Three-dimensional evaluation of the effects of injectable platelet rich fibrin (i-PRF) on alveolar bone and root length during orthodontic treatment: a randomized split mouth trial

Talar S Zeitounlouian, Kinan G Zeno, Bassel A Brad, Rania A Haddad, Talar S Zeitounlouian, Kinan G Zeno, Bassel A Brad, Rania A Haddad

Abstract

Background: The role of injectable platelet rich fibrin (i-PRF) in orthodontic treatment has not been investigated with focus on its effect on dental and bony periodontal elements.

Objective: To evaluate the efficacy of i-PRF in bone preservation and prevention of root resorption.

Methods: A randomized split-mouth controlled trial included 21 patients aged 16-28 years (20.85 ± 3.85), who were treated for Class II malocclusion with the extraction of the maxillary first premolars. Right and left sides were randomly allocated to either experimental treated with i-PRF or control sides. After the leveling and alignment phase, the canines were retracted with 150gm forces. The i-PRF was prepared from the blood of each patient following a precise protocol, then injected immediately before canine retraction on the buccal and palatal aspects of the extraction sites. Localized maxillary cone beam computed tomography scans were taken before and after canine retraction to measure alveolar bone height and thickness and canine root length (indicative of root resorption), and the presence of dehiscence and fenestration. Paired sample t-tests and Wilcoxon signed rank tests were used to compare the changes between groups.

Results: No statistically significant differences in bone height, bone thickness were found between sides and between pre- and post-retraction period. However, root length was reduced post retraction but did not differ between sides. In both groups, postoperative dehiscence was observed buccally and palatally and fenestrations were recorded on only the buccal aspect.

Conclusions: I-PRF did not affect bone quality during canine retraction or prevent canine root resorption. I-PRF did not reduce the prevalence of dehiscence and fenestration. Trial registration ClinicalTrials.gov (identifier number: NCT03399760. 16/01/2018).

Keywords: Alveolar bone preservation; Class II division I; Dehiscence; Fenestration; Injectable platelet rich fibrin; Maxillary canine retraction; Platelet concentrate; Root resorption; i-PRF.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
CONSORT flow diagram
Fig. 2
Fig. 2
Intraoral photograph of i-PRF injection technique: a buccal injection, b Palatal injection, c Canine retraction initiated using a NiTi coil activated after the first i-PRF injection
Fig. 3
Fig. 3
Three-dimensional orientation of the CBCT scans on different sections relative to the position of the upper canine. A: Axial section: B: Coronal section:, C: Sagittal section
Fig. 4
Fig. 4
A Bucco-palatal section of canine CBCT scan with the defined landmarks for measurements in red. B Schematic representation of the reported measurements. Alveolar bone height: buccal (a) and palatal (b) alveolar crest heights were measured as the vertical distances between the line passing through the buccal and palatal CEJ to the corresponding buccal and palatal alveolar crest. Alveolar bone thickness: buccal and palatal alveolar plate thicknesses were measured perpendicular to the long axis from the root surface to the corresponding buccal and palatal alveolar bone plate at two different distances from the CEJ: 3 mm (c, d) and 6 mm (e, f). Root length was measured as the distance (g) along the long axis of the tooth perpendicular to two reference lines, the first line passing through the buccal and palatal CEJ of the canine and the other line through the canine root apex

References

    1. Ghafari JG. Centennial inventory: the changing face of orthodontics. Am J Orthod Dentofac Orthop. 2015;148(5):732–739. doi: 10.1016/j.ajodo.2015.08.011.
    1. Talic NF. Adverse effects of orthodontic treatment: a clinical perspective. Saudi Dent J. 2011;23:55–59. doi: 10.1016/j.sdentj.2011.01.003.
    1. Unnam D, Singaraju GS, Mandava P, Reddy GV, Mallineni SK. Accelerated orthodontics—an overview. J Dent Craniofac Res. 2018;3:4. doi: 10.21767/2576-392X.10002.
    1. Clark RL, Schneider M, Mahmoudi T, Bashirelahi N. What every dentist and patient should know about accelerated orthodontic tooth movement. Gen Dent. 2018;423(21):16–20.
    1. Sondeijker CFW, Lamberts AA, Beckmann SH, Kuitert RB, van Westing K, Persoon S, et al. Development of a clinical practice guideline for orthodontically induced external apical root resorption. Eur J Orthod. 2019;14:115–124. doi: 10.1093/ejo/cjz034.
    1. Sharpe W, Reed B, Subtelny JD, Polson A. Orthodontic relapse, apical root resorption, and crestal alveolar bone levels. Am J Orthod Dentofac Orthop. 1987;91:252–258. doi: 10.1016/0889-5406(87)90455-0.
    1. Nimeri G, Kau CH, Abou-Kheir NS, Corona R. Acceleration of tooth movement during orthodontic treatment—a frontier in orthodontics. Prog Orthod. 2013;14:42. doi: 10.1186/2196-1042-14-42.
    1. Almpani K, Kantarci A. Nonsurgical methods for the acceleration of the orthodontic tooth movement. In: Kantarci A, Will L, Yen S, editors. Tooth movement. Karger Publishers; 2016. pp. 80–91.
    1. Kalemaj Z, DebernardI CL, Buti J. Efficacy of surgical and non-surgical interventions on accelerating orthodontic tooth movement: A systematic review. Eur J Oral Implantol. 2015;8:9–24.
    1. Rekhi U, Catunda RQ, Gibson MP. Surgically accelerated orthodontic techniques and periodontal response: a systematic review. Eur J Orthod. 2020;15:1–8. doi: 10.1093/ejo/cjz103.
    1. Dibart S, Keser E, Nelson D. PiezocisionTM-assisted orthodontics: past, present, and future. Semin. Orthod. 2015;21:170–175. doi: 10.1053/j.sodo.2015.06.00.
    1. Güleç A, Bakkalbaşı BÇ, Cumbul A, Uslu Ü, Alev B, Yarat A. Effects of local platelet-rich plasma injection on the rate of orthodontic tooth movement in a rat model: a histomorphometric study. Am J Orthod Dentofac Orthop. 2017;151:92–104. doi: 10.1016/j.ajodo.2016.05.016.
    1. Rashid A, ElSharaby FA, Nassef EM, Mehanni S, Mostafa YA. Effect of platelet-rich plasma on orthodontic tooth movement in dogs. Orthod Craniofac Res. 2017;20:102–110. doi: 10.1111/ocr.1214.
    1. Nemtoi A, Sirghe A, Nemtoi A, Haba D. The effect of a plasma with platelet-rich fibrin in bone regeneration and on rate of orthodontic tooth movement in adolescents. Rev Chim. 2018;69:27–30. doi: 10.37358/RC.18.12.6829.
    1. Tehranchi A, Behnia H, Pourdanesh F, Behnia P, Pinto N, Younessian F. The effect of autologous leukocyte platelet rich fibrin on the rate of orthodontic tooth movement: a prospective randomized clinical trial. Eur J Dent. 2018;12:350. doi: 10.4103/ejd.ejd_424_17.
    1. El-Timamy A, El Sharaby F, Eid F, El Dakroury A, Mostafa Y, Shakr O. Effect of platelet-rich plasma on the rate of orthodontic tooth movement: a split-mouth randomized trial. Angle Orthod. 2020;90:354–361. doi: 10.2319/072119-483.1.
    1. Del Corso M, Vervelle A, Simonpieri A, Jimbo R, Inchingolo F, Sammartino G, et al. Current knowledge and perspectives for the use of platelet-rich plasma (PRP) and platelet-rich fibrin (PRF) in oral and maxillofacial surgery part 1: periodontal and dentoalveolar surgery. Curr Pharm Biotechnol. 2012;13:207–230. doi: 10.2174/138920112800624391.
    1. Choukroun J, Ghanaati S. Reduction of relative centrifugation force within injectable platelet-rich-fibrin (PRF) concentrates advances patients’ own inflammatory cells, platelets and growth factors: the first introduction to the low speed centrifugation concept. Eur J Trauma Emerg Surg. 2018;44(1):87–95. doi: 10.1007/s00068-017-0767-9.
    1. Miron RJ, Fujioka-Kobayashi M, Hernandez M, Kandalam U, Zhang Y, Ghanaati S, et al. Injectable platelet rich fibrin (i-PRF): opportunities in regenerative dentistry? Clin Oral Investig. 2017;21:2619–2627. doi: 10.1007/s00784-017-2063-9.
    1. Che Y, Li P, Tian L, Wang M, Xiong R, Lei X, et al. The research progress of platelet-rich fibrin applications in the orthodontic treatment. In: 2016 7th international conference on education, management, computer and medicine (EMCM 2016). Atlantis Press; 2017. 10.2991/emcm-16.2017.99
    1. Francisco I, Fernandes MH, Vale F. Platelet-rich fibrin in bone regenerative strategies in orthodontics: a systematic review. Materials (Basel) 2020;13:1866. doi: 10.3390/ma13081866.
    1. Hendrix I, Carels C, Kuijpers-Jagtman AM, Hof MV. A radiographic study of posterior apical root resorption in orthodontic patients. Am J Orthod Dentofac Orthop. 1994;105:345–349. doi: 10.1016/S0889-5406(94)70128-8.
    1. Harris EF, Baker WC. Loss of root length and creastal bone height before and during treatment in adolescent and adult orthodontic patients. Am J Orthod Dentofac Orthop. 1990;98:463–469. doi: 10.1016/S0889-5406(05)81656-7.
    1. Lund H, Gröndahl K, Hansen K, Gröndahl H-G. Apical root resorption during orthodontic treatment: a prospective study using cone beam CT. Angle Orthod. 2011;82:480–487. doi: 10.2319/061311-390.1.
    1. Lund H, Gröndahl K, Gröndahl H. Cone beam computed tomography evaluations of marginal alveolar bone before and after orthodontic treatment combined with premolar extractions. Eur J Oral Sci. 2012;120:201–211. doi: 10.1111/j.1600-0722.2012.00964.x.
    1. Castro LO, Castro IO, de Alencar AHG, Valladares-Neto J, Estrela C. Cone beam computed tomography evaluation of distance from cementoenamel junction to alveolar crest before and after nonextraction orthodontic treatment. Angle Orthod. 2015;86:543–549. doi: 10.2319/040815-235.1.
    1. Kim S-H, Lee J-B, Kim M-J, Pang E-K. Combining virtual model and cone beam computed tomography to assess periodontal changes after anterior tooth movement. BMC Oral Health. 2018;18:180. doi: 10.1186/s12903-018-0635-y.
    1. Aboalnaga AA, Fayed MMS, El-Ashmawi NA, Soliman SA. Effect of micro-osteoperforation on the rate of canine retraction: a split-mouth randomized controlled trial. Prog Orthod. 2019;20:21. doi: 10.1186/s40510-019-0274-0.
    1. Abdel-Kader HM, Al-Khalefa HN, Ammar ASM. Maxillary canine root resorption concomitant to orthodontic retraction: cone beam evaluation. Int J Clin Dent. 2016;9:29–46. doi: 10.26717/BJSTR.2018.05.001225.
    1. Aboul SMBE-D, El-Beialy AR, El-Sayed KMF, Selim EMN, El-Mangoury NH, Mostafa YA. Miniscrew implant-supported maxillary canine retraction with and without corticotomy-facilitated orthodontics. Am J Orthod Dentofac Orthop. 2011;139:252–259. doi: 10.1016/j.ajodo.2009.04.028.
    1. Ziegler P, Ingervall B. A clinical study of maxillary canine retraction with a retraction spring and with sliding mechanics. Am J Orthod Dentofac Orthop. 1989;95:99–106. doi: 10.1016/0889-5406(89)90388-0.
    1. Jang I, Tanaka M, Koga Y, Iijima S, Yozgatian JH, Cha BK, et al. A novel method for the assessment of three-dimensional tooth movement during orthodontic treatment. Angle Orthod. 2009;79:447–453. doi: 10.2319/042308-225.1.
    1. Evangelista K, de Faria VK, Bumann A, Hirsch E, Nitka M, Silva MAG. Dehiscence and fenestration in patients with Class I and Class II Division 1 malocclusion assessed with cone-beam computed tomography. Am J Orthod Dentofac Orthop. 2010;138(133):e1–7. doi: 10.1016/j.ajodo.2010.02.021.
    1. Hellak A, Schmidt N, Schauseil M, Stein S, Drechsler T, Korbmacher-Steiner HM. Influence of Invisalign treatment with interproximal enamel reduction (IER) on bone volume for adult crowding: a retrospective three-dimensional cone beam computed tomography study. BMC Oral Health. 2016;16:83. doi: 10.1186/s12903-016-0281-1.
    1. Dudic A, Giannopoulou C, Leuzinger M, Kiliaridis S. Detection of apical root resorption after orthodontic treatment by using panoramic cone-beam computed tomography of super-high resolution. Am J Orthod Dentofac Orthop. 2009 doi: 10.1016/j.ajodo.2008.10.014.
    1. Serafini G, Lopreiato M, Lollobrigida M, Lamazza L, Mazzucchi G, Fortunato L, Mariano A, Scotto d’Abusco A, Fontana M, De Biase A. Platelet rich fibrin (PRF) and its related products: biomolecular characterization of the liquid fibrinogen. J Clin Med. 2020;9(4):1099. doi: 10.3390/jcm9041099.
    1. Varela HA, Souza JC, Nascimento RM, Araujo RF, Vasconcelos RC, Cavalcante RS, Guedes PM, Araujo AA. Injectable platelet rich fibrin: cell content, morphological, and protein characterization. Clin Oral Investig. 2019;23(3):1309–1318. doi: 10.1007/s00784-018-2555-2.
    1. Pacheco AAR, Collins JR, Contreras N, Lantigua A, Pithon MM, Tanaka OM. Distalization rate of maxillary canines in an alveolus filled with leukocyte-platelet-rich fibrin in adults: a randomized controlled clinical split-mouth trial. Am J Orthod Dentofac Orthop. 2020;158(2):182–191. doi: 10.1016/j.ajodo.2020.03.02.
    1. Ammoury MJ, Mustapha S, Dechow PC, Ghafari JG. Two distalization methods compared in a novel patient-specific finite element analysis. Am J Orthod Dentofac Orthop. 2019;156:326–336. doi: 10.1016/j.ajodo.2018.09.017.
    1. Ghafari JG, Ammoury MJ. Overcoming compact bone resistance to tooth movement. Am J Orthod Dentofac Orthop. 2020;158:343–348. doi: 10.1016/j.ajodo.2020.02.006.
    1. Miron RJ, Chai J, Zheng S, Feng M, Sculean A, Zhang Y. A novel method for evaluating and quantifying cell types in platelet rich fibrin and an introduction to horizontal centrifugation. J Biomed Mater Res Part A. 2019;107(10):2257–2271. doi: 10.1002/jbm.a.36734.
    1. Sjølien T, Zachrisson BU. Periodontal bone support and tooth length in orthodontically treated and untreated persons. Am J Orthod. 1973;64:28–37. doi: 10.1016/0002-9416(73)90278-9.
    1. Baxter DH. The effect of orthodontic treatment on alveolar bone adjacent to the cetnento-enamel junction. Angle Orthod. 1967;37:35–47. doi: 10.1043/0003-3219.
    1. Liou EJ. The development of submucosal injection of platelet rich plasma for accelerating orthodontic tooth movement and preserving pressure side alveolar bone. APOS Trends Orthod. 2016;6(1):5. doi: 10.4103/2321-1407.173725.
    1. Alomari EB, Sultan K. Efficacy of injectable platelet-rich plasma in reducing alveolar bone resorption following rapid maxillary expansion: a cone-beam computed tomography assessment in a randomized split-mouth controlled trial. Angle Orthod. 2019;89(5):705–712. doi: 10.2319/091018-661.1.
    1. Lee S-L, Kim H-J, Son M-K, Chung C-H. Anthropometric analysis of maxillary anterior buccal bone of Korean adults using cone-beam CT. J Adv Prosthodont. 2010;2:92–96. doi: 10.4047/jap.2010.2.3.92.
    1. Bolerjack BA, Harris EF. A CBCT Study of External Apical Root Resorption Contrasting Premolar-Extraction and Non-Extraction Therapies. Master Thesis, Memphis, USA: University of Tennessee; 2005.
    1. Jiang F, Chen J, Kula K, Gu H, Du Y, Eckert G. Root resorptions associated with canine retraction treatment. Am J Orthod Dentofac Orthop. 2017;152:348–354. doi: 10.1016/j.ajodo.2017.01.023.
    1. Ahn H-W, Moon SC, Baek S-H. Morphometric evaluation of changes in the alveolar bone and roots of the maxillary anterior teeth before and after en masse retraction using cone-beam computed tomography. Angle Orthod. 2013;83:212–221. doi: 10.2319/041812-325.1.
    1. Thuaksuban N, Nuntanaranont T, Pripatnanont P. A comparison of autogenous bone graft combined with deproteinized bovine bone and autogenous bone graft alone for treatment of alveolar cleft. Int J Oral Maxillofac Surg. 2010;39:1175–1180. doi: 10.2319/041812-325.1.

Source: PubMed

3
Abonneren