Anti-Tumor Effects of Ketogenic Diets in Mice: A Meta-Analysis

Rainer J Klement, Colin E Champ, Christoph Otto, Ulrike Kämmerer, Rainer J Klement, Colin E Champ, Christoph Otto, Ulrike Kämmerer

Abstract

Background: Currently ketogenic diets (KDs) are hyped as an anti-tumor intervention aimed at exploiting the metabolic abnormalities of cancer cells. However, while data in humans is sparse, translation of murine tumor models to the clinic is further hampered by small sample sizes, heterogeneous settings and mixed results concerning tumor growth retardation. The aim was therefore to synthesize the evidence for a growth inhibiting effect of KDs when used as a monotherapy in mice.

Methods: We conducted a Bayesian random effects meta-analysis on all studies assessing the survival (defined as the time to reach a pre-defined endpoint such as tumor volume) of mice on an unrestricted KD compared to a high carbohydrate standard diet (SD). For 12 studies meeting the inclusion criteria either a mean survival time ratio (MR) or hazard ratio (HR) between the KD and SD groups could be obtained. The posterior estimates for the MR and HR averaged over four priors on the between-study heterogeneity τ2 were MR = 0.85 (95% highest posterior density interval (HPDI) = [0.73, 0.97]) and HR = 0.55 (95% HPDI = [0.26, 0.87]), indicating a significant overall benefit of the KD in terms of prolonged mean survival times and reduced hazard rate. All studies that used a brain tumor model also chose a late starting point for the KD (at least one day after tumor initiation) which accounted for 26% of the heterogeneity. In this subgroup the KD was less effective (MR = 0.89, 95% HPDI = [0.76, 1.04]).

Conclusions: There was an overall tumor growth delaying effect of unrestricted KDs in mice. Future experiments should aim at differentiating the effects of KD timing versus tumor location, since external evidence is currently consistent with an influence of both of these factors.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1. Flow chart of the study…
Fig 1. Flow chart of the study selection procedure.
Fig 2. Forest plot of the meta-analysis…
Fig 2. Forest plot of the meta-analysis for the mean survival time ratio.
Values less than 1 indicated a beneficial effect of the KD. The observed effects Eq (1) are the effects extracted from the individual studies, while the Bayesian effect estimates Eq (2) represent the true study effects and are influenced by all the other studies.
Fig 3. Forest plot of the meta-analysis…
Fig 3. Forest plot of the meta-analysis for the hazard ratio.
Values less than 1 indicated a beneficial effect of the KD.

References

    1. Moreschi C. Beziehungen zwischen Ernahrung und Tumorwachstum. Zeitschrift Für Immunitätsforsch 1909;2:651–75.
    1. Jiang W, Zhu Z, Thompson HJ. Dietary energy restriction modulates the activity of AMP-activated protein kinase, Akt, and mammalian target of rapamycin in mammary carcinomas, mammary gland, and liver. Cancer Res 2008;68:5492–9. 10.1158/0008-5472.CAN-07-6721
    1. Lin B-Q, Zeng Z-Y, Yang S-S, Zhuang C-W. Dietary restriction suppresses tumor growth, reduces angiogenesis, and improves tumor microenvironment in human non-small-cell lung cancer xenografts. Lung Cancer 2013;79:111–7. 10.1016/j.lungcan.2012.11.001
    1. Lanza-Jacoby S, Yan G, Radice G, LePhong C, Baliff J, Hess R. Calorie restriction delays the progression of lesions to pancreatic cancer in the LSL-KrasG12D; Pdx-1/Cre mouse model of pancreatic cancer. Exp Biol Med 2013;238:787–97.
    1. Fontana L, Adelaiye RM, Rastelli AL, Miles KM, Ciamporcero E, Longo VD, et al. Dietary protein restriction inhibits tumor growth in human xenograft models. Oncotarget 2013;4:2451–61.
    1. Lamming DW, Cummings NE, Rastelli AL. Restriction of dietary protein decreases mTORC1 in tumors and somatic tissues of a tumor-bearing mouse xenograft model. Oncotarget 2015;6:31233–40. 10.18632/oncotarget.5180
    1. Caso J, Masko EM, Thomas JA II, Poulton SH, Dewhirst M, Pizzo S V., et al. The effect of carbohydrate restriction on prostate cancer tumor growth in a castrate mouse xenograft model. Prostate 2013;73:449–54. 10.1002/pros.22586
    1. Ho VW, Leung K, Hsu A, Luk B, Lai J, Shen SY, et al. A Low Carbohydrate, High Protein Diet Slows Tumor Growth and Prevents Cancer Initiation. Cancer Res 2011;71:4484–93. 10.1158/0008-5472.CAN-10-3973
    1. Lv M, Zhu X, Wang H, Wang F, Guan W. Roles of Caloric Restriction, Ketogenic Diet and Intermittent Fasting during Initiation, Progression and Metastasis of Cancer in Animal Models: A Systematic Review and Meta-Analysis. PLoS One 2014;9:e115147 10.1371/journal.pone.0115147
    1. Hursting SD, Dunlap SM, Ford NA, Hursting MJ, Lashinger LM. Calorie restriction and cancer prevention: a mechanistic perspective. Cancer Metab 2013;1:10 10.1186/2049-3002-1-10
    1. Klement RJ, Fink MK. Dietary and pharmacological modification of the insulin/IGF-1 system: exploiting the full repertoire against cancer. Oncogenesis 2016;5:e193 10.1038/oncsis.2016.2
    1. Lee C, Raffaghello L, Brandhorst S, Safdie FM, Bianchi G, Martin-Montalvo A, et al. Fasting cycles retard growth of tumors and sensitize a range of cancer cell types to chemotherapy. Sci Transl Med 2012;4:124ra27 10.1126/scitranslmed.3003293
    1. Cahill GF. Starvation in man. Clin Endocrinol Metab 1976;5:397–415.
    1. Leone TC, Weinheimer CJ, Kelly DP. A critical role for the peroxisome proliferator-activated receptor alpha (PPARalpha) in the cellular fasting response: the PPARalpha-null mouse as a model of fatty acid oxidation disorders. Proc Natl Acad Sci U S A 1999;96:7473–8.
    1. Klement RJ. Calorie or Carbohydrate Restriction? The Ketogenic Diet as Another Option for Supportive Cancer Treatment. Oncologist 2013;18:1056 10.1634/theoncologist.2013-0032
    1. Klement RJ. Mimicking caloric restriction: what about macronutrient manipulation? A response to Meynet and Ricci. Trends Mol Med 2014;20:471–2. 10.1016/j.molmed.2014.07.001
    1. Peterman MG. The Ketogenic Diet In Epilepsy. JAMA J Am Med Assoc 1925;84:1979.
    1. Zhou W, Mukherjee P, Kiebish MA, Markis WT, Mantis JG, Seyfried TN. The calorically restricted ketogenic diet, an effective alternative therapy for malignant brain cancer. Nutr Metab 2007;4:5.
    1. Abdelwahab MG, Fenton KE, Preul MC, Rho JM, Lynch A, Stafford P, et al. The ketogenic diet is an effective adjuvant to radiation therapy for the treatment of malignant glioma. PLoS One 2012;7:e36197 10.1371/journal.pone.0036197
    1. Poff AM, Ari C, Seyfried TN, Agostino DPD. The Ketogenic Diet and Hyperbaric Oxygen Therapy Prolong Survival in Mice with Systemic Metastatic Cancer. PLoS One 2013;8:e65522 10.1371/journal.pone.0065522
    1. Martuscello RT, Vedam-Mai V, McCarthy DJ, Schmoll ME, Jundi MA, Louviere CD, et al. A Supplemented High-Fat Low-Carbohydrate Diet for the Treatment of Glioblastoma. Clin Cancer Res 2015.
    1. Freedland SJ, Mavropoulos J, Wang A, Darshan M, Demark-Wahnefried W, Aronson WJ, et al. Carbohydrate Restriction, Prostate Cancer Growth, and the Insulin-Like Growth Factor Axis. Prostate 2008;68:11–9.
    1. Mavropoulos JC, Buschemeyer WC 3rd, Tewari AK, Rokhfeld D, Pollak M, Zhao Y, et al. The effects of varying dietary carbohydrate and fat content on survival in a murine LNCaP prostate cancer xenograft model. Cancer Prev Res 2009;2:557–65.
    1. Spruance SL, Reid JE, Grace M, Samore M. Hazard Ratio in Clinical Trials. Antimicrob Agents Chemother 2004;48:2787–92.
    1. Altman DG, Bland JM. How to obtain the confidence interval from a P value. BMJ 2011;343:d2090 10.1136/bmj.d2090
    1. Hooijmans CR, Rovers MM, de Vries RBM, Leenaars M, Ritskes-Hoitinga M, Langendam MW. SYRCLE’ s risk of bias tool for animal studies. BMC Med Res Methodol 2014;14:1–9. 10.1186/1471-2288-14-1
    1. Sutton AJ, Abrams KR. Bayesian methods in meta-analysis and evidence synthesis. Stat Methods Med Res 2001;10:277–303.
    1. Higgins JPT, Thompson SG, Spiegelhalter DJ. A re-evaluation of random-effects meta-analysis. J R Stat Soc A 2009;172:137–59.
    1. Spiegelhalter DJ, Abrams KR, Myles JP. Bayesian Approaches to Clinical Trials and Health-Care Evaluation. 1st ed Chicester, West Sussex: John Wiley & Sons Ltd; 2004.
    1. Seyfried TN, Sanderson TM, El-Abbadi MM, McGowan R, Mukherjee P. Role of glucose and ketone bodies in the metabolic control of experimental brain cancer. Br J Cancer 2003;89:1375–82.
    1. Husain Z, Huang Y, Seth P, Sukhatme VP. Tumor-Derived Lactate Modifies Antitumor Immune Response: Effect on Myeloid-Derived Suppressor Cells and NK Cells. J Immunol 2014;191:1486–95.
    1. Shukla SK, Gebregiworgis T, Purohit V, Chaika N V, Gunda V, Radhakrishnan P, et al. Metabolic reprogramming induced by ketone bodies diminishes pancreatic cancer cachexia. Cancer Metab 2014;2:18 10.1186/2049-3002-2-18
    1. Zhuang Y, Chan DK, Haugrud AB, Miskimins WK. Mechanisms by Which Low Glucose Enhances the Cytotoxicity of Metformin to Cancer Cells Both In Vitro and In Vivo. PLoS One 2014;9:e108444 10.1371/journal.pone.0108444
    1. Gluschnaider U, Hertz R, Ohayon S, Smeir E, Smets M, Pikarsky E, et al. Long chain fatty acid analogs suppress breast tumorigenesis and progression and progression. Cancer Res 2014.
    1. Healy ME, Chow JDY, Byrne FL, Breen DS, Leitinger N, Li C, et al. Dietary effects on liver tumor burden in mice treated with the hepatocellular carcinogen diethylnitrosamine. J Hepatol 2015;62:599–606. 10.1016/j.jhep.2014.10.024
    1. Woolf EC, Curley KL, Liu Q, Turner GH, Charlton J a, Preul MC, et al. The Ketogenic Diet Alters the Hypoxic Response and Affects Expression of Proteins Associated with Angiogenesis, Invasive Potential and Vascular Permeability in a Mouse Glioma Model. PLoS One 2015;10:e0130357 10.1371/journal.pone.0130357
    1. Kim HS, Masko EM, Poulton SL, Kennedy KM, Pizzo S V, Dewhirst MW, et al. Carbohydrate restriction and lactate transporter inhibition in a mouse xenograft model of human prostate cancer. BJU Int 2012;110:1062–9. 10.1111/j.1464-410X.2012.10971.x
    1. Allen BG, Bhatia SK, Buatti JM, Brandt KE, Lindholm KE, Button AM, et al. Ketogenic Diets Enhance Oxidative Stress and Radio-Chemo-Therapy Responses in Lung Cancer Xenografts. Clin Cancer Res 2013;19:3905–13. 10.1158/1078-0432.CCR-12-0287
    1. Morscher RJ, Aminzadeh-Gohari S, Feichtinger RG, Mayr JA, Lang R, Neureiter D, et al. Inhibition of Neuroblastoma Tumor Growth by Ketogenic Diet and/or Calorie Restriction in a CD1-Nu Mouse Model. PLoS One 2015;10:e0129802 10.1371/journal.pone.0129802
    1. Masko EM, Thomas JA 2nd, Antonelli JA, Lloyd JC, Phillips TE, Poulton SH, et al. Low-Carbohydrate Diets and Prostate Cancer: How Low Is “Low Enough”? Cancer Prev Res 2010;3:1124–31.
    1. Poff AM, Ward N, Seyfried TN, Arnold P, D’Agostino DP. Non-Toxic Metabolic Management of Metastatic Cancer in VM Mice: Novel Combination of Ketogenic Diet, Ketone Supplementation, and Hyperbaric Oxygen Therapy. PLoS One 2015;10:e0127407 10.1371/journal.pone.0127407
    1. Otto C, Kaemmerer U, Illert B, Muehling B, Pfetzer N, Wittig R, et al. Growth of human gastric cancer cells in nude mice is delayed by a ketogenic diet supplemented with omega-3 fatty acids and medium-chain triglycerides. BMC Cancer 2008;8:122 10.1186/1471-2407-8-122
    1. Stafford P, Abdelwahab MG, Kim DY, Preul MC, Rho JM, Scheck AC. The ketogenic diet reverses gene expression patterns and reduces reactive oxygen species levels when used as an adjuvant therapy for glioma. Nutr Metab 2010;7:74.
    1. Maurer GD, Brucker DP, Bähr O, Harter PN, Hattingen E, Walenta S, et al. Differential utilization of ketone bodies by neurons and glioma cell lines: a rationale for ketogenic diet as experimental glioma therapy. BMC Cancer 2011;11:315 10.1186/1471-2407-11-315
    1. Hao G, Chen Y-S, He D-M, Wang H-Y, Wu G-H, Zhang B. Growth of Human Colon Cancer Cells in Nude Mice is Delayed by Ketogenic Diet With or Without Omega-3 Fatty Acids and Medium-chain Triglycerides. Asian Pac J Cancer Prev 2015;16:2061–8.
    1. Dang MT, Wehrli S, Dang C V, Curran T. The Ketogenic Diet Does Not Affect Growth of Hedgehog Pathway Medulloblastoma in Mice. PLoS One 2015;10:e0133633 10.1371/journal.pone.0133633
    1. Rieger J, Bähr O, Maurer GD, Hattingen E, Franz K, Brucker D, et al. ERGO: A pilot study of ketogenic diet in recurrent glioblastoma. Int J Oncol 2014;44:1843–52. 10.3892/ijo.2014.2382
    1. Van Alstyne EVN, Beebe SP. Diet studies in transplantable Tumors—I. The Effect of non-carbohydrate DIet upon the Growth of transplantable Sarcoma in Rats. J Med Res 1913;29:217–32.
    1. Schwartz K, Chang HT, Nikolai M, Pernicone J, Rhee S, Olson K, et al. Treatment of glioma patients with ketogenic diets: report of two cases treated with an IRB-approved energy-restricted ketogenic diet protocol and review of the literature. Cancer Metab 2015;3:3 10.1186/s40170-015-0129-1
    1. Meidenbauer JJ, Mukherjee P, Seyfried TN. The glucose ketone index calculator: a simple tool to monitor therapeutic efficacy for metabolic management of brain cancer. Nutr Metab (Lond) 2015;12:12.
    1. Borghjid S, Feinman RD. Response of C57Bl/6 mice to a carbohydrate-free diet. Nutr Metab 2012;9:69.
    1. Lai M, Chandrasekera PC, Barnard ND. You are what you eat, or are you? The challenges of translating high-fat-fed rodents to human obesity and diabetes. Nutr Diabetes 2014;4:e135 10.1038/nutd.2014.30
    1. Mahoney LB, Denny CA, Seyfried TN. Calorie restriction in C57BL/6J mice mimics therapeutic fasting in humans. Lipids Health Dis 2006;5:13

Source: PubMed

3
Abonneren