Patient pain during intravitreal injections under topical anesthesia: a systematic review

Helio Francisco Shiroma, Augusto Key Karazawa Takaschima, Michel Eid Farah, Ana Luisa Höfling-Lima, Graziela de Luca Canto, Roberto Henrique Benedetti, Eduardo Buchele Rodrigues, Helio Francisco Shiroma, Augusto Key Karazawa Takaschima, Michel Eid Farah, Ana Luisa Höfling-Lima, Graziela de Luca Canto, Roberto Henrique Benedetti, Eduardo Buchele Rodrigues

Abstract

Background: Intravitreal injection (IVI) is a very common vitreoretinal procedure, and multiple injections are often required per patient. This systematic review was conducted to evaluate the effectiveness of various local anesthetic techniques in reducing pain during injection.

Methods: A systematic review was conducted based on searches of Cochrane, LILACS, PubMed, Scopus, Web of Science, and the gray literature (Google Scholar). The end search date was February 19, 2016, across all databases. We classified pain by converting visual analog scale (VAS) scores (0-100 mm) into Jensen's classification levels: 0-4, no pain; 5-44, mild pain; 45-74, moderate pain; and 75-100, severe pain. An intervention was considered clinically significant when pain score change was >12 mm on a 100-mm scale.

Results: Eight studies out of 23 met the eligibility criteria. The total number of patients was 847. Most studies (5/8 [62.5%]) were at unclear risk of bias because of unclear randomization, thus providing only moderate evidence to this review. The anesthetic techniques included eye drops with proparacaine, tetracaine or cocaine, a lidocaine pledget or gel, and subconjunctival injection of 2% lidocaine or 0.75% levobupivacaine. No study comprised all of the techniques. Pain was mild (VAS scores, 5-44 mm) regardless of anesthetic technique. A clinically significant intervention (pain score change >12 mm) was found for only one study comparing proparacaine drops, lidocaine gel, and subconjunctival lidocaine; in that study, a subconjunctival injection of 2% lidocaine provided the greatest pain reduction. A meta-analysis was not possible due to study heterogeneity.

Conclusions: Patient pain during IVI under topical anesthesia is mild regardless of anesthetic technique. A subconjunctival injection of 2% lidocaine could be an option for highly sensitive patients. However, with moderate level of evidence, no single anesthetic technique could be defined as the best option for IVI.

Figures

Fig. 1
Fig. 1
Flow Diagram of literature search and selection criteria. (adapted from PRISMA)
Fig. 2
Fig. 2
Risk of bias graph: review authors’ judgments about each risk of bias item presented as percentages across all included studies (n = 8)
Fig. 3
Fig. 3
Risk of bias summary: review authors’ judgments about each risk of bias for each included study

References

    1. Shiroma HF, Rodrigues EB, Farah ME, Penha FM, Lorenzo JC, Grumann A, et al. Safety and efficacy of various concentrations of topical lidocaine gel for intravitreal injection. Expert Opin Drug Saf. 2014;13(10):1299–1303. doi: 10.1517/14740338.2014.947261.
    1. Davis MJ, Pollack JS, Shott S. Comparison of topical anesthetics for intravitreal injections: a randomized clinical trial. Retina. 2012;32(4):701–705. doi: 10.1097/IAE.0b013e31822f27ca.
    1. Gambrell J, Schaal S. Topical anesthesia for intravitreal injection. Expert Opin Drug Deliv. 2012;9(7):731–733. doi: 10.1517/17425247.2012.685156.
    1. Tewari A, Shah GK, Dhalla MS, Blinder KJ. Surface anesthesia for office-based retinal procedures. Retin J Retin Vitr Dis. 2007;27(6):804–805.
    1. Rifkin L, Schaal S. Factors affecting patients’ pain intensity during in office intravitreal injection procedure. Retin J Retin Vitr Dis. 2012;32(4):696–700.
    1. Andrade GC, Carvalho AC, de Andrade GC, Maia de Carvalho AC, de Carvalho ACM. Comparison of 3 different anesthetic approaches for intravitreal injections: a prospective randomized trial. Arq Bras Oftalmol. 2015;78(1):27–31. doi: 10.5935/0004-2749.20150008.
    1. Dexter F, Chestnut DH. Analysis of statistical tests to compare visual analog scale measurements among groups. Anesthesiology. 1995;82(4):896–902. doi: 10.1097/00000542-199504000-00012.
    1. Jensen MP, Chen C, Brugger AM. Interpretation of visual analog scale ratings and change scores: a reanalysis of two clinical trials of postoperative pain. J Pain. 2003;4(7):407–414. doi: 10.1016/S1526-5900(03)00716-8.
    1. Breivik EK, Bjornsson GA, Skovlund E. A comparison of pain rating scales by sampling from clinical trial data. Clin J Pain. 2000;16(1):22–28. doi: 10.1097/00002508-200003000-00005.
    1. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg. 2010;8(5):336–341. doi: 10.1016/j.ijsu.2010.02.007.
    1. Yau GL, Jackman CS, Hooper PL, Sheidow TG. Intravitreal injection anesthesia—comparison of different topical agents: a prospective randomized controlled trial. Am J Ophthalmol. 2011;151(2):333–337. doi: 10.1016/j.ajo.2010.08.031.
    1. Kersten P, White PJ, Tennant A. Is the pain visual analogue scale linear and responsive to change? An exploration using Rasch analysis. PLoS ONE. 2014;9(6):e99485. doi: 10.1371/journal.pone.0099485.
    1. Higgins JP, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928. doi: 10.1136/bmj.d5928.
    1. Örnek N, Apan A, Örnek K, Gunay F. Anesthetic effectiveness of topical levobupivacaine 0.75% versus topical proparacaine 0.5% for intravitreal injections. Saudi J Anaesth. 2014;8(2):198–201. doi: 10.4103/1658-354X.130713.
    1. Kumar N, Dhir L, Jivan S, Prasad SD. Assessment of comfort during intravitreal injections and comparison of anaesthetic drops and subconjunctival anaesthesia. Asian J Ophthalmol. 2008;10(3):185–186.
    1. Blaha GR, Tilton EP, Barouch FC, Marx JL. Randomized trial of anesthetic methods for intravitreal injections. Retina. 2011;31(3):535–539. doi: 10.1097/IAE.0b013e3181eac724.
    1. Breivik H, Borchgrevink PC, Allen SM, Rosseland LA, Romundstad L, Hals EK, et al. Assessment of pain. Br J Anaesth. 2008;101(1):17–24. doi: 10.1093/bja/aen103.
    1. Benowitz NO, Meister W. Clinical pharmacokinetics of lidocaine. Clin Pharmacokinet. 1978;3:177–201. doi: 10.2165/00003088-197803030-00001.
    1. Busbee BG, Alam A, Reichel E. Lidocaine hydrochloride gel for ocular anesthesia: results of a prospective randomized study. Ophthalmic Surg Lasers Imaging. 2008;39(5):386–390. doi: 10.3928/15428877-20080901-03.
    1. Rodrigues EB, Grumann A, Jr, Penha FM, et al. Effect of needle type and injection technique on pain level and vitreal reflux in intravitreal injection. J Ocul Pharmacol Ther. 2011;27:197–203. doi: 10.1089/jop.2010.0082.
    1. van Asten F, van Middendorp H, Verkerk S, Breukink MB, Lomme RM, Hoyng CB, Evers AW, Klevering BJ. Are intravitreal injections with ultrathin 33-G needles less painful than the commonly used 30-G needles? Retina. 2015;35(9):1778–1785. doi: 10.1097/IAE.0000000000000550.
    1. Moisseiev E, Regenbogen M, Bartfeld Y, Barak A. Evaluation of pain in intravitreal bevacizumab injections. Eye. 2014;28(8):980–985. doi: 10.1038/eye.2014.129.
    1. Shiroma HF, Farah ME, Takahashi WY, Gomes AMV, Goldbaum M, Rodrigues EB. Survey: technique of performing intravitreal injection among members of the Brazilian Retina and Vitreous Society (SBRV) Arq Bras Oftalmol. 2015;78(1):32–35. doi: 10.5935/0004-2749.20150009.

Source: PubMed

3
Abonneren