Effectiveness of spinal cord stimulation for painful camptocormia with Pisa syndrome in Parkinson's disease: a case report

Hisanao Akiyama, Saki Nukui, Masashi Akamatu, Yasuhiro Hasegawa, Osamu Nishikido, Soichiro Inoue, Hisanao Akiyama, Saki Nukui, Masashi Akamatu, Yasuhiro Hasegawa, Osamu Nishikido, Soichiro Inoue

Abstract

Background: Spinal cord stimulation (SCS) has recently been reported to be effective for truncal postural abnormalities such as camptocormia and Pisa syndrome in Parkinson's disease. In this case report, we describe a case of a woman with Parkinson's disease in whom SCS was effective for painful camptocormia with Pisa syndrome.

Case presentation: A 65-year-old woman was admitted to our hospital because of painful camptocormia. She had noticed resting tremor in the left upper limb and aprosody at 48 years of age. She was diagnosed as having Parkinson's disease (Hoehn & Yahr stage 1) at 53 years of age. Cabergoline was started during that same year, with subsequent addition of selegiline hydrochloride; the symptoms of parkinsonism disappeared. Wearing-off occurred when she was 57 years old, 3 years after starting carbidopa/levodopa, and truncal postural abnormalities-painful camptocormia with Pisa syndrome to the right-appeared at 58 years of age. These symptoms worsened despite adjustment of her oral medications, and deep brain stimulation (DBS) was performed when she was 60 years old. The truncal postural abnormalities improved after DBS, and she could travel abroad at 61 years of age. However, from 62 years of age, painful camptocormia with Pisa syndrome to the right reappeared. The pain was unsuccessfully treated with oral analgesics, radiofrequency coagulation of the dorsal and medial branches of the lumbar spinal nerve, and lumbar epidural block. Finally, SCS was performed for the pain relief. The pain disappeared immediately after SCS and her posture then gradually improved. Unified Parkinson's Disease Rating Scale score improved from 48 to 34 points and Timed Up and Go Test improved from 15 s to 7 s after SCS.

Conclusions: This case suggests that SCS may be effective for improving painful truncal postural abnormalities and motor complications of Parkinson's disease. Pain relief or a direct effect on the central nervous system by SCS was considered to explain the alleviation of these symptoms.

Keywords: Camptocormia; Painful truncal postural abnormality; Parkinson’s disease; Pisa syndrome; Spinal cord stimulation.

Conflict of interest statement

Ethics approval and consent to participate

The Human Research Ethics Committee of St. Marianna University Hospital provided a waiver considering that approval is not necessary for a single case report. Written informed consent was obtained from the patient.

Consent for publication

Written informed consent for publication of clinical details and images was obtained from the patient. A copy of the consent form is available for review by the journal editor.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Painful camptocormia and SCS device. The patient’s camptocormia with Pisa syndrome to the right (top left). Spinal X-ray revealed mild degenerative lumbar spondylosis (top right). For SCS, a PrimeAdvanced SureScan® MRI pulse generator was implanted and a pair of Vectris SureScan® MRI 1 × 8 Compact leads were inserted percutaneously
Fig. 2
Fig. 2
Improvement of painful camptocormia with Pisa syndrome after SCS. Painful camptocormia and Pisa syndrome to the right improved gradually after SCS

References

    1. Seki M, Takahashi K, Koto A, Mihara B, Morita Y, Isozumi K, Ohta K, Muramatsu K, Gotoh J, Yamaguchi K, Tomita Y, Sato H, Nihei Y, Iwasawa S, Suzuki N, on behalf of Keio Parkinson's Disease Database. Camptocormia in Japanese patients with Parkinson's disease: a multicenter study. Mov Disord. 2011;26(14):2567–71.
    1. Fil A, Cano-de-la-Cuerda R, Muñoz-Hellín E, Vela L, Ramiro-González M, Fernández-de-Las-Peñas C. Pain in Parkinson disease: a review of the literature. Parkinsonism Relat Disord. 2013;19(3):285–294; discussion 285. doi:10.1016/j.parkreldis.2012.11.009.
    1. Agari T, Date I. Spinal cord stimulation for the treatment of abnormal posture and gait disorder in patients with Parkinson's disease. Neurol Med Chir (Tokyo). 2012;52:470–4.
    1. Nishioka K, Nakajima M. Beneficial therapeutic effects of spinal cord stimulation in advanced cases of Parkinson's disease with intractable chronic pain: a case series. Neuromodulation. 2015;18:751–3.
    1. De Andrade EM, Ghilardi MG, Cury RG, Barbosa ER, Fuentes R, Teixeira MJ, Fonoff ET. Spinal cord stimulation for Parkinson's disease: a systematic review. Neurosurg Rev. 2016 ;39(1):27–35; discussion 35. doi:10.1007/s10143-015-0651-1.
    1. Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinic-pathological study of 100 cases. J Neurol Neurosurg Psychiatry. 1992;55:181–4.
    1. Doherty KM, van de Warrenburg BP, Peralta MC, Silveria-Moriyama L, Azulay J-P, Gershanik OS, Bloem BR. Postural deformities in Parkinson’s disease. Lancet Neurol. 2011;10(6):538–49. doi:10.1016/S1474-4422(11)70067-9.
    1. Azher SN, Jankovic J. Camptocormia: pathogenesis, classification, and response to therapy. Neurol. 2005;65(3):355–9.
    1. Ho B, Prakash R, Morgan JC, Sethi KD. A case of levodopa-responsive camptocormia associated with advanced Parkinson's disease. Nat Clin Pract Neurol. 2007;3(9):526–30.
    1. Finsterer J, Strobl W. Presentation, etiology, diagnosis, and management of camptocormia. Eur Neurol. 2010;64(1):1–8. doi:10.1159/000314897.
    1. Fukaya C, Otaka T, Obuchi T, Kano T, Nagaoka T, Kobayashi K, Oshima H, Yamamoto T, Katayama Y. Pallidal high-frequency deep brain stimulation for camptocormia: an experience of three cases. Acta Neurochir Suppl. 2006;99:25–8.
    1. Melzack R, Wall PD. Pain mechanisms: a new theory. Science. 1965;150:971–9.
    1. Thang TC, Janik JJ, Grill WM. Mechanisms and models of spinal cord stimulation for the treatment of neuropathic pain. Brain Res. 2014;1569:19–31. doi:10.1016/j.brainres.2014.04.039.
    1. Larson SJ, Sances A Jr, Riegal DH, Meyer GA, Dallmann DE, Swiontek T. Neurophysiological effects of dorsal column stimulation in man and monkey. J Neurophysiol. 1974;41:217–23.
    1. Campbell JN. Examination of possible mechanisms by which stimulation of the spinal cord in man relieves pain. Appl Neurophysiol. 1981;44:181–6.
    1. Meyerson BA, Herrregodts P, Linderoth B, Ren B. An experimental animal model of spinal cord stimulation for pain. Stereotact Funct Neurosurg. 1994;62:256–62.
    1. Duggan AW, Foong FW. Bicuculline and spinal inhibition produced by dorsal column stimulation in the cat. Pain. 1985;22:249–59.
    1. Stiller CO, Cui JG, O'Connor WT, Brodin E, Meyerson BA, Linderoth B. Release of GABA in the dorsal horn and suppression of tactile allodynia by spinal cord stimulation in mononeuropathic rats. Neurosurgery. 1996;39:367–75.
    1. Cui JG, O'Connor WT, Ungerstedt U, Linderoth B, Meyerson BA. Spinal cord stimulation attenuates augmented dorsal horn release of excitatory amino acids in mononeuropathy via a GABAergic mechanism. Pain. 1997;73:87–95.
    1. Fuentes R, Petersson P, Nicolelis MA. Restoration of locomotive function in Parkinson's disease by spinal cord stimulation: mechanistic approach. Eur J Neurosci. 2010;32(7):1100–8. doi:10.1111/j.1460-9568.2010.07417.x.
    1. Hassan S, Amer S, Alwaki A, Elborno A. A patient with Parkinson's disease benefits from spinal cord stimulation. J Clin Neurosci. 2013 Aug;20(8):1155–6. doi:10.1016/j.jocn.2012.08.018.
    1. Brys I, Bobela W, Schneider BL, Aebischer P, Fuentes R. Spinal cord stimulation improves forelimb use in an alpha-synuclein animal model of Parkinson's disease. Int J Neurosci. 2017;127(1):28–36.

Source: PubMed

3
Abonneren