. Lang W, Zander R. The accuracy of calculated base excess in blood. Clin Chem Lab Med. 2002;40:404–410.
    1. Hatherill M, Waggie Z, Purves L, Reynolds L, Argent A. Mortality and the nature of metabolic acidosis in children with shock. Intensive Care Med. 2003;29:286–291. doi: 10.1007/s00134-003-1888-7.
    1. Murray DM, Olhsson V, Fraser JI. Defining acidosis in postoperative cardiac patients using Stewart's method of strong ion difference. Pediatr Crit Care Med. 2004;5:240–245. doi: 10.1097/01.PCC.0000112367.50051.3B.

Source: PubMed

3
Abonneren