Genetic variation in lipid desaturases and its impact on the development of human disease

Diana M Merino, David W L Ma, David M Mutch, Diana M Merino, David W L Ma, David M Mutch

Abstract

Perturbations in lipid metabolism characterize many of the chronic diseases currently plaguing our society, such as obesity, diabetes, and cardiovascular disease. Thus interventions that target plasma lipid levels remain a primary goal to manage these diseases. The determinants of plasma lipid levels are multi-factorial, consisting of both genetic and lifestyle components. Recent evidence indicates that fatty acid desaturases have an important role in defining plasma and tissue lipid profiles. This review will highlight the current state-of-knowledge regarding three desaturases (Scd-1, Fads1 and Fads2) and their potential roles in disease onset and development. Although research in rodent models has provided invaluable insight into the regulation and functions of these desaturases, the extent to which murine research can be translated to humans remains unclear. Evidence emerging from human-based research demonstrates that genetic variation in human desaturase genes affects enzyme activity and, consequently, disease risk factors. Moreover, this genetic variation may have a trans-generational effect via breastfeeding. Therefore inter-individual variation in desaturase function is attributed to both genetic and lifestyle components. As such, population-based research regarding the role of desaturases on disease risk is challenged by this complex gene-lifestyle paradigm. Unravelling the contribution of each component is paramount for understanding the inter-individual variation that exists in plasma lipid profiles, and will provide crucial information to develop personalized strategies to improve health management.

Figures

Figure 1
Figure 1
Fatty acid desaturases in PUFA and eicosanoid biosynthesis. The D6D (Fads2) and D5D (Fads1) enzymes play important roles in the biosynthesis of polyunsaturated fatty acids (PUFA). Moreover, these desaturases lead to the generation of pro-inflammatory (via n-6 PUFA) and anti-inflammatory (via n-3 PUFA) eicosanoids.

References

    1. Lecerf JM. Fatty acids and cardiovascular disease. Nutr Rev. 2009;67(5):273–283. doi: 10.1111/j.1753-4887.2009.00194.x.
    1. Zamaria N. Alteration of polyunsaturated fatty acid status and metabolism in health and disease. Reprod Nutr Dev. 2004;44(3):273–282. doi: 10.1051/rnd:2004034.
    1. Wijendran V, Hayes KC. Dietary n-6 and n-3 fatty acid balance and cardiovascular health. Annu Rev Nutr. 2004;24:597–615. doi: 10.1146/annurev.nutr.24.012003.132106.
    1. Lingwood D, Simons K. Lipid rafts as a membrane-organizing principle. Science. 2010;327(5961):46–50. doi: 10.1126/science.1174621.
    1. Ma DW. Lipid mediators in membrane rafts are important determinants of human health and disease. Appl Physiol Nutr Metab. 2007;32(3):341–350. doi: 10.1139/H07-036.
    1. Szoor A, Szollosi J, Vereb G. Rafts and the battleships of defense: The multifaceted microdomains for positive and negative signals in immune cells. Immunol Lett. 2010;130(1-2):2–12. doi: 10.1016/j.imlet.2009.12.016.
    1. Deshpande AD, Harris-Hayes M, Schootman M. Epidemiology of diabetes and diabetes-related complications. Phys Ther. 2008;88(11):1254–1264.
    1. Schroder H. Protective mechanisms of the Mediterranean diet in obesity and type 2 diabetes. J Nutr Biochem. 2007;18(3):149–160. doi: 10.1016/j.jnutbio.2006.05.006.
    1. Bridger T. Childhood obesity and cardiovascular disease. Paediatr Child Health. 2009;14(3):177–182.
    1. Inoue M. Impact of lifestyle on overall cancer risk among Japanese: The Japan public health center-based prospective study (JPHC Study) J Epidemiol. 2010;20(2):90–96. doi: 10.2188/jea.JE20090209.
    1. Kleemann R, Verschuren L, van Erk MJ, Nikolsky Y, Cnubben NH, Verheij ER, Smilde AK, Hendriks HF, Zadelaar S, Smith GJ. Atherosclerosis and liver inflammation induced by increased dietary cholesterol intake: a combined transcriptomics and metabolomics analysis. Genome Biol. 2007;8(9):R200. doi: 10.1186/gb-2007-8-9-r200.
    1. Esposito K, Giugliano D. Diet and inflammation: a link to metabolic and cardiovascular diseases. Eur Heart J. 2006;27(1):15–20. doi: 10.1093/eurheartj/ehi605.
    1. Fung TT, Rimm EB, Spiegelman D, Rifai N, Tofler GH, Willett WC, Hu FB. Association between dietary patterns and plasma biomarkers of obesity and cardiovascular disease risk. Am J Clin Nutr. 2001;73(1):61–67.
    1. Brunner E, Mosdol A, Witte D, Martikainen P, Stafford M, Shipley M, Marmot M. Dietary patterns and 15-y risks of major coronary events, diabetes, and mortality. Am J Clin Nutr. 2008;87(5):1414–1421.
    1. Simopoulos A. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomedicine & Pharmacotherapy. 2002;56(8):365–379.
    1. Cordain L, Eaton SB, Sebastian A, Mann N, Lindeberg S, Watkins BA, O'Keefe JH, Brand-Miller J. Origins and evolution of the Western diet: health implications for the 21st century. Am J Clin Nutr. 2005;81(2):341–354.
    1. Esposito K, Giugliano D. Mediterranean dietary patterns and chronic diseases. Am J Clin Nutr. 2008;88(4):1179–1180.
    1. Lairon D, Defoort C, Martin JC, Amiot-Carlin MJ, Gastaldi M, Planells R. Nutrigenetics: links between genetic background and response to Mediterranean-type diets. Public Health Nutr. 2009;12(9A):1601–1606. doi: 10.1017/S1368980009990437.
    1. Ntambi JM, Miyazaki M. Recent insights into stearoyl-CoA desaturase-1. Curr Opin Lipidol. 2003;14(3):255–261. doi: 10.1097/00041433-200306000-00005.
    1. Flowers MT, Ntambi JM. Role of stearoyl-coenzyme A desaturase in regulating lipid metabolism. Curr Opin Lipidol. 2008;19(3):248–256. doi: 10.1097/MOL.0b013e3282f9b54d.
    1. Flowers MT, Ntambi JM. Stearoyl-CoA desaturase and its relation to high-carbohydrate diets and obesity. Biochim Biophys Acta. 2009;1791(2):85–91.
    1. Paton CM, Ntambi JM. Biochemical and physiological function of stearoyl-CoA desaturase. Am J Physiol Endocrinol Metab. 2009;297(1):E28–37. doi: 10.1152/ajpendo.90897.2008.
    1. Attie AD, Krauss RM, Gray-Keller MP, Brownlie A, Miyazaki M, Kastelein JJ, Lusis AJ, Stalenhoef AF, Stoehr JP, Hayden MR. Relationship between stearoyl-CoA desaturase activity and plasma triglycerides in human and mouse hypertriglyceridemia. J Lipid Res. 2002;43(11):1899–1907. doi: 10.1194/jlr.M200189-JLR200.
    1. MacDonald ML, van Eck M, Hildebrand RB, Wong BW, Bissada N, Ruddle P, Kontush A, Hussein H, Pouladi MA, Chapman MJ. Despite antiatherogenic metabolic characteristics, SCD1-deficient mice have increased inflammation and atherosclerosis. Arterioscler Thromb Vasc Biol. 2009;29(3):341–347. doi: 10.1161/ATVBAHA.108.181099.
    1. Flowers MT, Miyazaki M, Liu X, Ntambi JM. Probing the role of stearoyl-CoA desaturase-1 in hepatic insulin resistance. J Clin Invest. 2006;116(6):1478–1481. doi: 10.1172/JCI28774.
    1. Hulver MW, Berggren JR, Carper MJ, Miyazaki M, Ntambi JM, Hoffman EP, Thyfault JP, Stevens R, Dohm GL, Houmard JA. Elevated stearoyl-CoA desaturase-1 expression in skeletal muscle contributes to abnormal fatty acid partitioning in obese humans. Cell Metab. 2005;2(4):251–261. doi: 10.1016/j.cmet.2005.09.002.
    1. Warensjo E, Rosell M, Hellenius ML, Vessby B, De Faire U, Riserus U. Associations between estimated fatty acid desaturase activities in serum lipids and adipose tissue in humans: links to obesity and insulin resistance. Lipids Health Dis. 2009;8:37. doi: 10.1186/1476-511X-8-37.
    1. Scaglia N, Igal RA. Stearoyl-CoA desaturase is involved in the control of proliferation, anchorage-independent growth, and survival in human transformed cells. J Biol Chem. 2005;280(27):25339–25349. doi: 10.1074/jbc.M501159200.
    1. Mutch DM. Identifying regulatory hubs in obesity with nutrigenomics. Curr Opin Endocrinol Diabetes Obes. 2006;13(5):431–437. doi: 10.1097/01.med.0000244224.76033.06.
    1. Ntambi JM, Miyazaki M, Stoehr JP, Lan H, Kendziorski CM, Yandell BS, Song Y, Cohen P, Friedman JM, Attie AD. Loss of stearoyl-CoA desaturase-1 function protects mice against adiposity. Proc Natl Acad Sci USA. 2002;99(17):11482–11486. doi: 10.1073/pnas.132384699.
    1. Miyazaki M, Flowers MT, Sampath H, Chu K, Otzelberger C, Liu X, Ntambi JM. Hepatic stearoyl-CoA desaturase-1 deficiency protects mice from carbohydrate-induced adiposity and hepatic steatosis. Cell Metab. 2007;6(6):484–496. doi: 10.1016/j.cmet.2007.10.014.
    1. Miyazaki M, Sampath H, Liu X, Flowers MT, Chu K, Dobrzyn A, Ntambi JM. Stearoyl-CoA desaturase-1 deficiency attenuates obesity and insulin resistance in leptin-resistant obese mice. Biochem Biophys Res Commun. 2009;380(4):818–822. doi: 10.1016/j.bbrc.2009.01.183.
    1. Fessler M, Rudel L, Brown J. Toll-like receptor signaling links dietary fatty acids to the metabolic syndrome. Curr Opin Lipidol. 2009;20(5):379–385. doi: 10.1097/MOL.0b013e32832fa5c4.
    1. Shiwaku K, Hashimoto M, Kitajima K, Nogi A, Anuurad E, Enkhmaa B, Kim JM, Kim IS, Lee SK, Oyunsuren T. Triglyceride levels are ethnic-specifically associated with an index of stearoyl-CoA desaturase activity and n-3 PUFA levels in Asians. J Lipid Res. 2004;45(5):914–922. doi: 10.1194/jlr.M300483-JLR200.
    1. Mar-Heyming R, Miyazaki M, Weissglas-Volkov D, Kolaitis NA, Sadaat N, Plaisier C, Pajukanta P, Cantor RM, de Bruin TW, Ntambi JM. Association of stearoyl-CoA desaturase 1 activity with familial combined hyperlipidemia. Arterioscler Thromb Vasc Biol. 2008;28(6):1193–1199. doi: 10.1161/ATVBAHA.107.160150.
    1. Warensjo E, Ingelsson E, Lundmark P, Lannfelt L, Syvanen AC, Vessby B, Riserus U. Polymorphisms in the SCD1 gene: associations with body fat distribution and insulin sensitivity. Obesity (Silver Spring) 2007;15(7):1732–1740. doi: 10.1038/oby.2007.206.
    1. Liew CF, Groves CJ, Wiltshire S, Zeggini E, Frayling TM, Owen KR, Walker M, Hitman GA, Levy JC, O'Rahilly S. Analysis of the contribution to type 2 diabetes susceptibility of sequence variation in the gene encoding stearoyl-CoA desaturase, a key regulator of lipid and carbohydrate metabolism. Diabetologia. 2004;47(12):2168–2175. doi: 10.1007/s00125-004-1575-4.
    1. Nakamura MT, Nara TY. Structure, function, and dietary regulation of delta6, delta5, and delta9 desaturases. Annu Rev Nutr. 2004;24:345–376. doi: 10.1146/annurev.nutr.24.121803.063211.
    1. de Antueno R, Knickle L, Smith H, Elliot M, Allen S, Nwaka S, Winther M. Activity of human 5 and 6 desaturases on multiple n-3 and n-6 polyunsaturated fatty acids. FEBS letters. 2001;509(1):77–80. doi: 10.1016/S0014-5793(01)03135-0.
    1. Marquardt A, Stöhr H, White K, Weber B. cDNA cloning, genomic structure, and chromosomal localization of three members of the human fatty acid desaturase family. Genomics. 2000;66(2):175–183. doi: 10.1006/geno.2000.6196.
    1. Park W, Kothapalli K, Reardon H, Kim L, Brenna J. Novel fatty acid desaturase 3 (FADS3) transcripts generated by alternative splicing. Gene. 2009;446(1):28–34. doi: 10.1016/j.gene.2009.06.016.
    1. Nakada T, Kwee IL, Ellis WG. Membrane fatty acid composition shows delta-6-desaturase abnormalities in Alzheimer's disease. Neuroreport. 1990;1(2):153–155. doi: 10.1097/00001756-199010000-00018.
    1. Boudrault C, Bazinet RP, Ma DW. Experimental models and mechanisms underlying the protective effects of n-3 polyunsaturated fatty acids in Alzheimer's disease. J Nutr Biochem. 2009;20(1):1–10. doi: 10.1016/j.jnutbio.2008.05.016.
    1. Sala-Vila A, Miles EA, Calder PC. Fatty acid composition abnormalities in atopic disease: evidence explored and role in the disease process examined. Clin Exp Allergy. 2008;38(9):1432–1450. doi: 10.1111/j.1365-2222.2008.03072.x.
    1. Yaqoob P, Shaikh SR. The nutritional and clinical significance of lipid rafts. Curr Opin Clin Nutr Metab Care. 2010;13(2):156–166. doi: 10.1097/MCO.0b013e328335725b.
    1. Sepulveda JL, Tanhehco YC, Frey M, Guo L, Cropcho LJ, Gibson KM, Blair HC. Variation in human erythrocyte membrane unsaturated Fatty acids: correlation with cardiovascular disease. Arch Pathol Lab Med. 2010;134(1):73–80.
    1. Okuyama H, Fujii Y, Ikemoto A. n-6/n-3 Ratio of dietary fatty acids rather than hypercholesterolemia as the major risk factor for atherosclerosis and coronary heart disease. J Health Sci. 2000;46(3):157–177.
    1. Lattka E, Eggers S, Moeller G, Heim K, Weber M, Mehta D, Prokisch H, Illig T, Adamski J. A common FADS2 promoter polymorphism increases promoter activity and facilitates binding of transcription factor ELK1. J Lipid Res. 2010;51(1):182–191. doi: 10.1194/jlr.M900289-JLR200.
    1. Schaeffer L, Gohlke H, Muller M, Heid I, Palmer L, Kompauer I, Demmelmair H, Illig T, Koletzko B, Heinrich J. Common genetic variants of the FADS1 FADS2 gene cluster and their reconstructed haplotypes are associated with the fatty acid composition in phospholipids. Hum Mol Genet. 2006;15(11):1745–1756. doi: 10.1093/hmg/ddl117.
    1. Dwyer J, Allayee H, Dwyer K, Fan J, Wu H, Mar R, Lusis A, Mehrabian M. Arachidonate 5-lipoxygenase promoter genotype, dietary arachidonic acid, and atherosclerosis. N Engl J Med. 2004;350(1):29–37. doi: 10.1056/NEJMoa025079.
    1. Martinelli N, Girelli D, Malerba G, Guarini P, Illig T, Trabetti E, Sandri M, Friso S, Pizzolo F, Schaeffer L. FADS genotypes and desaturase activity estimated by the ratio of arachidonic acid to linoleic acid are associated with inflammation and coronary artery disease. Am J Clin Nutr. 2008;88(4):941–949.
    1. Hansen-Petrik M, McEntee M, Johnson B, Obukowicz M, Masferrer J, Zweifel B, Chiu C, Whelan J. Selective inhibition of [Delta]-6 desaturase impedes intestinal tumorigenesis. Cancer Lett. 2002;175(2):157–163. doi: 10.1016/S0304-3835(01)00715-7.
    1. Glaser C, Heinrich J, Koletzko B. Role of FADS1 and FADS2 polymorphisms in polyunsaturated fatty acid metabolism. Metabolism. 2009.
    1. Obukowicz M, Welsch D, Salsgiver W, Martin-Berger C, Chinn K, Duffin K, Raz A, Needleman P. Novel, selective delta 6 or delta 5 fatty acid desaturase inhibitors as antiinflammatory agents in mice. J Pharmacol Exp Ther. 1998;287(1):157–166.
    1. Obukowicz MG, Raz A, Pyla PD, Rico JG, Wendling JM, Needleman P. Identification and characterization of a novel delta6/delta5 fatty acid desaturase inhibitor as a potential anti-inflammatory agent. Biochem Pharmacol. 1998;55(7):1045–1058. doi: 10.1016/S0006-2952(97)00665-5.
    1. Rzehak P, Heinrich J, Klopp N, Schaeffer L, Hoff S, Wolfram G, Illig T, Linseisen J. Evidence for an association between genetic variants of the fatty acid desaturase 1 fatty acid desaturase 2 (FADS1 FADS2) gene cluster and the fatty acid composition of erythrocyte membranes. Br J Nutr. 2009;101(1):20–26. doi: 10.1017/S0007114508992564.
    1. Malerba G, Schaeffer L, Xumerle L, Klopp N, Trabetti E, Biscuola M, Cavallari U, Galavotti R, Martinelli N, Guarini P. SNPs of the FADS gene cluster are associated with polyunsaturated fatty acids in a cohort of patients with cardiovascular disease. Lipids. 2008;43(4):289–299. doi: 10.1007/s11745-008-3158-5.
    1. Baylin A, Ruiz-Narvaez E, Kraft P, Campos H. {alpha}-Linolenic acid,{Delta} 6-desaturase gene polymorphism, and the risk of nonfatal myocardial infarction. Am J Clin Nutr. 2007;85(2):554–560.
    1. Truong H, DiBello JR, Ruiz-Narvaez E, Kraft P, Campos H, Baylin A. Does genetic variation in the {Delta}6-desaturase promoter modify the association between {alpha}-linolenic acid and the prevalence of metabolic syndrome? Am J Clin Nutr. 2009;89(3):920–925. doi: 10.3945/ajcn.2008.27107.
    1. Bokor S, Dumont J, Spinneker A, Gonzalez-Gross M, Nova E, Widhalm K, Moschonis G, Stehle P, Amouyel P, De Henauw S. Single nucleotide polymorphisms in the FADS gene cluster are associated with delta-5 and delta-6 desaturase activities estimated by serum fatty acid ratios. J Lipid Res. 2010. in press .
    1. Tanaka T, Shen J, Abecasis GR, Kisialiou A, Ordovas JM, Guralnik JM, Singleton A, Bandinelli S, Cherubini A, Arnett D. Genome-wide association study of plasma polyunsaturated fatty acids in the InCHIANTI Study. PLoS Genet. 2009;5(1):e1000338. doi: 10.1371/journal.pgen.1000338.
    1. Brenna JT. Efficiency of conversion of alpha-linolenic acid to long chain n-3 fatty acids in man. Curr Opin Clin Nutr Metab Care. 2002;5(2):127–132. doi: 10.1097/00075197-200203000-00002.
    1. Pawlosky RJ, Hibbeln JR, Novotny JA, Salem N Jr. Physiological compartmental analysis of alpha-linolenic acid metabolism in adult humans. J Lipid Res. 2001;42(8):1257–1265.
    1. Childs CE, Romeu-Nadal M, Burdge GC, Calder PC. Gender differences in the n-3 fatty acid content of tissues. Proc Nutr Soc. 2008;67(1):19–27. doi: 10.1017/S0029665108005983.
    1. Illig T, Gieger C, Zhai G, Romisch-Margl W, Wang-Sattler R, Prehn C, Altmaier E, Kastenmuller G, Kato BS, Mewes HW. A genome-wide perspective of genetic variation in human metabolism. Nat Genet. 2010;42(2):137–141. doi: 10.1038/ng.507.
    1. Caspi A, Williams B, Kim-Cohen J, Craig IW, Milne BJ, Poulton R, Schalkwyk LC, Taylor A, Werts H, Moffitt TE. Moderation of breastfeeding effects on the IQ by genetic variation in fatty acid metabolism. Proc Natl Acad Sci USA. 2007;104(47):18860–18865. doi: 10.1073/pnas.0704292104.
    1. Molto-Puigmarti C, Plat J, Mensink RP, Muller A, Jansen E, Zeegers MP, Thijs C. FADS1 FADS2 gene variants modify the association between fish intake and the docosahexaenoic acid proportions in human milk. Am J Clin Nutr. 2010;91(5):1368–1376. doi: 10.3945/ajcn.2009.28789.
    1. Xie L, Innis S. Genetic variants of the FADS1 FADS2 gene cluster are associated with altered (n-6) and (n-3) essential fatty acids in plasma and erythrocyte phospholipids in women during pregnancy and in breast milk during lactation. J Nutr. 2008;138(11):2222–2228. doi: 10.3945/jn.108.096156.
    1. Novembre J, Johnson T, Bryc K, Kutalik Z, Boyko AR, Auton A, Indap A, King KS, Bergmann S, Nelson MR. Genes mirror geography within Europe. Nature. 2008;456(7218):98–101. doi: 10.1038/nature07331.

Source: PubMed

3
Abonneren