The influence of High Dose Spinal Cord Stimulation on the descending pain modulatory system in patients with failed back surgery syndrome

Sander De Groote, Lisa Goudman, Ronald Peeters, Bengt Linderoth, Peter Van Schuerbeek, Stefan Sunaert, Mats De Jaeger, Ann De Smedt, José De Andrés, Maarten Moens, Sander De Groote, Lisa Goudman, Ronald Peeters, Bengt Linderoth, Peter Van Schuerbeek, Stefan Sunaert, Mats De Jaeger, Ann De Smedt, José De Andrés, Maarten Moens

Abstract

  1. For the first time, the influence of HD-SCS on the descending pathways was tested.

  2. rsfMRI and functional connectivity were used to evaluate this a priori hypothesis.

  3. HD-SCS does influence the descending pain modulatory system.

Conflict of interest statement

S. De Groote PT: no conflicts of interest to disclose L. Goudman MSc PhD: no conflicts of interest to disclose R. Peeters MSc PhD: no conflicts of interest to disclose B. Linderorth MD PhD: Bengt Linderoth serves as a consultant to Medtronic, St Jude, Boston Sci and Elekta AB. P. Vanschuerbeek MSc PhD: no conflicts of interest to disclose S. Sunaert MD PhD: no conflicts of interest to disclose M. De Jaeger PT: no conflicts of interest to disclose A. De Smedt MD PhD: no conflicts of interest to disclose J. De Andrés MD PhD FIPP EDRA EDPM: no conflicts of interest to disclose M. Moens MD PhD: Maarten Moens has received speaker fees from Medtronic and Nevro Corp. There is no other conflict of interests to declare.

Figures

Fig. 1
Fig. 1
Study protocol. Patients with FBSS were enrolled 1 month before SCS trial implantation and were followed up for 3 months after permanent implantation. Every patient underwent a neuroimaging protocol at baseline and during HD-SCS. Abbreviations. AW: Actiwatch, HD-SCS: High Dose Spinal Cord Stimulation, Q:questionnaires, V: visit.
Fig. 2
Fig. 2
Boxplots of the clinical results of NRS, PCS and PSQI scores and actigraphy variables of all patients. Gray and green boxes are representing respectively baseline data and data after 3 months of SCS. Abbreviations: NRS: numeric rating scale, PCS: pain catastrophizing scale, PSQI: Pittsburgh sleep quality index.
Fig. 3
Fig. 3
ROI-ROI matrices, visualization of functional connectivity in resting state networks. A) Differences of the functional connectivity strength in ROI-pairs between HD-SCS vs baseline in all 11 patients are shown in the ROI-ROI matrices. B) The significant results (p

Fig. 4

Effect size of functional connectivity…

Fig. 4

Effect size of functional connectivity in ROI-pairs before SCS and during HD-SCS. During…

Fig. 4
Effect size of functional connectivity in ROI-pairs before SCS and during HD-SCS. During HD-SCS, there is a significant increase in functional connectivity strength in 3 ROI-pairs (mFG left – mFG right, mFG left – RVM, mFG right – AI left) and a decrease in ACC – AI right strength. *: p<0.05. Abbreviations. ACC: anterior cingulate cortex, Al: anterior insula, mFG: middle frontal gyrus, RVM: rostro ventromedial medulla.
Fig. 4
Fig. 4
Effect size of functional connectivity in ROI-pairs before SCS and during HD-SCS. During HD-SCS, there is a significant increase in functional connectivity strength in 3 ROI-pairs (mFG left – mFG right, mFG left – RVM, mFG right – AI left) and a decrease in ACC – AI right strength. *: p<0.05. Abbreviations. ACC: anterior cingulate cortex, Al: anterior insula, mFG: middle frontal gyrus, RVM: rostro ventromedial medulla.

References

    1. Ahmed S., Plazier M., Ost J., Stassijns G., Deleye S., Ceyssens S., Dupont P., Stroobants S., Staelens S., De Ridder D., Vanneste S. The effect of occipital nerve field stimulation on the descending pain pathway in patients with fibromyalgia: a water PET and EEG imaging study. BMC Neurol. 2018;18:191.
    1. Ahmed, S., Plazier, M., Ost, J., Stassijns, G., Deleye, S., Ceyssens, S., Dupont, P., Stroobants, S., Staelens, S., De Ridder, D., Vanneste, S., 2018b. The effect of occipital nerve field stimulation on the descending pain pathway in patients with fibromyalgia: a water PET and EEG imaging study. 18, 191.
    1. Ahmed S., Yearwood T., De Ridder D., Vanneste S. Burst and high frequency stimulation: underlying mechanism of action. Expert Rev. Med. Devices. 2018;15:61–70.
    1. Alsaadi S.M., McAuley J.H., Hush J.M., Bartlett D.J., Henschke N., Grunstein R.R., Maher C.G. Detecting insomnia in patients with low back pain: accuracy of four self-report sleep measures. BMC Musculoskelet. Disord. 2013;14:196.
    1. Alsaadi S.M., McAuley J.H., Hush J.M., Lo S., Bartlett D.J., Grunstein R.R., Maher C.G. The bidirectional relationship between pain intensity and sleep disturbance/quality in patients with low back pain. Clin. J. Pain. 2014;30:755–765.
    1. Apkarian, A.V., 2015. The brain adapting with pain: contribution of neuroimaging technology to pain mechanisms. IASP Press.
    1. Baeken C., Marinazzo D., Van Schuerbeek P., Wu G.R., De Mey J., Luypaert R., De Raedt R. Left and right amygdala - mediofrontal cortical functional connectivity is differentially modulated by harm avoidance. PLoS ONE. 2014;9:e95740.
    1. Behzadi Y., Restom K., Liau J., Liu T.T. A component based noise correction method (CompCor) for bold and perfusion based fMRI. Neuroimage. 2007;37:90–101.
    1. Beissner F. Functional MRI of the brainstem: common problems and their solutions. Clin. Neuroradiol. 2015;25:251–257. Suppl 2.
    1. Bentley L.D., Duarte R.V., Furlong P.L., Ashford R.L., Raphael J.H. Brain activity modifications following spinal cord stimulation for chronic neuropathic pain: a systematic review. Eur. J. Pain. 2016;20:499–511.
    1. Boly M., Balteau E., Schnakers C., Degueldre C., Moonen G., Luxen A., Phillips C., Peigneux P., Maquet P., Laureys S. Baseline brain activity fluctuations predict somatosensory perception in humans. Proc. Natl. Acad. Sci. U. S. A. 2007;104:12187–12192.
    1. Brietzke A.P., Antunes L.C., Carvalho F., Elkifury J., Gasparin A., Sanches P.R.S., da Silva Junior D.P., Dussan-Sarria J.A., Souza A., da Silva Torres I.L., Fregni F., Md W.C. Potency of descending pain modulatory system is linked with peripheral sensory dysfunction in fibromyalgia: an exploratory study. Medicine (Baltimore) 2019;98:e13477.
    1. Brooks, J.C., Davies, W.E., Pickering, A.E., 2017. Resolving the brainstem contributions to attentional analgesia. 37, 2279–2291.
    1. Bushnell M.C., Ceko M., Low L.A. Cognitive and emotional control of pain and its disruption in chronic pain. Nat. Rev. Neurosci. 2013;14:502–511.
    1. Chen Z., Huang Q., Yang F., Shi C., Sivanesan E., Liu S., Chen X., Sarma S.V., Vera-Portocarrero L.P., Linderoth B., Raja S.N., Guan Y. The impact of electrical charge delivery on inhibition of mechanical hypersensitivity in nerve-injured rats by sub-sensory threshold spinal cord stimulation. Neuromodulation. 2018
    1. da Graca-Tarrago M., Lech M., Angoleri L.D.M., Santos D.S., Deitos A., Brietzke A.P., Torres I.L., Fregni F., Caumo W. Intramuscular electrical stimulus potentiates motor cortex modulation effects on pain and descending inhibitory systems in knee osteoarthritis: a randomized, factorial, sham-controlled study. J. Pain Res. 2019;12:209–221.
    1. De Felice M., Sanoja R., Wang R., Vera-Portocarrero L., Oyarzo J., King T., Ossipov M.H., Vanderah T.W., Lai J., Dussor G.O., Fields H.L., Price T.J., Porreca F. Engagement of descending inhibition from the rostral ventromedial medulla protects against chronic neuropathic pain. Pain. 2011;152:2701–2709.
    1. De Jaeger M., van Hooff R.J., Goudman L., Valenzuela Espinoza A., Brouns R., Puylaert M., Duyvendak W., Moens M. High-density in spinal cord stimulation: virtual expert registry (DISCOVER): study protocol for a prospective observational trial. Anesth. Pain Med. 2017;7:e13640.
    1. De Ridder D., Vanneste S. Burst and tonic spinal cord stimulation: different and common brain mechanisms. Neuromodulation. 2016;19:47–59.
    1. Denk F., McMahon S.B., Tracey I. Pain vulnerability: a neurobiological perspective. Nat. Neurosci. 2014;17:192–200.
    1. Eadie J., van de Water A.T., Lonsdale C., Tully M.A., van Mechelen W., Boreham C.A., Daly L., McDonough S.M., Hurley D.A. Physiotherapy for sleep disturbance in people with chronic low back pain: results of a feasibility randomized controlled trial. Arch. Phys. Med. Rehabil. 2013;94:2083–2092.
    1. Farrar J.T., Young J.P., Jr., LaMoreaux L., Werth J.L., Poole R.M. Clinical importance of changes in chronic pain intensity measured on an 11-point numerical pain rating scale. Pain. 2001;94:149–158.
    1. Gauriau C., Bernard J.F. Pain pathways and parabrachial circuits in the rat. Exp. Physiol. 2002;87:251–258.
    1. Goksan, S., Baxter, L., 2018. The influence of the descending pain modulatory system on infant pain-related brain activity. 7.
    1. Goksan S., Baxter L., Moultrie F., Duff E., Hathway G., Hartley C., Tracey I., Slater R. The influence of the descending pain modulatory system on infant pain-related brain activity. Elife. 2018;7
    1. Goudman L., Brouns R., De Groote S., De Jaeger M., Huysmans E., Forget P., Moens M. Association between spinal cord stimulation and top-down nociceptive inhibition in people with failed back surgery syndrome: a cohort study. Phys. Ther. 2019;99(7):915.
    1. Hamm-Faber T.E., Gultuna I., van Gorp E.J., Aukes H. High-dose spinal cord stimulation for treatment of chronic low back pain and leg pain in patients with FBSS, 12-month results: a prospective pilot study. Neuromodulation. 2019
    1. Helmstetter F.J., Tershner S.A., Poore L.H., Bellgowan P.S. Antinociception following opioid stimulation of the basolateral amygdala is expressed through the periaqueductal gray and rostral ventromedial medulla. Brain Res. 1998;779:104–118.
    1. Hsieh J.C., Belfrage M., Stone-Elander S., Hansson P., Ingvar M. Central representation of chronic ongoing neuropathic pain studied by positron emission tomography. Pain. 1995;63:225–236.
    1. Hughes C.M., McCullough C.A., Bradbury I., Boyde C., Hume D., Yuan J., Quinn F., McDonough S.M. Acupuncture and reflexology for insomnia: a feasibility study. Acupunct. Med. 2009;27:163–168.
    1. Kishima H., Saitoh Y., Oshino S., Hosomi K., Ali M., Maruo T., Hirata M., Goto T., Yanagisawa T., Sumitani M., Osaki Y., Hatazawa J., Yoshimine T. Modulation of neuronal activity after spinal cord stimulation for neuropathic pain; H(2)15O PET study. Neuroimage. 2010;49:2564–2569.
    1. Kong J.T., MacIsaac B., Cogan R., Ng A., Law C.S.W., Helms J., Schnyer R., Karayannis N.V., Kao M.C., Tian L., Darnall B.D., Gross J.J., Mackey S., Manber R. Central mechanisms of real and sham electroacupuncture in the treatment of chronic low back pain: study protocol for a randomized, placebo-controlled clinical trial. Trials. 2018;19:685.
    1. Koyama M.S., O’Connor D., Shehzad Z., Milham M.P. Differential contributions of the middle frontal gyrus functional connectivity to literacy and numeracy. Sci. Rep. 2017;7:17548.
    1. Lame I.E., Peters M.L., Kessels A.G., Van Kleef M., Patijn J. Test–retest stability of the pain catastrophizing scale and the tampa scale for kinesiophobia in chronic pain over a longer period of time. J. Health Psychol. 2008;13:820–826.
    1. Linderoth B., Foreman R.D. Physiology of spinal cord stimulation: review and update. Neuromodulation. 1999;2:150–164.
    1. Linderoth B., Foreman R.D. Conventional and novel spinal stimulation algorithms: hypothetical mechanisms of action and comments on outcomes. Neuromodulation. 2017;20:525–533.
    1. Linderoth B., Gazelius B., Franck J., Brodin E. Dorsal column stimulation induces release of serotonin and substance P in the cat dorsal horn. Neurosurgery. 1992;31:289–296. discussion 296-287.
    1. Linnman C., Moulton E.A., Barmettler G., Becerra L., Borsook D. Neuroimaging of the periaqueductal gray: state of the field. Neuroimage. 2012;60:505–522.
    1. Millan M.J. Descending control of pain. Prog. Neurobiol. 2002;66:355–474.
    1. Miller J.P., Eldabe S., Buchser E., Johanek L.M., Guan Y., Linderoth B. Parameters of spinal cord stimulation and their role in electrical charge delivery: a review. Neuromodulation. 2016;19:373–384.
    1. Moens M., Marien P., Brouns R., Poelaert J., De Smedt A., Buyl R., Droogmans S., Van Schuerbeek P., Sunaert S., Nuttin B. Spinal cord stimulation modulates cerebral neurobiology: a proton magnetic resonance spectroscopy study. Neuroradiology. 2013;55:1039–1047.
    1. Moens M., Sunaert S., Marien P., Brouns R., De Smedt A., Droogmans S., Van Schuerbeek P., Peeters R., Poelaert J., Nuttin B. Spinal cord stimulation modulates cerebral function: an fMRI study. Neuroradiology. 2012;54:1399–1407.
    1. Mollayeva T., Thurairajah P., Burton K., Mollayeva S., Shapiro C.M., Colantonio A. The Pittsburgh sleep quality index as a screening tool for sleep dysfunction in clinical and non-clinical samples: a systematic review and meta-analysis. Sleep Med. Rev. 2016;25:52–73.
    1. Nagamachi S., Fujita S., Nishii R., Futami S., Wakamatsu H., Yano T., Kodama T., Tamura S., Kunitake A., Uno T., Takasaki M. Alteration of regional cerebral blood flow in patients with chronic pain–evaluation before and after epidural spinal cord stimulation. Ann. Nucl. Med. 2006;20:303–310.
    1. Neblett R., Cohen H., Choi Y., Hartzell M.M., Williams M., Mayer T.G., Gatchel R.J. The central sensitization inventory (CSI): establishing clinically significant values for identifying central sensitivity syndromes in an outpatient chronic pain sample. J. Pain. 2013;14:438–445.
    1. Osman A., Barrios F.X., Kopper B.A., Hauptmann W., Jones J., O’Neill E. Factor structure, reliability, and validity of the pain catastrophizing scale. J. Behav. Med. 1997;20:589–605.
    1. Ossipov M.H., Dussor G.O., Porreca F. Central modulation of pain. J. Clin. Invest. 2010;120:3779–3787.
    1. Ossipov M.H., Morimura K., Porreca F. Descending pain modulation and chronification of pain. Curr. Opin. Support. Palliat. Care. 2014;8:143–151.
    1. Power J.D., Barnes K.A., Snyder A.Z., Schlaggar B.L., Petersen S.E. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage. 2012;59:2142–2154.
    1. Provenzano D.A., Rebman J., Kuhel C., Trenz H., Kilgore J. The efficacy of high-density spinal cord stimulation among trial, implant, and conversion patients: a retrospective case series. Neuromodulation. 2017;20:654–660.
    1. Ramineni T., Prusik J., Patel S., Lange S., Haller J., Fama C., Argoff C., Pilitsis J. The impact of spinal cord stimulation on sleep patterns. Neuromodulation. 2016;19:477–481.
    1. Saade N.E., Tabet M.S., Atweh S.F., Jabbur S.J. Modulation of segmental mechanisms by activation of a dorsal column brainstem spinal loop. Brain Res. 1984;310:180–184.
    1. Sankarasubramanian V., Harte S.E., Chiravuri S., Harris R.E., Brummett C.M., Patil P.G., Clauw D.J., Lempka S.F. Objective measures to characterize the physiological effects of spinal cord stimulation in neuropathic pain: a literature review. Neuromodulation. 2018
    1. Schuh-Hofer S., Fischer J., Unterberg A., Treede R.D., Ahmadi R. Spinal cord stimulation modulates descending pain inhibition and temporal summation of pricking pain in patients with neuropathic pain. Acta Neurochir. (Wien) 2018;160:2509–2519.
    1. Schweinhardt P., Bushnell M.C. Pain imaging in health and disease–how far have we come? J. Clin. Invest. 2010;120:3788–3797.
    1. Segerdahl A.R., Themistocleous A.C., Fido D., Bennett D.L., Tracey I. A brain-based pain facilitation mechanism contributes to painful diabetic polyneuropathy. Brain. 2018;141:357–364.
    1. Sevel L.S., Letzen J.E., Staud R., Robinson M.E. Interhemispheric dorsolateral prefrontal cortex connectivity is associated with individual differences in pain sensitivity in healthy controls. Brain Connect. 2016;6:357–364.
    1. Shehzad Z., Kelly A.M., Reiss P.T., Gee D.G., Gotimer K., Uddin L.Q., Lee S.H., Margulies D.S., Roy A.K., Biswal B.B., Petkova E., Castellanos F.X., Milham M.P. The resting brain: unconstrained yet reliable. Cereb. Cortex. 2009;19:2209–2229.
    1. Song Z., Ultenius C., Meyerson B.A., Linderoth B. Pain relief by spinal cord stimulation involves serotonergic mechanisms: an experimental study in a rat model of mononeuropathy. Pain. 2009;147:241–248.
    1. Stiller C.O., Linderoth B., O’Connor W.T., Franck J., Falkenberg T., Ungerstedt U., Brodin E. Repeated spinal cord stimulation decreases the extracellular level of gamma-aminobutyric acid in the periaqueductal gray matter of freely moving rats. Brain Res. 1995;699:231–241.
    1. Sullivan, M.J.L., 1995. The pain catstrophizing scale: user manual. p. 36.
    1. Sullivan M.J.L., Bishop S.R., Pivik J. The pain catastrophizing scale: development and validation. Psychol. Assess. 1995;7:524–532.
    1. Sweet J., Badjatiya A., Tan D., Miller J. Paresthesia-Free high-density spinal cord stimulation for postlaminectomy syndrome in a prescreened population: a prospective case series. Neuromodulation. 2016;19:260–267.
    1. Tracey I. Getting the pain you expect: mechanisms of placebo, nocebo and reappraisal effects in humans. Nat. Med. 2010;16:1277–1283.
    1. Tracey I., Mantyh P.W. The cerebral signature for pain perception and its modulation. Neuron. 2007;55:377–391.
    1. Vallejo R., Bradley K., Kapural L. Spinal cord stimulation in chronic pain: mode of action. Spine (Phila Pa 1976) 2017;42:S53–S60. Suppl 14.
    1. Van de Water A.T., Holmes A., Hurley D.A. Objective measurements of sleep for non-laboratory settings as alternatives to polysomnography–a systematic review. J. Sleep Res. 2011;20:183–200.
    1. Whitfield-Gabrieli S., Nieto-Castanon A. Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2012;2:125–141.
    1. Wille F., Breel J.S., Bakker E.W., Hollmann M.W. Altering conventional to high density spinal cord stimulation: an energy dose-response relationship in neuropathic pain therapy. Neuromodulation. 2017;20:71–80.
    1. You H.J., Lei J., Sui M.Y., Huang L., Tan Y.X., Tjolsen A., Arendt-Nielsen L. Endogenous descending modulation: spatiotemporal effect of dynamic imbalance between descending facilitation and inhibition of nociception. J. Physiol. (Lond.) 2010;588:4177–4188.
    1. Youssef A.M., Macefield V.G., Henderson L.A. Pain inhibits pain; human brainstem mechanisms. Neuroimage. 2016;124:54–62.
    1. Yu R., Gollub R.L., Spaeth R., Napadow V., Wasan A., Kong J. Disrupted functional connectivity of the periaqueductal gray in chronic low back pain. Neuroimage Clin. 2014;6:100–108.
    1. Zhuo M., Gebhart G.F. Biphasic modulation of spinal nociceptive transmission from the medullary raphe nuclei in the rat. J. Neurophysiol. 1997;78:746–758.

Source: PubMed

3
Abonneren